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Abstract—Particle Swarm Optimization (PSO) is a popular optimization algorithm for solving complex optimization problems. 

Many PSO algorithms were proposed in literature where Velocity was calculated first and then it was added to position to obtain 

new position. In this work, a novel algorithm titled “Acceleration Particle Swarm Optimization (AccPSO)” is proposed where 

acceleration is calculated first and then displacement is obtained next with initial velocity, acceleration and time. Displacement is 

added to position to get new position. Unlike many PSO algorithms in literature, where iterations and time are used 

interchangeably, the time “t” in AccPSO algorithm is a continuous variable. In this work, AccPSO, PSO, Acceleration-based 

Particle Swarm Optimization (APSO) and APSOc (APSO with clamping) are tested on seven benchmark functions. Results 

obtained are discussed. It has been found that AccPSO with time “t” = 0.1 and “t” = 0.25 between iterations yielded optimal results 

when tested on benchmark functions.     

Keywords—Acceleration, Particle Swarm Optimization, PSO, Acceleration Particle Swarm Optimization, AccPSO  

I. INTRODUCTION  

In [1], Acceleration based Particle Swarm Optimization (APSO) was proposed. In APSO, a new strategy was employed for 

updating acceleration coefficients. The work Acceleration Particle Swarm Optimization (AccPSO) in this article is different 

from APSO proposed in [1]. 

 

Acceleration-based Particle Swarm Optimization (APSO) was proposed in [2]. The concept of calculation of acceleration 

in this article is inspired from the behavior of birds. After calculating acceleration, velocity and position are updated. AccPSO 

proposed in this work calculates acceleration inspired from the behavior of birds in a similar way as done in [2]. 

 

In [3], Acceleration based Particle Swarm Optimization (APSO) was used. This algorithm is based on updating 

acceleration coefficients in a new way.  

 

Centripetal Accelerated Particle Swarm Optimization (CAPSO) was proposed in [4]. The calculation of acceleration in 
AccPSO and CAPSO are similar. Both papers calculate acceleration inspired from the behavior of birds. However, velocity 

and position updating equations are different in CAPSO when compared to AccPSO proposed in this paper. 

 

In [5], Acceleration-Aided Particle Swarm Optimization (A-APSO), was proposed. The calculation of acceleration in A-

APSO and AccPSO are same. However, A-APSO is based on iterations and time t equals 1. In AccPSO, there is concept of 

time introduced between iterations and time t in AccPSO proposed in this work is a continuous variable. 

 

Improved Centripetal Accelerated Particle Swarm Optimization was proposed in [6] where the work in [4] is improved.  

 

In [7], Accelerated Particle Swarm Optimization (APSO) was proposed. An acceleration factor ‘a’ is multiplied in the 

velocity update equation. AccPSO proposed in this paper and APSO proposed in [7] are different from each other. 
 

Particle Acceleration-based Particle Swarm Optimization (PA-PSO) was proposed in [8]. In PA-PSO, acceleration is 

obtained by difference of final and initial velocities whereas in AccPSO, acceleration is inspired by behavior of birds. 

 

In [9], Hybrid Strategy Particle Swarm Optimization (HS-PSO) was proposed. HS-PSO is based on Hook-Jeeves strategy, 

Cauchy particle mutation mechanism, adaptive weight adjustment and fusion of reverse learning strategy.  

 

A Particle Swarm Optimization algorithm based on Adaptive strategy and Velocity pausing (VASPSO) was proposed in 

[10]. This algorithm is based on Terminal Replacement Mechanism, Adaptive Strategy, Symmetric Cooperative Swarms, 

Time-varying inertia weight and velocity pausing. 

 

In [11], Improved Particle Swarm Optimization (IPSO) was proposed. Time varying inertia weight, chaos-based 
initialization scheme, replacement of inactive particles and Adaptive mutation strategy were used in IPSO algorithm. 

 



A Hybrid Particle Swarm Optimization titled “NDWPSO” was proposed in [12]. This method is based on a mutation 

strategy from Differential Evolution, spiral shrinkage search strategy, dynamic inertial weight, a new jump out strategy and 

elite opposition-based learning scheme is used for initialization. 

 

In [13], Particle Swarm Optimization algorithm titled “IPSO” was proposed. IPSO is based on random acceleration 
coefficient and adaptive decreasing inertia weight. 

A new velocity update equation was proposed in [14]. There are 3 components in velocity update equation. Moving 

towards local best is first component and moving towards global best is second component. Third component is based on 

moving towards the local best murmuration particle “Mbest”. K-means clustering is applied and particles are divided into 

groups. The best fitness particle in the group to which particle belongs to is taken as “Mbest”. Generally, there are only two 

components in velocity update equation of Particle Swarm Optimization (PSO). In this work an extra third component which 

is moving towards the local best murmuration particle was introduced. 

 

In [15], improved Particle Swarm Optimization algorithm titled “SCMPSO” was proposed. SCMPSO is based on second 

order-oscillatory particles which improves PSO algorithm. Recent research and development in Particle Swarm Optimization 

field can be found in articles [16] to [28]. 

 
Section 2 shows Particle Swarm Optimization. Details related to proposed Acceleration Particle Swarm Optimization 

(AccPSO) algorithm can be found in 3rd Section. Section 4 gives Results and Conclusions are made in Section 5. 

II. PARTICLE SWARM OPTIMIZATION 

     This section explains Particle Swarm Optimization (PSO) algorithm. Equation Eq1 shows velocity update and Equation Eq2 
shows position update. 

V(i,k) – Velocity of particle “i” and dimension “k” 

w – Intertia weight 

c1 - Cognitive acceleration coefficient 

r1 – Random number uniformly distributed between 0 and 1 

pbest(i,k) – ith Particle best position and dimension “k” 

gbest(k) – kth dimension of best position of entire swarm 

c2 – Social acceleration coefficient 

r2 – Random number uniformly distributed between 0 and 1 

Position(i,k) – Current position of ith particle and dimension “k” 

V(i,k) = (w * V(i,k)) + (c1 * r1 * (pbest(i,k) – Position(i,k))) + (c2 * r2 * (gbest(k) – Position(i,k))) – (Eq1) 

Position(i,k) = Position(i,k) + V(i,k) – (Eq2) 

 

Figure. 1 gives pseudocode of PSO algorithm. Figure. 2 shows flowchart of PSO algorithm. 

 
In line 1, population is initialized. Line 2 shows loop for iterations and line 3 shows loop for each particle. Pbest and gbest are 

updated in lines 4 and 5. Line 6 loops for each dimension. Velocity is updated in lines 7-9. Position is updated in lines 10-12. 

Loops are ended in lines 13-15. 

 

1 Population is initialized 

2 for iterations = 1 to maximum iterations 

3 for i = 1 to Size of population 

4  if fitness(Position(i)) < fitness(pbest(i)) then pbest(i) = Position(i) 

5  if fitness(pbest(i)) < fitness(gbest) then gbest = pbest(i) 

6  for k = 1 to dimensions 

7   Update Velocity using (Eq1) 
8   if V(i,k) > Vmax then V(i,k) = Vmax 

9   if V(i,k) < Vmin then V(i,k) = Vmin 

10   Update Position using (Eq2) 

11   if Position(i,k) > xmax then Position(i,k) = xmax 

12   if Position(i,k) < xmin then Position(i,k) = xmin 

13  end for (k) 

14 end for (i) 

15 end for (iterations) 

Figure. 1 Pseudocode of PSO algorithm 



 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

                                                               

                                                                         

Figure. 2 Flowchart of PSO algorithm 
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III. ACCELERATION PARTICLE SWARM OPTIMIZATION 

  This section explains proposed Acceleration Particle Swarm Optimization (AccPSO) algorithm. Equation Eq3 shows 

Cognitive Acceleration. Equation Eq4 shows Social Acceleration. Acceleration is obtained by adding Cognitive Acceleration 

and Social Acceleration in Equation Eq5. Equation Eq6 gives equation for Displacement. Equation Eq7 gives Position update. 

In this equation Displacement is added to Position to obtain new Position. Equation Eq8 gives equation for Velocity update. 

This new Velocity is used as initial Velocity while calculating Displacement in the next iteration. 
 

V(i,k) – Velocity of particle “i” and dimension “k” 

c1 - Cognitive acceleration coefficient 

r1 – Random number uniformly distributed between 0 and 1 

pbest(i,k) – ith Particle best position and dimension “k” 

gbest – best position of entire swarm 

c2 – Social acceleration coefficient 

r2 – Random number uniformly distributed between 0 and 1 

Cognitive_Acceleration(i,k) – Cognitive acceleration of ith particle and dimension “k” 

Social_Acceleration(i,k) – Social acceleration of ith particle and dimension “k” 

Acceleration(i,k) - Acceleration of ith particle and dimension “k” 

Displacement(i,k) – Displacement of ith particle and dimension “k” 

Position(i,k) – Current position of ith particle and dimension “k” 

 

Cognitive_Acceleration(i,k) = (c1 * r1 * (pbest(i,k) – Position(i,k))) – (Eq3) 

Social_Acceleration(i,k) = (c2 * r2 * (gbest(k) – Position(i,k))) – (Eq4) 
Acceleration(i,k) = Cognitive_Acceleration(i,k) + Social_Acceleration(i,k) – (Eq5) 

Displacement(i,k) = V(i,k)*t + 0.5* Acceleration(i,k)*t*t – (Eq6) 

Position(i,k) += Displacement(i,k) – (Eq7) 

V(i,k) = V(i,k) + (Acceleration(i,k))*t – (Eq8) 

 

Figure. 3 shows pseudocode of proposed Acceleration Particle Swarm Optimization (AccPSO). Figure. 4 gives flowchart of 

AccPSO algorithm. 

 

In line 1, population is initialized. Line 2 shows loop for iterations and line 3 shows loop for each particle. Pbest and gbest are 

updated in lines 4 and 5. Line 6 loops for each dimension. Acceleration, Displacement, Position are calculated in lines 7-11 

respectively.  Velocity is calculated in lines 12-14. Loops are ended in lines 15-17. 

 
 

1 Population is initialized 

2 for iterations = 1 to maximum iterations 

3 for i = 1 to Size of population 

4  if fitness(Position(i)) < fitness(pbest(i)) then pbest(i) = Position(i) 

5  if fitness(pbest(i)) < fitness(gbest) then gbest = pbest(i) 

6  for k = 1 to dimensions 

7   Calculate Acceleration using (Eq5) 

8   Calculate Displacament using (Eq6) 

9   Calculate Position using (Eq7) 

10   if Position(i,k) > xmax then Position(i,k) = xmax 

11   if Position(i,k) < xmin then Position(i,k) = xmin 
12   Calculate Velocity using (Eq8) 

13   if V(i,k) > Vmax then V(i,k) = Vmax 

14   if V(i,k) < Vmin then V(i,k) = Vmin 

15  end for (k) 

16 end for (i) 

17 end for (iterations) 

 

Figure. 3 Pseudocode of proposed Acceleration Particle Swarm Optimization (AccPSO) 

 



 

 

 

         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
                                                                    

Figure. 4 Flowchart of proposed Acceleration Particle Swarm Optimization (AccPSO) 
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IV. RESULTS 

In this work APSO proposed in [2] is slightly modified with velocity and position clamping to obtain APSOc. Algorithms 

PSO, proposed AccPSO (with Time values “t” = 0.05, 0.1, 0.25, 0.5, 1, 5), Acceleration-based Particle Swarm Optimization 

(APSO) proposed in [2] and APSOc (APSO with clamping) are applied on Rastrigin, Sphere, Ackley, Rosenbrock, Beale, 

Booth and Three-Hump Camel benchmark functions.  

 

Table. 1 to Table. 7 shows Optimal Position, Optimal Fitness and Rank for Rastrigin, Sphere, Ackley, Rosenbrock, Beale, 

Booth and Three-Hump Camel benchmark functions respectively. Table. 8 shows Ranking of algorithms on benchmark 

functions. 

 

Figure. 5 to Figure. 11 shows Convergence curves for Rastrigin, Sphere, Ackley, Rosenbrock, Beale, Booth and Three-

Hump Camel benchmark functions respectively.  

 
Table. 1 Optimal Position, Optimal Fitness and Rank for Rastrigin Function 

 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['0.995065', 

'-1.003172', 

'0.948100'] 

3.429206 2 

AccPSO 0.05 ['-0.003548', 

'-1.080543', 

'-0.928857'] 

4.268807 4 

AccPSO 0.1 ['-0.135719', 

'0.030434', '-

0.028947'] 

3.788229 3 

AccPSO 0.25 ['0.917834', 

'-1.013812', 

'-0.112928'] 

5.637378 5 

AccPSO 0.5 ['1.957149', 
'-1.064489', 

'-0.920311'] 

8.208100 6 

AccPSO 1 ['1.232075', 

'-1.028791', 

'1.840819'] 

19.602662 7 

AccPSO 5 ['-2.963075', 

'-0.926583', 

'0.248887'] 

20.943561 8 

APSOc - ['0.000000', 

'0.000000', 

'0.000000'] 

0.000000 

 

1 

APSO - ['-2.963075', 

'-0.926583', 

'0.248887'] 

 

20.943561 8 

 
From Table. 1 Rank column it can be observed that APSOc performed best followed by PSO in second position and proposed 

AccPSO (t = 0.1) in third position. APSO performed worst.  



 
 

Figure. 5 Convergence curve for algorithms PSO, AccPSO (t = 0.1), APSOc, APSO for Rastrigin function 

                                                           

Table. 2 Optimal Position, Optimal Fitness and Rank for Sphere Function 

 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['-0.006096', 

'0.004520', 
'0.178469'] 

0.031909 3 

AccPSO 0.05 ['0.141275', 

'-0.147410', 

'0.013723'] 

 

0.041877 5 

AccPSO 0.1 ['0.011334', 

'0.001608', 

'0.040052'] 

 

0.001735 

 

2 

AccPSO 0.25 ['-0.035585', 

'-0.184961', 

'0.014747'] 

0.035694 4 

AccPSO 0.5 ['-0.600960', 

'-0.660987', 

'0.612041'] 

1.172651 8 

AccPSO 1 ['0.076059', 
'-0.790917', 

'0.170985'] 

0.660570 7 

AccPSO 5 ['-2.963075', 

'-0.926583', 

'0.248887'] 

9.700313 9 

APSOc - ['0.000000', 

'0.000000', 

'0.000000'] 

0.000000 1 

APSO - ['-0.311292', 

'-0.430060', 

'-0.577341'] 

0.615177 6 



From Table. 2 Rank column it can be observed that APSOc performed best followed by AccPSO (t = 0.1) in second position 

and PSO in third position. APSO obtained Rank 6. APSO with clamping (APSOc) obtained Rank 1. 

 

 

 
 

Figure. 6 Convergence curve for algorithms PSO, AccPSO (t = 0.1), APSOc, APSO for Sphere function 

 
 

Table. 3 Optimal Position, Optimal Fitness and Rank for Ackley Function 

 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['0.846509', 

'0.961760', 

'0.971649'] 

3.786924 5 

AccPSO 0.05 ['-0.010270', 

'0.177051', 

'0.572538'] 

 

2.857466 

 

3 

AccPSO 0.1 ['-0.028851', 

'0.027244', '-

0.114688'] 
 

0.520206 2 

AccPSO 0.25 ['-0.379228', 

'-0.421404', 

'0.221155'] 

3.453682 4 

AccPSO 0.5 ['0.087809', 

'1.583613', 

'1.110090'] 

5.437795 7 

AccPSO 1 ['-0.684474', 

'1.295402', '-

0.204072'] 

4.982607 6 

AccPSO 5 ['-9.709404', 

'-3.036226', 

'0.815554'] 

15.109543 9 

APSOc - ['0.000000', 0.000000 1 



'0.000000', 

'0.000000'] 

APSO - ['-1.020040', 

'-1.409219', 

'-1.891832'] 

6.491372 8 

 

From Table. 3 Rank column it can be observed that APSOc performed best followed by AccPSO (t = 0.1) in second position 

and PSO in fifth position. APSO obtained Rank 8. APSO with clamping (APSOc) obtained Rank 1. 
 

 

 

 
 

Figure. 7 Convergence curve for algorithms PSO, AccPSO (t = 0.1), APSOc, APSO for Ackley function 

 

 

Table. 4 Optimal Position, Optimal Fitness and Rank for Rosenbrock Function 

 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['1.032677', 

'1.066918', 

'1.138859'] 

 

0.005600 

 

1 

AccPSO 0.05 ['1.352583', 
'1.789617', 

'3.225790'] 

 

0.959894 
 

3 

AccPSO 0.1 ['1.444045', 

'2.031175', 

'4.119426'] 

 

1.556993 4 

AccPSO 0.25 ['1.156006', 

'1.384838', 

'1.987552'] 

0.894415 2 

AccPSO 0.5 ['0.798173', 

'0.417819', 

5.211164 7 



'0.190061'] 

AccPSO 1 ['-0.500436', 

'0.231045', 

'0.195882'] 

4.910852 6 

AccPSO 5 ['0.422842', 

'1.254289', 

'1.142736'] 

 

134.600124 9 

APSOc - ['0.019321', 
'0.000000', 

'0.000000'] 

1.961745 5 

APSO - ['0.172923', 

'0.656629', 

'0.578415'] 

42.248968 8 

 

From Table. 4 Rank column it can be observed that PSO performed best followed by AccPSO (t = 0.25) in second position 

and APSOc in fifth position. APSO obtained Rank 8. APSO with clamping (APSOc) obtained Rank 5. 

 

 

 
 

Figure. 8 Convergence curve for algorithms PSO, AccPSO (t = 0.25), APSOc, APSO for Rosenbrock function 

 

 

Table. 5 Optimal Position, Optimal Fitness and Rank for Beale Function 
 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['-3.095066', 

'1.252973'] 

 

0.885911 8 

AccPSO 0.05 ['2.956021', 

'0.499396'] 

0.002761 2 

AccPSO 0.1 ['3.025866', 

'0.502864'] 

 

0.000392 1 

AccPSO 0.25 ['3.177125', 0.005739 4 



'0.533403'] 

AccPSO 0.5 ['3.185840', 

'0.547782'] 

0.005305 3 

AccPSO 1 ['2.841515', 

'0.480963'] 

0.014888 5 

AccPSO 5 ['4.500000', 

'0.758336'] 

0.291944 7 

APSOc - ['3.868566', 

'0.643473'] 

0.060165 6 

APSO - ['-

49.295690', 
'1.015259'] 

1.209615 9 

 

From Table. 5 Rank column it can be observed that AccPSO (t = 0.1) performed best. APSOc obtained sixth position. PSO 

obtained Rank 8. APSO performed worst.  

 

 
 

Figure. 9 Convergence curve for algorithms PSO, AccPSO (t = 0.1), APSOc, APSO for Beale function 

 

 

Table. 6 Optimal Position, Optimal Fitness and Rank for Booth Function 

 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['1.002913', 

'2.997653'] 

 

0.000015 

 

1 

AccPSO 0.05 ['0.923576', 
'3.019822'] 

 

0.019049 4 

AccPSO 0.1 ['0.989945', 

'3.042390'] 

 

0.006080 3 

AccPSO 0.25 ['0.944149', 

'3.038851'] 

0.005785 2 

AccPSO 0.5 ['1.118404', 0.230431 7 



'2.702696'] 

AccPSO 1 ['1.210614', 

'2.750605'] 

0.112572 5 

AccPSO 5 ['1.428052', 

'1.561826'] 

6.332959 9 

APSOc - ['0.897408', 

'3.234097'] 

0.134502 6 

APSO - ['0.559913', 

'3.351501'] 

0.348619 8 

 

From Table. 6 Rank column it can be observed that PSO performed best followed by AccPSO (t = 0.25) in second position. 
APSOc obtained sixth position. APSO obtained 8th Rank.  

 

 

 
 

 

Figure. 10 Convergence curve for algorithms PSO, AccPSO (t = 0.25), APSOc, APSO for Booth function 

 

 

Table. 7 Optimal Position, Optimal Fitness and Rank for Three-Hump Camel Function 

 

Algorithm Time (t) Optimal 

Position 

Optimal 

Fitness 

Rank 

PSO - ['0.029987', 

'-0.119793', 

'-2.790281'] 
 

0.012556 7 

AccPSO 0.05 ['-0.023015', 

'0.015646', 

'0.184435'] 

 

0.000944 4 

AccPSO 0.1 ['0.013953', 

'-0.007711', 

'-0.909649'] 

 

0.000341 

 

2 

AccPSO 0.25 ['-0.017772', 0.000865 3 



'0.026554', 

'3.144012'] 

AccPSO 0.5 ['0.014219', 

'-0.065331', 

'-2.529228'] 

0.003744 5 

AccPSO 1 ['-0.045747', 

'-0.001469', 

'-5.000000'] 

0.004250 6 

AccPSO 5 ['-1.761672', 
'1.509345', 

'0.358820'] 

0.694853 9 

APSOc - ['0.000000', 

'0.000000', '-

5.000000'] 

0.000000 1 

APSO - ['-0.148320', 

'0.368496', '-

7.057323'] 

0.124625 8 

 

 

From Table. 7 Rank column it can be observed that APSOc performed best followed by AccPSO (t = 0.1) in second position. 

PSO obtained Rank 7. APSO obtained Rank 8.  

 

 
 

 
 

Figure. 11 Convergence curve for algorithms PSO, AccPSO (t = 0.1), APSOc, APSO for Three-Hump Camel function 

 

 

 

 

 

 

 

 

 

 



Table. 8 Ranking of Algorithms on Benchmark functions 

 

Function / 

Rank 

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Rank 6 Rank 7 Rank 8 Rank 9 

Rastrigin APSOc PSO AccPSO 

(t = 0.1) 

AccPSO 

(t = 

0.05) 

AccPSO 

(t = 

0.25) 

AccPSO 

(t = 0.5) 

AccPSO 

(t = 1) 

AccPSO 

(t = 5) 

and 
APSO 

None 

Sphere APSOc AccPSO 

(t = 0.1) 

PSO AccPSO 

(t = 

0.25) 

AccPSO 

(t = 

0.05) 

APSO AccPSO 

(t = 1) 

AccPSO 

(t = 0.5) 

AccPSO 

(t = 5)  

Ackley APSOc AccPSO 

(t = 0.1) 

AccPSO 

(t = 

0.05) 

AccPSO 

(t = 

0.25) 

PSO AccPSO 

(t = 1) 

AccPSO 

(t = 0.5) 

APSO AccPSO 

(t = 5)  

Rosenbrock PSO AccPSO 

(t = 

0.25) 

AccPSO 

(t = 

0.05) 

AccPSO 

(t = 0.1) 

APSOc AccPSO 

(t = 1) 

AccPSO 

(t = 0.5) 

APSO AccPSO 

(t = 5)  

Beale AccPSO 

(t = 0.1) 

AccPSO 

(t = 

0.05) 

AccPSO 

(t = 0.5) 

AccPSO 

(t = 

0.25) 

AccPSO 

(t = 1) 

APSOc AccPSO 

(t = 5)  

PSO APSO 

Booth PSO AccPSO 

(t = 

0.25) 

AccPSO 

(t = 0.1) 

AccPSO 

(t = 

0.05) 

AccPSO 

(t = 1) 

APSOc AccPSO 

(t = 0.5) 

APSO AccPSO 

(t = 5)  

Three-
Hump 

Camel 

APSOc AccPSO 
(t = 0.1) 

AccPSO 
(t = 

0.25) 

AccPSO 
(t = 

0.05) 

AccPSO 
(t = 0.5) 

AccPSO 
(t = 1) 

PSO APSO AccPSO 
(t = 5)  

 

From Table. 8 it can be concluded that APSOc performed best four times, PSO performed best 2 times and proposed 

AccPSO performed best one time for particular value of time “t”. 

 

In PSO literature, time and iterations are used interchangeably and generally time value “t” is 1. In this work novel 

AccPSO algorithm is proposed where time “t” is continuous value and can be varied. If we followed general rule of time “t” 

equal to 1 then we would have obtained only one single optimal value for AccPSO algorithm. In this work, it has been found 

that for AccPSO algorithm time “t” equals 0.1 obtained better results 5 times and time “t” equals 0.25 obtained better results 2 

times when compared to time “t” equals 1 and other time values. 

 

APSO proposed in [2] got Rank 8, Rank 6, Rank 8, Rank 8, Rank 9, Rank 9, Rank 8 respectively for 7 benchmark 
functions. A slight modification is introduced into APSO algorithm to create APSOc algorithm. APSOc is nothing but APSO 

with velocity and position clamping. If velocity crossed vmax then setting velocity to vmax and if velocity is less than vmin 

then setting velocity to vmin, this is Velocity clamping. Similarly, setting position between xmin and xmax when it crossed 

boundary is position clamping. APSOc (Slight modification of APSO proposed in [2]) got Rank 1, Rank 1, Rank 1, Rank 5, 

Rank 6, Rank 6, Rank 1 respectively for 7 benchmark functions. Hence it can be concluded that introducing velocity and 

position clamping into optimization algorithms can make a significant difference in the results obtained as observed in this 

work. 

 

V. CONCLUSIONS 

Results obtained show that APSOc performed best four times, PSO performed best 2 times and proposed AccPSO 

performed best one time for particular value of time “t”. A novel Acceleration Particle Swarm Optimization (AccPSO) is 
proposed in this article. Unlike many PSO algorithms, AccPSO is based on calculating acceleration first. In AccPSO, time “t” 

is a continuous variable. If we change “t” value between 2 iterations we get different results. Hence a general rule of using 

iterations and time interchangeably and time “t” equals 1 between iterations is broken in AccPSO algorithm where time “t” is 

a continuous variable in this algorithm. It has been found that better results have been obtained for time time “t” equals 0.1 

five times and time “t” equals 0.25 two times when compared to time “t” equals 1 and other values. There is a significant 

improvement in APSO algorithm when clamping is introduced into it and APSO algorithm with clamping (APSOc) obtained 

Rank 1 four times. Hence it can be concluded that varying time “t” between iterations (unlike time “t” equals 1) may yield 

better results. Also introducing clamping into algorithm and checking results of algorithm with and without clamping may 

yield a significant difference in the results obtained just like results obtained by APSO and APSOc are different.   
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