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Abstract—The energy transition towards renewable energy
sources requires a distributed power grid with many small
renewable low voltage power plants that adjust their energy
output to the power consumption. Marvin Nebel-Wenner et al.
proposed in 2019 a distributed system to reduce the overall
energy prices in a distributed power grid. This paper investigates
whether that system has the necessary robustness, adaptivity
and manageability using concepts from Organic Computing and
proposes suggestions for improvement.
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I. INTRODUCTION

The energy transition towards renewable energy sources
requires a new distributed structure of the power grid. Instead
of a few big high voltage power plants (i.e. coal or gas
power plants) the future power grid will consist of many
small renewable low voltage power plants (i.e. photovoltaic
or wind turbines). Also the electrification of vehicles and
the heat transition in the building sector towards heat pumps
will increase the overall demand of electricity. This is a big
challenge for the power grid, because renewable power plants
might produce power when there is no demand, or produce no
power when the demand is high [1].

To keep the power grid robust, adaptive and manageable
the power plants and consumers have to coordinate the power
supply, demand and storage usage. A self-organizing system
approach is needed for the coordination where agents are
power plants and consumers would enable this coordination
in a robust, adaptive manageable way. Marvin Nebel-Wenner
et al. simulated such a system in [1].

Organic Computing (OC) proposed concepts to reduce
complexity and increase robustness of distributed systems such
as self-adaption and self-organization [2]. These are mandatory
properties for a system that schedules power consumption in
a distributed power grid. This leads to the question whether
the presented system is an instance in the domain of organic
computing and fulfills the mandatory requirements.

The remainder of this paper is organized as follows: Section
2 briefly summarizes organic computing and self-organization.

Section 3 describes the system used in [1]. Section 4 discusses
whether can be classified as a system in the domain of organic
computing. Finally the paper closes with a summary in Section
5.

BACKGROUND

In 2017 Tomforde et al. updated the definition of the term
“Organic Computing” and the desired self-attributes [2]. The
term “organic” in the context of OC is meant as equipping
computing systems with “life-like” properties such as auton-
omy of subsystems and robustness against disturbances.

An “Organic Computing System” (or organic system) is a
technical system that adapts autonomously and dynamically to
the current conditions of the perceived environment. Usually,
an organic system consists of autonomous subsystems, each
containing a part for the adaption aspects and a part to fulfill
its utility. Organic systems do not always perform better in
aspects such as higher speed or better quality of decisions
than non-organic systems. Meaning the concepts of OC are
no self-purpose. OC supports systems to become more robust
and reduces complexity. The system’s degree of autonomy can
range from total autonomy to no autonomy, with intermediate
degrees of internal and external control. Neither total nor no
autonomy are desirable, because either the system does not
profit from autonomy, or the system becomes uncontrollable
from outside.

The defined self-* properties of organic systems are:

1) Self-configuration / Self-adaptation: The organic sys-
tem adjusts its parameters to fulfill higher-level user
goals, enabling to exhibit desired behaviors.

2) Self-organization: The organic system dynamically ad-
justs its structure based on active user goals at runtime.

3) Self-integration: The organic system autonomously
adapts its role, behavior and relations within a larger
system for proper functionality.

4) Self-management: An collective term that contains self-
configuration, self-organization and other self-* mecha-
nisms



5) Self-healing: The organic system is capable to detect,
diagnose and repair failures.

6) Self-protecting: The organic system defends itself as
well as the overall system against attacks from outside
and large-scale cascading failures that the self-healing
mechanism is not capable to handle.

7) Self-stabilizing: The organic system strives to maintain
stable behavior despite continuous adaptation or external
influences.

8) Self-improving / Self-optimization: The organic sys-
tem continuously analyses its decisions in organization,
configuration and others seeking for better solutions.

9) Self-explaining: The organic system reasons its deci-
sions on request and must ask for help to stay control-
lable by the human.

While these are the self-* properties defined in [2], the
literature is very diverse regarding the properties forming a
system in the domain of OC [2]. But in this paper we will use
this definition.

In 2017, Sven Tomforde et al. introduced a measuring
method to measure the degree of self-organization in systems
by observing the systems communication [3].

In this paper, self-organization is defined as the continuous
evolution of the systems structure caused by independent
subsystems (agents) in order to fulfill the systems goal. If the
subsystems adapt their behavior only by changing the systems
goal, they are called autonomous.

The system model presupposes there is a potentially large
amount of autonomous subsystems. Conceptually an au-
tonomous subsystems internal structure consists of a produc-
tive system (PS) for the basic purpose and a control mecha-
nism (CM) that knows the user defined goal of the system,
controls the behavior of PM and decides about the relations
of the subsystem. This would be autonomous, because actual
decisions are taken by CM. The user can not step into the
decision making process. In the system model the system
composition is not restricted. We assume a set of agents as
blackboxes where we may not have full access to each agent,
the agents may belong to different authorities, or the agents
can be controlled by different users. But we must be able to
observe the actions taken and messages sent and received by
the agents.

Technically relationships are functional connections. We
assume establishing and changing relations requires communi-
cation, modeled as sending and receiving messages. The com-
munication must go through a shared channel using standard
protocols where agents are uniquely identifiable and messages
visible.

To measure the degree of self-organization, the communica-
tion behavior of the system gets observed. The communication
reflects the dynamics of self-organization. If self-organization
happens due to disturbances, internal or external conditions,
or modification of the utility function, the communication
behavior of agents change over time. This means the degree
of self-organization can be quantified by a divergence measure
of two density functions p(x) representing the earlier point in

time and q(x) representing the current observation cycle of
the systems communication. The used divergence measure is
derived from the Kullback Leibler (KL) divergence and results
in following formula:

KL2(p, q) =
1

2
(−

∫
p(x) ln p(x) dx−

∫
p(x) ln q(x) dx

+

∫
q(x) ln q(x) dx−

∫
q(x) ln p(x) dx)

KL2(p, q) = 0 means no self-organization happens.
KL2(p, q) > 0 means self-organization happens and the larger
KL2(p, q) is, the more self-organization happens [3].

APPROACH

The discussed system [3] models the power grid of the
future with the ISAAC software, a unit aggregation and
planning software based on the heuristic COHDA (Combinato-
rial Optimisation Heuristic for Distributed Agents). COHDA,
presented by Hinrichs and Sonnenschein in [4], is using self-
organizing mechanisms to optimize a common target. In [3]
the common target is minimizing the electricity prize by using
different power demand / supply schedules of smart buildings
during the day. Each schedule also has a behavior adaption
cost, prizing the adaption of the power consumption of the
residents, which is added to the electricity prize.

Each smart building is simulated by two agents. One battery
agent simulating the battery storage of a smart building and
one building agent simulating the other electrical devices of
the building. The authors assigned each building a feasible
set of schedules, depending on the expected behavior of the
residents, the generated energy of the photovoltaic plant and
the size of the battery in the building. Each agent knows the
feasible set of schedules for its associated building and selects
one schedule that gets added to the solution candidate. The
solution candidate is public to other agents while the feasible
set of schedules is kept private.

The algorithm then consists of three steps:
1) Perceive: A message is the solution candidate of the

sending agent. When an agent receives a message from
one of its neighbors, it updates the information about
the planned energy consumption of other agents and
replaces the existing solution candidate, if the new
candidate contains more elements (a new agent got
added), or yields a better rating (the neighbor found a
better solution candidate).

2) Decide: The agent then searches for the best of the
feasible schedules of its unit. If the resulting system state
yields a better rating a new solution candidate is created,
which replaces the old one.

3) Act: If the solution candidate has been modified, the
agent sends the new solution candidate to its neighbors.

Eventually all agents will store the same solution candidate
which represents a local optimum of power consumption in
this interval. This also terminates the algorithm.



To monitor and assuring termination within a desired time,
the ISAAC software also adds an observer and a controller
agent [1].

DISCUSSION

In order to determine whether the system described in [3]
is an instance of the domain of OC we will go through the
defined self-* properties by Sven Tomforde, Bernhard Sick
and Christian Müller-Schloer (2017) and check whether the
system has the self-* property.

Self-configuration: The agents influence their environment
through different mechanisms. The first by changing the
demand causing the electricity price to change is negligible for
one agent, because the electricity market is too big that one
smart building alone could rise or fall prices. The other one
is by propagating their solution candidate. Other agents will
observe this information to adjust their own solution candidate
and modify the environment themselves. In conclusion the
system is self-configurable.

Self-organization: We can analyze the degree of self-
organization using the communication behavior of the system
as discussed in [3]. The more the communication changes over
time, the more self-organization happens. Because we have no
communication data of the system, we can not quantify the
self-organization using the proposed divergence measure and
have to discuss the change of density over time conceptually.

The agents notify their neighbors when the solution can-
didate changed, otherwise they will not communicate. Un-
fortunately the paper does not define what a neighbor is.
Due to the small amount of participating agents, a broadcast
is possible. In the context of buildings also the physical
neighbors are possible. Because of the not explained self-
configuration mechanism, the set of all known agents for each
agent is a potentially smaller set than the set of all agents. In
the following we assume no agents are added over time and
the agents use a broadcast mechanism to notify other agents
about a new solution candidate. The other possible solutions
would potentially create partitions in the network resulting in
a not properly propagated solution candidate and potentially
not observed messages by the observing agent.

Using this assumption each agent either sends a broadcast,
or nothing when perceiving a new message, depending on the
observed environment. Assuming there is an optimal solution,
eventually the system will find it resulting in a static system.
This means the density changes from all agents broadcast to
no agent sends a message. Using the proposed divergence
measure function, this will result in a number representing
a high degree of self-organization.

Self-integration: Unfortunately the paper does not describe
if and how agents can discover other agents, or integrate
a new agent into the existing system. The proposed logic
would allow to add new agents following the “contains more
elements” rule. In the beginning the solution candidate of the
new agent is empty. When the new agent receives a message,
the solution candidate has size 1 + n > 0 (empty size),
causing the agent updating its solution candidate and notify

all other neighbors with his solution candidate containing his
selection. When the neighbor agent receives that message,
the size of the solution candidate will be 2 + n > 1 + n
causing the neighbor propagating the new solution candidate
to its neighbors. In conclusion the specification in the paper
is not concrete about self-integration aspects. The simulation
also does not need self-integration. It was executed with a
fixed amount of agents without a not responding nor a new
added agent. In the real world a self-integration mechanism is
mandatory when building a new house, or something breaks
and the house is not reachable anymore.

Self-healing: The paper does not discuss any self-healing
mechanisms and there is no self-healing mechanism during a
period. After each period the solution candidates in all agents
get cleared resulting in a self-healing mechanism over periods.
But if an agent fails, the system will not heal itself during
that period and will find a solution assuming the failed agent
participates. In the real world this would result in a minimal
not optimal solution, which could also happen by not finding
an optimal solution and exceeding the period.

Self-protecting: Assuming that reducing the load peaks
protects the power grid we could talk about a self-protecting
system. But there is no mechanism to defend the system
against attacks from outside nor large-scale cascading failures
beside the self-healing mechanism.

Self-stabilizing: When the system finds an optimal solution,
the agents stop communicating until the next period starts
which is after the definition of [2] a stable system.

Self-improving: Each agent works by always improving
the previous taken decision. An agent makes a decision about
his next schedule. When he perceives a new message he
always searches for a better solution using the latest perceived
information and corrects his previously made decision. This is
self-improving even it does not use artificial machine learning
techniques.

Self-explaining: The observing agent monitors all the com-
munication in the system. This monitoring data could be
used to explain how decisions were taken but why a specific
solution was taken is hidden in the internals of each agent. The
system is also human controllable and terminatable using the
controller agent. In the real world this would be a big security
vulnerability. Once started the agents should self-configure and
each agent should be terminatable individually, but it is a
big security vulnerability to allow termination of the whole
system. This could potentially result in blackouts or worse
things causing unrepairable damage.

Using the definition of [2] about the self-* properties to
form a system in the domain of OC, most self-* properties
are completely fulfilled or partly fulfilled. For a usage in the
real world, the self-protection and self-integration aspects must
be improved. Having no self-protection and self-integration
mechanisms is probably caused by being a system only used in
a simulation with a fixed amount of agents and no disturbances
from outside. But even these two properties are not fulfilled,
the system can be categorized as a system in the domain of
OC.



Also the general concept of shifting demand and supply
by changing the peoples behavior and paying a behavioral
adaption cost is hard to imagine in the real world. This would
be not only a technical challenge, but also a social one.

CONCLUSION

In this paper, we discussed whether the system used in
“Distributed multi-objective scheduling of power consumption
for smart buildings” (Marvin Nebel-Wenner et al. 2019) [1]
fulfills the self-* properties defined in [2] to categorize it as a
system in the domain of OC, or not.

The system can be categorized as a system in the domain
of OC. It fulfills most self-properties completely or partly. For
a usage in the real word, a concept for self-configuration and
self-protection is needed, but in general robustness, adaptivity
and manageability is given.

REFERENCES

[1] M. Nebel-Wenner, C. Reinhold, F. Wille, A. Nieße, and M. Sonnen-
schein, “Distributed multi-objective scheduling of power consumption
for smart buildings,” Energy Inform, vol. 2, no. S1, p. 28, Sep. 2019,
doi: 10.1186/s42162-019-0080-4.

[2] S. Tomforde, B. Sick, and C. Müller-Schloer, “Organic Computing in
the Spotlight.” arXiv, Jan. 27, 2017. Accessed: May 26, 2023. [Online].
Available: http://arxiv.org/abs/1701.08125

[3] S. Tomforde, J. Kantert, and B. Sick, “Measuring Self-organisation at
Runtime - A Quantification Method based on Divergence Measures:,” in
Proceedings of the 9th International Conference on Agents and Artificial
Intelligence, Porto, Portugal: SCITEPRESS - Science and Technology
Publications, 2017, pp. 96–106. doi: 10.5220/0006240400960106.

[4] C. Hinrichs and M. Sonnenschein, “A distributed combinatorial opti-
misation heuristic for the scheduling of energy resources represented
by self-interested agents,” IJBIC, vol. 10, no. 2, p. 69, 2017, doi:
10.1504/IJBIC.2017.085895.


