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1 Introduction

Automated theorem proving [1, 2] began after the discovery of unification. The
key point is the inference mechanism. A logical statement L2 can be deduced
from another logical statement L1, in other words, L2 is a consequence of L1, if
every truth value which makes L1 correct also makes L2 correct.

For example, (Q ∧ R) can be deduced from (P1 ∧ Q ) and (P1 ⇒ R). For the
first statement to be true, P1 and Q should be true. R should also be true since
P1 is true. Because Q and R are true, the second statement should be true. That
means, the second statement can be deduced from the first or is a consequence
of the first.

When logical statements contain variables, unification is used in the infer-
ence mechanism. For example, if the atom statements Q, R, P1 and P2 contain
variables, unification is also involved. (Q ∧ R) can be deduced from (P1 ∧ Q )
and (P2 ⇒ R) only when ω(P1) = ω(P2).

Logic programming languages such as prolog [3] use the resolution principle
as an inference engine.

(P (x) ∨Q(x)) ∧ (¬P (a) ∨R(y))⇒ Q(a) ∨R(y) (1)

On the other hand, based on λ-term, which acts like a function, λ calculus [4] is
another computation mechanism and plays an important role in proof systems.
For example, λ-terms embedded in proof system enhance computations [5].

Similarly, recursively defined equivalence relation ≈ , which is used to check
whether two terms are equivalent to each other, enhances computations. How-
ever, its trivial definition which works fine for terms that do not contain variables
leads to non-determinism for terms that contain variables.
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Definition 1. The recursive relation ≈ is defined as follows

1. a ≈ b
2. b ≈ a
3. a ≈ a
4. b ≈ b
5. if f(x) ≈ f(y) x ≈ y
6. if g(x1,x2) ≈ g(x3,x4) x1 ≈ x3 and x2 ≈ x4

Example 1. The rules of Definition 1 are applied to (2)

g(g(a, b), f(b)) ≈ g(g(b, a), f(a)) (2)

– g(g(a,b),f(b)) ≈ g(g(b,a),f(a)) (using rule 6)
– g(a,b) ≈ g(b,a) and f(b) ≈ f(a) (using rules 5 and 6)
– a ≈ b and b ≈ a and b ≈ a

Example 2. Some terms may be variables as in (3)

g(x, f(b)) ≈ g(f(y), f(a)) (3)

– g(x,f(b)) ≈ g(f(y),f(a)) (using rule 6)
– x ≈ f(y) and f(b) ≈ f(a) (using rule 5)
– x ≈ f(y) and b ≈ a (using rule 2)
– x ≈ f(y) (if x is substituted by f(x1), then by using rule 5)
– x1 ≈ y (if x1 is substituted by f(x2) and y is substituted by f(y1), then by

using rule 5)
– x2 ≈ y1

x2 ≈ y1 in Example 2 leads to an infinite branch. The aim here is to find a
substitution ω for s and t terms such that ω(s) ≈ ω(t) holds. Although the rules
in Definition 1 can be used for this purpose, they lead to infinite branches as in
Example 2. The question here is how the relation ≈ can be changed to produce
a general substitution by eliminating unnecessary ones.

2 The Redefinition Of The Relation ≈

2.1 Preliminaries

In the following, the prior knowledge this paper needs is given. In particular,
terms, λ-terms, logical terms, substitution, signature are defined.

Definition 2. τ is used for base types and other types are built from τ by using
the symbol→ such as τ → τ , τ → τ → τ , ...,τ → τ →....→ τ . The capital letters
A1, A2, A3,.. are used to represent an unknown type in type expressions and can
be τ , τ → τ , τ → τ → τ , ..., τ → τ →....→ τ . The symbol o is used as the type
of logical arguments. τ and o are used as base types, the first is used for terms,
the second for logical proposition, in other words, true and false statements. On
the other hand, A1, A2,...are variables in type expressions to denote something
whose value is unknown and will be set during the computations. They can take
any value from the infinite set {τ , τ → τ , τ → τ → τ , ..., τ → τ →....→ τ ,..}.



Marking Solvable Variables 3

In order to prevent any ambiguity, the type expression k1 → k2 → k3 can be
interpreted as k1 → (k2 → k3).

Definition 3. Terms are defined as follows. The constants a and b are of the
type τ . The function f is of the type τ → τ and g is of the type τ → τ → τ .
Logical terms are defined as follows. The propositions p, q, r are of the type τ →
o and called atomic logical terms. The logical operators conjunction, disjunction
and implication, which are of the type o→ o→ o, are respectively represented by
the symbols ∧, ∨ and ⇒ . The operators ∧, ∨ and ⇒ are used in infix notation.
p or q is represented as p ∨ q, p and q as p ∧ q and p implies q as p ⇒ q.

Definition 4. If m is a term of the type k1 → k2 and n is a term of the type
k1, then m n is a term of the type k2.

Example 3. Assume that the variables x and y are of the type τ . g(x,b), f(f(y)),
f(f(b)) are valid terms of the type τ whereas p(g(x,y)), q(f(f(b))), p(g(x,y)) ∧
q(f(y)), p(g(x,y)) ∨ q(f(y)), p(g(x,y)) ⇒ q(f(y)) are valid logical terms of the
type o.

In the following, the symbols x, x1, x2, x3, x4, y, y1, v, v1 represent variables, t,
t1, t2, t3 terms, k1, k2 types and ω, ω1, ω2 substitutions.

Definition 5. The function symbol ν is of the type A → τ and is used to mark
the places of solvable variables.

Definition 6. Substituting a variable x1 by a term t1 is represented by x1 →
t1. Substitution is a mapping from variables to terms and can be denoted by {x1
→ t1, x2 → t2, x3 → t3,...}. Substitution is called renaming if t1, t2, t3,.. are
all variables. Applying substitution ω to an expression e, meaning replacing the
variables of e with the terms in the range of ω if they are in the domain of ω,
can be denoted by ω(e). ω1(ω2) is the resulting substitution after applying ω1 to
each term in the range of ω2.

Example 4.

{x1 → f(a), y1 → g(x2, x3)}(p(x1) ∨ q(y1)) = p(f(a)) ∨ q(g(x2, x3)) (4)

Example 5. Assume that r1 and r2 are unary relations.

{x1 → f(a), y1 → g(b, x3)}(r1(x1) and r2(y1)) = r1(f(a)) and r2(g(b, x3)) (5)

Definition 7. Substitution ϕ is more general than substitution ω if there is a
substitution φ such that ω = φ(ϕ).

Example 6.

{x2 → g(x3, x4)}{x1 → f(x2)} = {x1 → f(g(x3, x4))} (6)

{x1 → f(x2)} is more general than {x1 → f(f(x3))}.
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Definition 8. A term t is linear if each variable of t is different.

Definition 9. Abstraction and application operations are defined as follows. If
s is a term of k2 and x is of k1, λx.s is a term of k1 → k2 and used to denote
functions. On the other hand, application operation, which is used to evaluate
functions, is denoted by

(λx.t1)t2 = {x→ t2}t1 (7)

If (λx.t1) is a term of k1 → k2 and t2 is a term of k1, {x → t2} t1 is a term of
k2.

(λx1.λx2.t1) t2 t3 can be interpreted as (((λx1.λx2.t1) t2) t3).

Example 7. Assume that x, y are variables of the type τ . λx.f(x), λx.λy.g(x,y)
are lambda terms of the types τ → τ , τ → τ → τ respectively.

Definition 10. Signature, denoted by Σ, is a set of constants and function sym-
bols.

Variables can only be substituted by the elements of Σ.

Example 8. By Definition 3 and 5,

Σ = {a, b, f, g, p, q, r,∧,∨,⇒, ν} (8)

The term g(x,y) can be g(x,b) if {y → b} is applied or g(d,y) if {x → d} is
applied, but g(d,y) is not a valid term since {x → d} is not a valid substitution
(d is not an element of Σ).

2.2 The Redefinition Of The Relation ≈ And The Transformations

For the desired computations, the relation structure will be extended.

Definition 11. A goal statement is either a substitution or a relation, which is
called an atomic goal statement. If A1, A2, A3 are goal statements,

– A1 and A2

– if A1 else A2

– if A1 else A2 else A3

– λx.A1

are also goal statements. If B1 is a relation and B2 is a goal statement,

– B1

– if B1 B2

are relation statements.
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Definition 12. The goal statements are used as follows.

if A1 else A2 else A3 (9)

if A1 else A2 (10)

A1 and A2 (11)

λx.A1 (12)

The expression 9 is used to denote the following. If A1 is satisfied, do not consider
A2 and A3. If A1 fails, consider A2. If A2 is satisfied, do not consider A3. If
A2 fails, consider A3. Similarly, for 10, consider A2 only if A1 fails, if A1 is
satisfied, do not consider A2. On the other hand, for 11, consider both A1 and
A2. For the expression 12, consider {x → c1}A1 where c1 is a new constant of
the type τ .

The first is called ELSE 3 rule, the second ELSE 2, the third AND and the
fourth ABSTRACTION, shortly ABS.

Example 9. Given the relation �

1. a � b
2. b � a
3. a � a
4. b � b
5. if ν(x) � ν(y) {y →x}
6. if x � y λc1.((x c1) � (y c1))
7. if f(x) � f(y) x � y
8. if g(x1,x2) � g(x3,x4) x1 � x3 and x2 � x4

Consider the expression 13

λc1.g(ν(c1), b) � λc1.g(ν(c1), a) (13)

where both λc1.g(ν(c1),b), λc1.g(ν(c1),a) are of the type τ → τ .

– λc1.g(ν(c1),b) � λc1.g(ν(c1),a) where Σ = {a, b, f, g, p, q, r, ∧, ∨, ⇒, ν}
(using rule 6 and ABS)

– g(ν(c1),b) � g(ν(c1),a) where Σ = {a, b, f, g, p, q, r, ∧, ∨, ⇒, ν, c1} (using
rule 8)

– ν(c1) � ν(c1) and b � a (using rule 2)
– ν(c1) � ν(c1) and true (using rule 5)
– true and true

Similarly,

– λc1.g(ν(c1),b) � x where Σ = {a, b, f, g, p, q, r, ∧, ∨, ⇒, ν} (using rule 6
and ABS)

– g(ν(c1),b) � (x c1) where Σ = {a, b, f, g, p, q, r, ∧, ∨, ⇒, ν, c1} (if x is
substituted by λc1.g(x1,x2) and using rule 8)
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– ν(c1) � x1 and b � x2 (if x1 is substituted by ν(x3) and x2 is substituted
by b)

– ν(c1) � ν(x3) and b � b (using rule 5 and 4)
– {x3 → c1}and true

The following is given because the rules of ≈ are applied to terms in well defined
form.

Definition 13. A well defined form is either the constants a, b or ν(x), which
are called atomic well defined forms. If t1 and t2 are well defined forms, then
f(t1), p(t1), q(t1), r(t1), g(t1,t2), (t1 ∧ t2), (t1 ∨ t2) and (t1 ⇒ t2) are also called
well defined forms.

Example 10. The terms g(ν(x),f(b)), g(f(ν(y)),f(a)) are well defined forms whereas
the terms g(ν(f(b)),f(b)), g(f(ν(y)),x) are not well defined forms.

The function ν is treated differently from constants or other functions. The
following definition is given to denote a unary relation that holds for constants
or functions other than ν.

Definition 14. The one-place relation µ holds for the terms a, b, f(t1), g(t1,t2)
whereas it does not hold for ν(x).

Example 11. µ f(a), µ f(ν(x)), µ a, µ g(a,ν(x2)) return true whereas µ ν(x2)
returns false.

Example 12. The rules in ≈ (see Supplementary Material) are applied to the
well defined forms in 14 as follows.

g(ν(x), f(b)) ≈ g(f(ν(y)), f(a)) (14)

– g(ν(x),f(b)) ≈ g(f(ν(y)),f(a)) where Σ = {a, b, f, g, p, q, r, ∧, ∨, ⇒, ν}
(using rule 9)

– ν(x) ≈ f(ν(y)) and f(b) ≈ f(a) (using rule 8)
– ν(x) ≈ f(ν(y)) and b ≈ a (using rule 2)
– ν(x) ≈ f(ν(y)) and true (using rule 6)
– µ f(ν(y)) and {x → f(ν(y))} and true
– true and {x → f(ν(y))} and true

ν(x) ≈ f(ν(y)) in Example 12 leads to one solution only. The type of x is unknown
before the substitution. After the substitution, its type becomes τ . When the
rules of ≈ are applied, the variable x in ν(x) should not be substituted before in
order to make things clear. This necessitates the specific forms. Given s ≈ t, s
and t should be linear and the variables of s should be different from those of t.

Additionally, when s ≈ t succeeds, the condition that any term should be a
well defined form is not guaranteed. The condition is satisfied after a transfor-
mation step, which is called normalization.
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Definition 15. Let x1, x2,..., xn be variables of a term t1. Also assume that y1,
y2,..., yn are new variables and ω = {x1 → y1, x2 → y2, ...,xn → yn}. Let t2
be the resulting term after removing all ν functions not marking a variable from
t1. ω(t2) is called the normalization of the term t1.

Example 13. The expression 15 is the normalization of the expression 16 where
ω = {x1 → y1, x2 → y2}

p(g(f(ν(y1)), g(ν(y2), ν(y1)))) (15)

p(g(ν(f(ν(x1))), g(ν(x2), ν(x1)))) (16)

If A1, A2, A3, and A4 are linear atomic terms and the variables of A1 and A2

are different from those of A3 and A4, the following logical transformations can
be specified:

A1 ∧A2 and A3 ⇒ A4 leads to A1 ≈ A3 and A2 ∧A4 (17)

A1 ∨A2 and A3 ⇒ A4 leads to A1 ≈ A3 and A2 ∨A4 (18)

Normalization is applied to the logical terms A2 ∧ A4 and A2 ∨ A4

The normalization of a term is carried out in three steps. The first step is
called abstraction.

Definition 16. Let x1, x2,..., xn be variables of a term t1. λc1.λc2...λcn.t2 is
called the abstraction form of t1, if the expression 19 holds

t1 = (λc1.λc2...λcn.t2) x1x2...xn (19)

In the definition above, ordering in the list λc1.λc2....λcn is not important.

Example 14. The expression 20 is the abstraction form of the expression 21
where x1 and x2 are respectively represented by y1 and y2 in the abstraction
form.

λy1.λy2.p(g(ν(f(ν(y1))), g(ν(y2), b))) ∧ q(ν(f(ν(y1)))) (20)

p(g(ν(f(ν(x1))), g(ν(x2), b))) ∧ q(ν(f(ν(x1)))) (21)

The second step is called elimination.

Definition 17. Let t1 be the abstraction form of a term such that each variable
in t1 is bound by an abstraction. t2 is called the elimination form of t1 if t2 is
the resulting term after all ν functions in t1 are eliminated.

Example 15. The expression 22 is the elimination form of the expression 23.

λy1.λy2.p(g(f(y1), g(y2, b))) ∧ q(f(y1)) (22)

λy1.λy2.p(g(ν(f(ν(y1))), g(ν(y2), b))) ∧ q(ν(f(ν(y1)))) (23)

The third step is called marking.
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Definition 18. Let λc1.λc2...λcn.t1 be the elimination form of a term such that
each variable in t1 is bound by an abstraction and t1 does not contain ν. t2 is
called the marking form of λc1.λc1...λcn.t1 if the expression 24 holds

t2 = (λc1.λc2...λcn.t1) ν(y1)ν(y2)....ν(yn). (24)

Example 16. The expression 25 is the marking form of the expression 26.

p(g(f(ν(v1)), g(ν(v2), b))) ∧ q(f(ν(v1))) (25)

λy1.λy2.p(g(f(y1), g(y2, b))) ∧ q(f(y1)) (26)

Abstraction form is computed by →A, →B , →C transformations. Elimination
form is computed by →D transformation. Marking form is computed by →E

transformation. (see Supplementary Material).

3 Verification

Definition 19. The equivalence relation ≡ is defined for the type τ as follows.
27, 28, 29, 30, 31 hold.

a ≡ a (27)

b ≡ b (28)

a ≡ b (29)

b ≡ a (30)

x ≡ x (31)

If t1 ≡ t2 holds for t1, t2 which are of the type τ , 32 holds.

f(t1) ≡ f(t2) (32)

If t1 ≡ t3 and t2 ≡ t4 hold for t1, t2, t3, t4 which are the type τ , 33 holds.

g(t1, t2) ≡ g(t3, t4) (33)

The relation can also be defined for the type o. If t1 ≡ t2 holds for the terms t1,
t2 which are of the type τ , then 34, 35, 36 hold.

p(t1) ≡ p(t2) (34)

q(t1) ≡ q(t2) (35)

r(t1) ≡ r(t2) (36)

If t1 ≡ t3 and t2 ≡ t4 hold for the logical terms t1, t2, t3, t4, then 37 and 38
hold.

(t1 ∧ t2) ≡ (t3 ∧ t4) (37)

(t1 ∨ t2) ≡ (t3 ∨ t4) (38)
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Example 17. 39, 40, 41, 42, 43, 44 hold.

g(f(x), f(b)) ≡ g(f(x), f(a)) (39)

g(f(x), y) ≡ g(f(x), y) (40)

g(g(f(x), y), a) ≡ g(g(f(x), y), b) (41)

p(f(a)) ≡ p(f(b)) (42)

q(g(f(y), a)) ≡ q(g(f(y), b)) (43)

(p(g(x, f(a))) ∧ q(g(y, f(x)))) ≡ (p(g(x, f(b))) ∧ q(g(y, f(x)))) (44)

Definition 20. Let x1, x2,..., xn be variables of a term t not containing ν. Let
y1, y2,..., yn be new variables and assume that the equation 45 holds.

ω = {x1 → ν(y1), x2 → ν(y2), ..., xn → ν(yn)} (45)

Then, ω(t) is called the well defined form of the term t.

Example 18. 47 is the well defined form of 48 where the equation 46 holds.

ω = {x1 → ν(x2), y1 → ν(y2)} (46)

(p(g(ν(x2), f(b))) ∨ q(g(ν(y2), f(ν(x2))))) (47)

(p(g(x1, f(b))) ∨ q(g(y1, f(x1)))) (48)

Lemma 1. Let t1, t2 be linear terms not containing ν, ∧, ∨ and ⇒. Assume
that the variables of t1 are different from the variables of t2 and s1, s2 are the
well defined forms of t1, t2 respectively. Similarly assume that the variables of s1
are different from the variables of s2. Then the statement 49 holds

φ(t1) ≡ φ(t2) if and only if s1 ≈ s2 (49)

Lemma 2. Let t1, t2 be linear terms not containing ν, ∧, ∨, ⇒ and x1, x2,...,
xn be variables of t1, t2. Assume that the variables of t1 are different from the
variables of t2. Given ω in 50, let s1 = ω(t1) and s2 = ω(t2) hold.

ω = {x1 → ν(y1), x2 → ν(y2), ..., xn → ν(yn)} (50)

If s1 ≈ s2 holds and ω1 is the resulting substitution and a substitution ω2 is
formed using 51 and 52 where 1 ≤ j ≤ n, 1 ≤ i ≤ n, u is a term other than a
variable, then ω2 is the most general substitution that satisfies 53

xj → xi ∈ ω2 if and only if yj → yi ∈ ω1 (51)

xj → u ∈ ω2 if and only if yj → ω(u) ∈ ω1 (52)

ω2(t1) ≡ ω2(t2) (53)
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Lemma 3. Given a term t1 such that all the variables of t1 are marked by
the function ν and there is no bound variable in t1, →A t1 x holds once and
terminates. The resulting substitution is {x → t2} where t2 is the abstraction
form of t1.

Lemma 4. Given a term t1 such that each variable of t1 is bound by an abstrac-
tion, →D t1 x holds once and terminates. The resulting substitution is {x → t2}
where t2 is the elimination form of t1.

Lemma 5. Given a term t1 such that each variable of t1 is bound by an abstrac-
tion and t1 does not contain ν,→E t1 x holds once and terminates. The resulting
substitution is {x → t2} where t2 is the marking form of t1.

Definition 21. Given a term t1 such that all the variables of t1 are marked by
the function ν and there is no bound variable in t1, the three transformations
→A t1 x1 and →D x1 x2 and →E x2 x3 is briefly denoted by →N t1 x3.

Logical transformations are applied to the special logical forms.

Definition 22. Let P1, P2, Q, R be linear and atomic logical terms not con-
taining ν. Assume that the variables of P1 and Q are different from those of P2

and R. ω is a most general substitution. The expressions 54 and 55 are used to
show the same transformation. The notation in 55 is preferred since it is more
compact form.

(P1 ∧ Q) and (P2 ⇒ R) implies (ω(P1) ≡ ω(P2)) and ω(R) ∧ ω(Q) (54)

(P1 ∧Q) |=P2⇒R (ω(R) ∧ ω(Q)) (55)

The same formulation can be done by using well defined forms. Let P1
w, P2

w,
Qw, Rw be well defined forms of linear and atomic logical terms not containing
ν. Assume that the variables of P1

w and Qw are different from those of P2
w and

Rw. The expression 57 is the compact form of 56.

(Pw
1 ∧Qw) and (Pw

2 ⇒ Rw) implies (Pw
1 ≈ Pw

2 ) and (→N (Rw ∧Qw)(Rw
1 ∧Qw

1 ))
(56)

(Pw
1 ∧Qw) |=Pw

2 ⇒Rw (Rw
1 ∧Qw

1 ) (57)

Similarly, 59 and 61 are the compact forms of 58 and 60 respectively.

(P1 ∨Q) and (P2 ⇒ R) implies (ω(P1) ≡ ω(P2)) and ω(R) ∨ ω(Q) (58)

(P1 ∨Q) |=P2⇒R (ω(R) ∨ ω(Q)) (59)

(Pw
1 ∨Qw) and (Pw

2 ⇒ Rw) implies (Pw
1 ≈ Pw

2 ) and (→N (Rw ∨Qw)(Rw
1 ∨Qw

1 ))
(60)

(Pw
1 ∨Qw) |=Pw

2 ⇒Rw (Rw
1 ∨Qw

1 ) (61)

The logical transformations have the following property.
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Theorem 1. Let P1 be a logical term not containing ν. Also assume that there
is a logical term P2 such that P1 ≡ P2 holds and Q1 is the well defined form of
P2. Then, the statement 62 holds where Rw is the well defined form of R.

P1 |=R P3 if and only if Q1 |=Rw Q2 (62)

Additionally, if P1 |=R P3 and Q1 |=Rw Q2 succeed, then there is a logical term
P4 such that P3 ≡ P4 holds and Q2 is the well defined form of P4.

Lemma 6. The logical transformations |=R produce linear atomic logical terms.

The expression 63 leads to the expression 64.

p(f(ν(x))) ∧ q(f(ν(x))) and p(ν(z))⇒ r(ν(z)) (63)

p(f(ν(x))) ≈ p(ν(z)) and →N (q(f(ν(x))) ∧ r(ν(z))) U (64)

In the following examples, the proofs of the statements in 64 are given

Example 19.
p(f(ν(x))) ≈ p(ν(z)) (65)

f(ν(x)) ≈ ν(z) (66)

µf(ν(x)) and {z → f(ν(x))} (67)

true and {z → f(ν(x))} (68)

Example 20.
→B (q(f(ν(x))) ∧ r(ν(f(ν(x))))) c (U1c) (69)

→B q(f(ν(x))) c U2 and →B r(ν(f(ν(x)))) c U3 (70)

{U1 → λc.(U2 ∧ U3)} (71)

→B f(ν(x)) c U4 and →B r(ν(f(ν(x)))) c U3 (72)

{U1 → λc.(U2 ∧ U3), U2 → q(U4)} (73)

→B ν(x) c U5 and →B r(ν(f(ν(x)))) c U3 (74)

{U1 → λc.(U2 ∧ U3), U2 → q(U4), U4 → f(U5)} (75)

→B ν(x) c ν(U6) and →B r(ν(f(ν(x)))) c U3 (76)

{U1 → λc.(U2 ∧ U3), U2 → q(U4), U4 → f(U5), U5 → ν(U6)} (77)

→B r(ν(f(ν(x)))) c U3 (78)

{U1 → λc.(U2 ∧ U3), U2 → q(U4), U4 → f(U5), U5 → ν(U6), U6 → (xc)} (79)

→B r(ν(f(ν(x)))) c U3 (80)

{U1 → λc.(q(f(ν(x c))) ∧ U3)} (81)

→B ν(f(ν(x))) c U7 (82)

{U1 → λc.(q(f(ν(x c))) ∧ U3), U3 → r(U7)} (83)
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→B ν(f(ν(x))) c ν(U8) (84)

{U1 → λc.(q(f(ν(x c))) ∧ U3), U3 → r(U7), U7 → ν(U8)} (85)

→B f(ν(x)) c U8 (86)

{U1 → λc.(q(f(ν(x c))) ∧ U3), U3 → r(U7), U7 → ν(U8)} (87)

→B ν(x) c U9 (88)

{U1 → λc.(q(f(ν(x c))) ∧ U3), U3 → r(U7), U7 → ν(U8), U8 → f(U9)} (89)

→B ν(x) c ν(U10) (90)

{U1 → λc.(q(f(ν(xc)))∧U3), U3 → r(U7), U7 → ν(U8), U8 → f(U9), U9 → ν(U10)}
(91)

true (92)

{U1 → λc.(q(f(ν(x c))) ∧ r(ν(f(ν(x c)))))} (93)

Example 21.
→C (q(f(ν(x c))) ∧ r(ν(f(ν(x c))))) c (94)

→C q(f(ν(x c))) c (95)

→C f(ν(x c)) c (96)

→C ν(x c) c (97)

true (98)

{x→ λc.c} (99)

Example 22.
→A (q(f(ν(x))) ∧ r(ν(f(ν(x))))) Y (100)

→B (q(f(ν(x))) ∧ r(ν(f(ν(x))))) c (Y1c) and →C (Y1c) c and (101)

→A (Y1c)(Y c) (102)

true and →C (q(f(ν(x c))) ∧ r(ν(f(ν(x c))))) c and (103)

→A (q(f(ν(x c))) ∧ r(ν(f(ν(x c))))) (Y c) (104)

{Y1 → λc.(q(f(ν(x c))) ∧ r(ν(f(ν(x c)))))} (105)

true and true and →A (q(f(ν(c))) ∧ r(ν(f(ν(c))))) (Y c) (106)

{x→ λc.c} (107)

true and true and →A (q(f(ν(c))) ∧ r(ν(f(ν(c))))) Y2 (108)

{Y → λc.Y2} (109)

true and true and true (110)

{Y → λc.Y2, Y2 → (q(f(ν(c))) ∧ r(ν(f(ν(c)))))} (111)

true and true and true (112)

{Y → λc.(q(f(ν(c))) ∧ r(ν(f(ν(c)))))} (113)
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Example 23.
→D λc.(q(f(ν(c))) ∧ r(ν(f(ν(c))))) U (114)

→D (q(f(ν(c))) ∧ r(ν(f(ν(c))))) (U c) (115)

→D q(f(ν(c))) U1 and →D r(ν(f(ν(c)))) U2 (116)

{U → λc.(U1 ∧ U2)} (117)

→D f(ν(c)) U3 and →D r(ν(f(ν(c)))) U2 (118)

{U → λc.(U1 ∧ U2), U1 → q(U3)} (119)

→D ν(c) U4 and →D r(ν(f(ν(c)))) U2 (120)

{U → λc.(U1 ∧ U2), U1 → q(U3), U3 → f(U4)} (121)

true and →D r(ν(f(ν(c)))) U2 (122)

{U → λc.(U1 ∧ U2), U1 → q(U3), U3 → f(U4), U4 → c} (123)

true and →D r(ν(f(ν(c)))) U2 (124)

{U → λc.(q(f(c)) ∧ U2)} (125)

true and →D ν(f(ν(c))) U5 (126)

{U → λc.(q(f(c)) ∧ U2), U2 → r(U5)} (127)

true and →D f(ν(c)) U5 (128)

{U → λc.(q(f(c)) ∧ U2), U2 → r(U5)} (129)

true and →D ν(c) U6 (130)

{U → λc.(q(f(c)) ∧ U2), U2 → r(U5), U5 → f(U6)} (131)

true and true (132)

{U → λc.(q(f(c)) ∧ U2), U2 → r(U5), U5 → f(U6), U6 → c} (133)

true and true (134)

{U → λc.(q(f(c)) ∧ r(f(c)))} (135)

Example 24.
→E λc.(q(f(c)) ∧ r(f(c))) U (136)

→E (q(f(ν(y))) ∧ r(f(ν(y)))) U (137)

→E (q(f(ν(y))) ∧ r(f(ν(y)))) (U1 ∧ U2) (138)

{U → (U1 ∧ U2)} (139)

true (140)

{U → (U1 ∧ U2), U1 → q(f(ν(y))), U2 → r(f(ν(y)))} (141)

true (142)

{U → (q(f(ν(y))) ∧ r(f(ν(y))))} (143)
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4 Conclusion

The specification of the relation ≈ is trivial for terms not containing variables.
When terms contain variables, its trivial formulation leads to non-determinism.
This paper addresses this issue. It redefines the relatiın by using the function ν,
which is used to mark the places of variables, to solve this problem. So terms
that are used are defined in a special format, which is called well defined forms.
But this specific form also brings the two restrictions. First, logical atomic terms
should be linear. Second, after substitution, well defined form is not preserved.
As a result, this necessitates an extra transformation step, which is called nor-
malization. After normalization, terms are guaranteed to be in a good shape,
they are again in well defined form.

Further research in this approach can be done to eliminate the first restric-
tion. One way, variables are marked not in the original term but in its copy form.
To mark the variables of an original term using its copy eliminates the linearity
restriction. The other way is to change the definition of linearity to include more
terms.

5 Supplementary Material

1. a ≈ b
2. b ≈ a
3. a ≈ a
4. b ≈ b
5. if ν(x) ≈ ν(y) {y → x}
6. if ν(x) ≈ y (µ y) and {x → y}
7. if y ≈ ν(x) (µ y) and {x → y}
8. if f(x) ≈ f(y) x ≈ y
9. if g(x1,x2) ≈ g(x3,x4) x1 ≈ x3 and x2 ≈ x4

10. if p(x) ≈ p(y) x ≈ y
11. if q(x) ≈ q(y) x ≈ y
12. if r(x) ≈ r(y) x ≈ y

1. if →A x y
if λc1.( →B x c1 (y1 c1) and →C (y1 c1) c1 and →A (y1 c1) (y c1))
else {y → x}

1. →B a v a
2. →B b v b
3. if →B ν(x1) v ν(x2) if {x2 → (x1 v)} else →B x1 v x2 else {x2 → x1}
4. if →B f(x) v f(y) →B x v y
5. if→B g(x1,x2) v g(x3,x4) →B x1 v x3 and →B x2 v x4

6. if →B p(x) v p(y) →B x v y
7. if →B q(x) v q(y) →B x v y
8. if →B r(x) v r(y) →B x v y
9. if →B (x1 ∧ x2) v (x3 ∧ x4) →B x1 v x3 and →B x2 v x4
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10. if →B (x1 ∨ x2) v (x3 ∨ x4) →B x1 v x3 and →B x2 v x4

1. if →C ν(x1) v (if ω(x1) = v else →C x1 v)1

2. if →C f(x) v →C x v
3. if →C g(x1,x2) v (if →C x1 v else →C x2 v)
4. if →C p(x) v →C x v
5. if →C q(x) v →C x v
6. if →C r(x) v →C x v
7. if →C (x1 ∧ x2) v (if →C x1 v else →C x2 v)
8. if →C (x1 ∨ x2) v (if →C x1 v else →C x2 v)

1. →D a a
2. →D b b
3. if →D ν(x) y if →D x y else {y → x}
4. if →D f(x) f(y) →D x y
5. if →D g(x1,x2) g(x3,x4) →D x1 x3 and →D x2 x4

6. if →D p(x) p(y) →D x y
7. if →D q(x) q(y) →D x y
8. if →D r(x) r(y) →D x y
9. if →D (x1 ∧ x2) (x3 ∧ x4) →D x1 x3 and →D x2 x4

10. if →D (x1 ∨ x2) (x3 ∨ x4) →D x1 x3 and →D x2 x4

11. if →D x1 x2 λc1.( →D (x1 c1) (x2 c1))

1. if →E p(x1) p(x2) {x2 → x1}
2. if →E q(x1) q(x2) {x2 → x1}
3. if →E r(x1) r(x2) {x2 → x1}
4. if →E (x1 ∧ x2) (x3 ∧ x4) {x3 → x1, x4 → x2}
5. if →E (x1 ∨ x2) (x3 ∨ x4) {x3 → x1, x4 → x2}
6. if →E x1 x2 →E (x1 ν(y1)) x2
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