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Abstract—An extension of the models used to generate fractal 
traffic flows is presented by means of the formulation of a model 
that considers the use of one-dimensional chaotic maps. Based on 
the disaggregation of the temporal series generated by the model, 
a valid explanation of behavior of the values of Hurst exponent is 
proposed and the feasibility of their control from the parameters 
of the proposed model is shown. 
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I. INTRODUCTION 
The chaotic behavior of systems is an intermediate paradigm 

between two dogmatic scientific and philosophical concepts of 
the universe: absolute knowledge upheld by determinism, and 
total ignorance at the hands of randomness. Paradoxically, and 
supported by the existence of the above two dogmatic positions, 
an assertion as natural as the one made points at the main 
failure in the analysis of systemic behaviors: the extended use 
of dichotomies to characterize them. 

It is in this scenario that the theory of chaos, defined by 
Kellert as the qualitative study of periodic and unstable 
behavior in deterministic and non-linear dynamic systems [1], 
invades and establishes the omnipresence of unpredictability as 
a fundamental trait of common experience [2]. Then, the theory 
of chaos, instead of trying to understand the behavior of systems 
in a merely quantitative manner to determine exactly their future 
states, it concerns with understanding of a long-term behavior, 
searching for patterns under a holistic philosophy rather than a 
reductive philosophy. 

As can be seen and inferred from the ideas given above, 
and in full agreement with the spirit of this research, it is 
neither possible nor practical to approach the problem of the 
characterization of the behavior of the systems of interest 
considering the full conceptual extension of the theory of 
chaos, and for that reason it is accepted that chaos is the 
phenomenon by which low-order non-linear systems show an 
apparently random complexity and behavior [3]. These systems 
are of low-order because they can be described correctly by a 
reduced number of variables and parameters. They are also 
dynamic systems, i.e., with the variables of interest, which are 
deterministic, evolve over time, because the values of those 
variables at any instant of time can be determined only from 

their previous values given a set of dynamic laws. Finally, those 
dynamic laws that describe the system evolution in time are 
non-linear [4]. 

At this point it is convenient to make it clear that chaotic 
systems differ from conventional dynamic systems in the sense 
that they are intrinsically unpredictable, a fact that is evident 
even when its subjacent dynamic laws are of a deterministic 
character. But the above does not have to lead to the belief that 
chaos implies unpredictability, since that is only partially true 
because of existence of two main sources of unpredictability, 
namely the inaccuracy of the initial data, and its origin as a 
characteristic inherent to certain nonlinear relations between 
numerical variables [5]. Therefore, the definition of chaos as a 
property of a system refers to its sensitivity to the initial 
conditions, i.e. that given two trajectories arbitrarily close to 
one another in the phase space of a chaotic system, they diverge 
at an exponential rate given by the Lyapunov global exponent. 

Note that it is certainly paradoxical for an essentially 
deterministic system, with deterministic dynamic laws, to show 
a chaotic behavior, since the basic premise of dynamic systems 
is that the knowledge of the initial conditions makes possible 
the determination of the system future behavior at any time. In 
practice, the initial conditions can only be specified with finite 
precision. These uncertainties introduced in the initial conditions 
for case of chaotic systems increase exponentially, and that 
explains the unpredictability of their behavior. Strictly, chaos 
involves the possibility of making good short-term predictions, 
but it makes impossible any long-term prediction of a practical 
order [6]. A direct result of the above is that very simple 
systems, even with only one degree of freedom, can give rise to 
surprisingly complex behaviors. 

The notion of chaos often appears linked to the notion of 
fractal introduced by Mandelbrot [7], and even though it has 
not been proved rigorously, fractal properties seem inherent in 
chaotic processes, so apparently chaos and fractal sets are 
independent and unrelated concepts [8]. However, keeping in 
mind that the fractal dimension concept raises a generalization 
of the notion of dimension through the introduction of the non-
integer values for their specification, an extensively reported 
fact in its applications [9]; unexpectedly all chaotic systems 
tend to evolve asymptotically in their phase space toward a 
bounded region called strange attractor that has a non-integer 
dimension, i.e., a fractal. It can thus be argued that very often 



the strange attractors are fractals in their nature and are capable 
of exhibiting their complexity over different time or space 
scales. Because of the above it is therefore possible to state that 
the concepts of fractal geometry can be used to describe the 
evolutionary characteristics of chaotic systems, and chaotic 
systems in turn can be used conveniently as generators of 
fractal structures, thereby implying self-similarity and therefore 
its characterization index: Hurst exponent (H). 

It should be pointed out that since there is no simple 
definition of fractals, they are generally defined in terms of 
their attributes, such as, for example, the slow decay of their 
variances, the hyperbolic tail distribution of the time density 
between successive arrivals, the infinite order moments or 
poorly defined statistics, 1/f noise, long-range dependence, self-
similarity, and the previously mentioned non-integer dimension, 
among others [10], [11]. The presence of such characteristics in 
the traffic flows of actual high-speed computer networks is, 
therefore, the ultimate aim of the whole discussion presented. 

The statistically self-similar behavior of traffic flows in the 
present high-speed computer networks is a fact that has been 
extensively reported for different levels of telematic systems 
coverage, transmission technologies, wireless systems, control 
and signaling protocols, ATM queueing network behavior, and 
applications, particularly in video [12]. 

Similarly, the problem of the characterization of traffic has 
received considerable attention in the literature, giving rise to a 
number of proposals of stochastic models, see [13]-[18]. 

However, and in spite of all the efforts underlying the 
arguments and methodologies stated above, two problem 
situations inherent in the generation of traffic with long-range 
dependence are ubiquitous, namely the degree of representatives 
of Hurst exponent as a unique parameter for characterizing its 
effects on the performance of the tails systems in which it 
appears, and the behavior shown by its value in the self-similar 
second order series obtained within the interval of interest for 
H; 0.5 < H < 1. In this respect, [19] shows in an isolated way 
both problems and their implications. 

II. CHAOTIC MAPS AND SELF-SIMILAR TRAFFIC 
The use of chaotic maps as models of traffic was proposed 

for the first time in [3], starting from the pioneering work [20], 
and in essence a chaotic map is a variant of the On/Off traffic 
model of [21], with the basic difference that its basis lies in the 
discrete dynamics instead of in the probabilistic approaches. 

A chaotic system characterized by a certain non-linear 
function f : D  D with D  ℝm is available. The system 
evolves according to the process equation, defined by f, which 
for a discrete system is given by 

 [ ] ( [ 1], [ 1]; ) [ ],k f k u k k   x x θ v  (1) 

where, x[k] is the system state vector, u[k] the input excitation, 
v[k] the noise vector of the process, and  is the vector of the 
system parameters. 

In general, the state of the system cannot be observed 
directly, so samples of it (or of functions of it) are required that 
are obtained by means of a measuring process given by 

 [ ] ( [ ]) [ ],   with 0, , ,k g k k k N   y x w  (2) 

where g is the measurement function (which can be known or 
not), y[k] is the measurements vector, and w[k] is the noise 
vector of the measurement. 

A chaotic map is an application f : X  Y that associates 
each element x  X  ℝm with a single element y  Y  ℝq, 
where X is the domain of f and Y is the arrival set of f. 

Let f : D  D be an application with D  ℝm. An iterated 
map is the system formed by the set of m equations given by 

 [ ] ( [ 1]; ).n f n x x θ  (3) 

As seen from (3), a chaotic map is a class of discrete 
autonomous system, and this work deals exclusively with one-
dimensional maps, a fact for which it is convenient to establish 
that a one-dimensional chaotic map is an application f : D  D, 
with D  ℝ such that 

 [ ] ( [ 1]; ).x n f x n    (4) 

The definition of chaos as a property of a chaotic system 
refers to its sensitivity to the initial conditions. Considering a 
chaotic map defined by xn+1 = f (x) and two trajectories with 
almost identical initial conditions x0 and x0+, where   0, its 
sensitivity to the initial conditions is described by 

 0 0 0( ) ( ) exp( ( )),N Nf x f x N x      (5) 

where f N(∙) represents the N th iteration of the map, and (x0) is 
Lyapunov global exponent which describes the exponential 
divergence. For the map to be chaotic this parameter must be 
positive for most of the x0 [22]. Then (5) implies which points 
that begin with similar initial conditions develop along different 
trajectories. 

Let f : I  I be an application. It is said that f (x) is a one-
dimensional piecewise affine map (PWA) if there is a finite 
number of points e0 < … < eM, such that the interval I = [e0, eM] 
can be subdivided into M smaller intervals Ei = [ei – 1, ei), with   
i = 1,…, M – 1 and EM = [eM – 1, eM], within which f (x) is affine. 
Mathematically, a PWA map is expressed as 
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where  denotes the characteristic function defined as follows. 

Let R: D  {0, 1} be an application with D  ℝ. It is said 
that R is the characteristic function of region R if 
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In other words, f (x) has a similar behavior within each of 
the M intervals Ei into which the arrival interval I is divided as 
if it were observed in the whole interval I. 

A one-dimensional map composed of two intervals, in 
which the state variable xn evolves in time according to two 
functions f1(∙) and f2(∙) that satisfy condition (5), allows writing 
it, from the development of (4), as 
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This notation makes it possible to conceive a frame 
generation process considering that the source of origin is in a 
passive state or in an active state (in a similar way as the case 
of the On/Off models) at a given moment n, as a function of 
whether the value of the state variable xn is above or below a 
certain activation threshold d. In this way all the iterations of 
the map in the active state correspond to frame (burst of frames) 
generation processes, and all the iterations of the map in the 
passive state to time processes between successive arrivals. 

Under the same reasoning, and considering the permanence 
of the map in one or the other previous states, the evolution of 
the mesh arrival process is described from the characteristic 
function (7), which, for the sake of consistency with the notation 
used in (8), can be written as 
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An interesting interpretation of the above model is reported 
in [23] considering it formed by two dynamic layers, one hidden 
given by xn and one visible specified by yn. 

It is particularly interesting to see that the behavior of a 
trajectory over which the map given by (8) evolves is such that 
it does not have to visit the two regions of its phase space with 
equal frequency, and furthermore, there is no reason to 
consider, even within the same attractor, a uniform probability 
density function of the generated sequences, so it is reasonable 
to ask about the frequency with which a given trajectory visits 
each region of the map in an observation interval of n iterations, 
as well as about the way of calculating such probability density 
function from an initial condition x0. 

In this respect, the reply to both questions is found in the 
density distribution of the map states, n(x), [24] 
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where  (x) is Dirac delta function and the evolution of n(x) is 
in agreement with the equation of Frobenius-Perron [25] 

 1( ) [ ( )] ( ) .n nx x f z z dz      (11) 

In the case of a one-dimensional map given by xn+1 = f (xn), 
with xn  [0,1], n = 0, 1, 2,..., from (10) we have that 
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If  (x) does not depend on x0, the system is ergodic [24], and 
therefore it is true that 
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However, since n(x) must be stationary because of (13), 
i.e., it does not have to depend on instant n, it is known as the 

invariant density of map f (x) [26], and it describes the iteration 
density of xn in the interval (0, 1) when n  . Therefore, n(x) 
is a self-function of the Frobenius-Perron operator with self-
value 1, and therefore 
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A concise presentation of the set of facts, that give rise to 
the treatment of traffic considering its self-similar and LRD 
nature, converge in the need to capture its fluctuations on 
different time scales in order to make assertive forecasts of the 
yield of communications systems. In this respect, the self-
similarity contributes with the parsimony required to specify 
the statistical details of the variables involved from a minimum 
set of modeling parameters, and a model based on the theory of 
complexity contributes the robustness needed to cohere those 
parameters with information. 

III. SPECIFICATION OF THE CHAOTIC MODEL 
Consider the nonlinear double intermittence map 
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where c1 = (1  1  d) / d m1, c2 = (d  2) / (1  d)m2 [4]. 

If m2 = 1 and 2 = 0, from (15) we get the model of a non- 
linear chaotic intermittent map [3] 
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where c = (1    d) / d m, with  d. 

The map parameters (, m, and d) are used to control the 
probability of permanence in the inactive state, the traffic load; 
i.e., the mean rate of mesh arrival, and the degree of self-
similarity density, H. Specifically, the fit of the  parameter 
incides on the probability of permanence of the iterations of the 
map in the inactive state, while the traffic load depends on 
parameters m and d [27]. 

The condition  d is well defined, at least theoretically, if 
 = 0, which leads to the control of the limit of the range of 
temporal scales over which LRD is observed. In [27] it is 
shown that if  = 0, permanence time can be of any length, but 
as  increases above 0, the escape time from the region tends to 
a fixed upper limit. 

Considering m = 1 with the purpose of decreasing the 
degree of the function that characterizes the inactive state of the 
map implies generating traffic with short-range dependence 
(SRD), which is verified from the relation existing between H 
and m given by H = (3m – 4) / (2m – 2), with m = max {m1, m2} 
[28], i.e., H = 0.5. In other words, a geometric type decay takes 
place for the map regions, which is synonymous of uncorrelated 
traffic, i.e., traffic with SRD. 

Therefore, the proposed map together with its characteristic 
function is given by 
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and 
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Rewriting (17) in the form 
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from the development of (14) applying (19) we get 
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an equation for which Schuster [22] establishes the existence of 
only one physically relevant solution that is obtained from 
taking z = 1 / fi (x), i.e., 
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where 1f  represents the first derivate of f1. Then the expression 
for the invariant density is given by 
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which allows obtaining the system load, i.e., the probability of 
remaining in active state, from the integration of (22) between 
the limits d and 1. 

IV. EXPERIMENTAL RESULTS 
The self-similar behavior with LRD of the traffic generated 

by the proposed map is confirmed by means of the calculation 
of Hurst exponent using the rescaled range analysis (R/S) and 
the aggregate variance analysis (Var) [29]. 

In the R/S analysis the value of H is obtained directly from 
the slope of the logarithmic plot, while in the Var analysis H is 
obtained from the relation H = 1 –  / 2 where 0 <  < 1 [30]. 

In this first stage of research no online traffic is generated 
because we are dealing only with the validation of model; and 
instead of it all algorithms are programmed in MATLAB. 

As a first point, two values are specified in Table I for 
parameter m, keeping the number of the map iterations N and 
parameter d fixed. 

Tables II to IV show experiments varying parameters m and 
d for a constant number of iterations of the model, to obtain the 
Hurst parameter H. 

Fig. 1 and Fig. 2 show the behavior of xn+1 and yn for the 
data of Table I. Fig. 1(b) shows only the first 80 iterations for 
yn, since the rest, up to iteration N = 1000, are equal to zero. 

Fig. 3 shows the graphic aspect of the traffic generated for 
N = 1000 iterations, d = 0.5 and m = 2 (for the case of Fig. 2). 

TABLE I.  SPECIFICATION OF THE MODEL PARAMETERS 

N d m Show in 

1000 0.5 1 Fig. 1 
2 Fig. 2 

TABLE II.  SPECIFICATION OF THE MODEL PARAMETERS 

N d m H 
R/S Var 

1000 0.5 

1 0.50 0.42 
1.2 0.51 0.46 
1.4 0.54 0.50 
1.6 0.68 0.58 
1.8 0.73 0.68 
2 0.87 0.78 

TABLE III.  SPECIFICATION OF THE MODEL PARAMETERS 

N d m H 
R/S Var 

1000 0.3 

1 0.50 0.44 
1.2 0.51 0.47 
1.4 0.61 0.56 
1.6 0.72 0.65 
1.8 0.78 0.72 
2 0.90 0.82 

TABLE IV.  SPECIFICATION OF THE MODEL PARAMETERS 

N d m H 
R/S Var 

1000 0.1 

1 0.51 0.44 
1.2 0.53 0.50 
1.4 0.66 0.56 
1.6 0.75 0.65 
1.8 0.81 0.72 
2 0.92 0.82 
 

 

Figure 1.  Behavior of the model considering N = 1000, d = 0.5, and m = 1. 

 

Figure 2.  Behavior of the model considering N = 1000, d = 0.5, and m = 2. 



 

Figure 3.  Traffic generating by the map. N = 1000, d = 0.5, and m = 2. 

Tables V to VII present values of H for random traffic 
sequences extracted from the original series used to formulate 
Tables II to IV. These random sequences are formed from the 
extraction of the number of samples specified under Random 
N, and they are then analyzed as samples of traffic generated 
directly by the model. 

TABLE V.  HURST EXPONENT FOR DISSAGREGATED SERIES 

N Rand. N d m H 
R/S Var 

1000 500 0.5 

1 0.42 0.37 
1.2 0.45 0.43 
1.4 0.51 0.48 
1.6 0.55 0.52 
1.8 0.65 0.58 
2 0.72 0.66 

TABLE VI.  HURST EXPONENT FOR DISSAGREGATED SERIES 

N Rand. N d m H 
R/S Var 

1000 500 0.3 

1 0.44 0.38 
1.2 0.47 0.45 
1.4 0.53 0.51 
1.6 0.62 0.57 
1.8 0.67 0.62 
2 0.75 0.67 

TABLE VII.  HURST EXPONENT FOR DISSAGREGATED SERIES 

N Rand. N d m H 
R/S Var 

1000 500 0.1 

1 0.43 0.38 
1.2 0.45 0.42 
1.4 0.52 0.50 
1.6 0.57 0.52 
1.8 0.63 0.57 
2 0.71 0.66 

V. DISCUSSION OF RESULTS 
The model shows that the generation of self-similar traffic 

with LRD can be approached from the control of parameters m 
and d considering a fixed number of iterations, as shown from 
the results given in Tables II to IV. However, because of its 
simplified present formulation, control of the permanence times 
in each state is not possible. In that respect, a general model 
like that of [26] does allow that with good accuracy. A simple 
example to illustrate that need is built on the basis of requiring 
that the traffic of a system should have a certain H, for example 
0.90. Examining Table III and Table IV it is found that this 
requirement can only be satisfied by means of a change in the 

boundary of the iteration regions, which is impractical because 
of its repercussions on the characteristic function. It is a need 
that requires urgent attention. 

Control of the degree of self-similarity of the generated 
traffic seems to be effective for the subjacent temporal series. 
The analysis of the results shown in the Tables V to VII is 
fundamental because it reflects the underlying problem: 
controlling the effect of locality on Hurst exponent. It is seen 
that the traces formed from random sections of the original 
samples reflect the behavior of the whole, and also that Hurst 
exponent can be considered by itself as a valid indicator to 
characterize the effects of the generated self-similar traffic with 
LRD on the performance of the tail systems in which it 
appears. The lack of a formal mathematical proof of this fact is 
acknowledged, but in a first instance, based on the effect that 
the characteristic function has on the perception of the system, 
an appropriate substantiation is found. 

VI. CONCLUSIONS 
The feasibility of having an efficient and effective self-

similar traffic generator from the parsimony of its model is 
shown, a fact made evident by an adequate control of the value 
of Hurst exponent. Furthermore, Hurst exponent is shown to be 
completely valid as a representative parameter to characterize 
self-similar traffic. 

It is shown that the value of Hurst exponent in the 
disaggregation of self-similar temporal series depends on the 
original model of the traffic. In this respect, based on subsets of 
samples obtained randomly, it is seen that its value shows a 
tendency to remain constant and in that way adequately 
characterize the segments in question. 

Finally, the most relevant fact for the future development of 
this research is the practical proof that m = 1 must be discarded 
as an option for the formulation of a chaotic model generator of 
self-similar traffic because it inevitably leads to SRD traffic, as 
shown by the results given in Tables II to VII, so it is shown to 
be impossible to work only with a linear model. 
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