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Abstract 

Compositionality can be considered as obtaining (or synthesizing) the correct meaning of the constituents of a non-

simple language expression or visual image. The Causal Cognitive Architecture is a brain-inspired cognitive 

architecture (BICA). It is not a traditional artificial neural network architecture, nor a traditional symbolic AI system 

but instead uses spatial navigation maps as its fundamental circuits. In older versions of the architecture, sensory 

inputs are compared in each existing sensory system against previous stored navigation maps for that sensory system, 

and the best navigation map is chosen and then updated with the new sensory inputs and a best multisensory navigation 

map is similarly created and used as the working navigation map. Instinctive and learned small procedures are 

triggered by input sensory inputs as well as matched navigation maps, and in the Navigation Module operate on the 

working navigation map and produce an output signal. By feeding back intermediate results in the Navigation Module 

it has been shown previously how causal and analogical behaviors emerge from the architecture. In new work, the 

Navigation Module is duplicated in a biologically plausible manner. It becomes possible to compositionally process 

information in the duplicated Navigation Module against the original Navigation Module, and as a result 

compositional language comprehension and behavior readily emerge. A formalization and simulation of the 

architecture is presented. A demonstration example, and then its negation case, are explored of solving a compositional 

problem requiring the placement of an object in a specific location with regard to other objects. Future work is 

discussed using large language models to create navigation maps. Given the mammalian brain inspiration of the 

architecture, it suggests that it is indeed feasible for modest genetic changes to have allowed the emergence of 

compositional language in humans.  

Keywords: Compositionality; Brain-Inspired Cognitive Architecture (BICA); Artificial Intelligence (AI); Language Evolution; 

Large Language Model (LLM) 

 

1. Introduction  

 

1.1 Compositionality and Neural Networks 

 

    Frege’s principle of compositionality (Frege, 1884) can essentially be summarized as the meaning of a non-simple 

expression being a function of the meanings of its constituent parts and the way they are syntactically combined 

(Partee, 1984). Ruis and Lake describe systematic compositionality or generalization as the ability to produce novel 

combinations from known parts (Ruis and Lake, 2022). Many somewhat varying definitions of compositionality along 

these lines exist (Pleyer et al., 2022). 
 

 
Figure 1.   The instruction to “place the white triangle on top of the black block which is not near a white cylinder” may be 

difficult to successfully follow by connectionist systems. The dashed arrow represents the correct solution to this instruction. 

(Note: The dashed arrow is not shown to the computer system being asked to follow this instruction.) 



 

Consider the compositional instruction “place the white triangle on top of the black block which is not near a white 

cylinder” as depicted in Figure 1. This requires an ability to extract the meaning from a non-simple expression in terms 

of its constituent parts and their relations. Symbolic artificial intelligence (AI) systems in the 1970s (e.g., Winograd, 

1971) were able to follow such instructions, i.e., possessed compositional abilities. However, as Lake and colleagues 

(2017) note, while artificial neural networks have had success in many tasks, including those requiring properties of 

generalization, they do require extremely large numbers of training examples, due in part to a lack of compositional 

abilities. Liška and colleagues (2018) describe how some recurrent neural networks (RNNs) can show compositional 

properties although they tend to be weak.  

Marcus, Davis, and Aaronson (2022) show even advanced neural networks are largely incompatible with 

compositionality and have difficulties with problems such as shown in Figure 1. For example, DALL-E2 (a deep 

learning system that synthesizes often spectacular and complex digital images from English language prompts) is 

unable to successfully handle relationships between objects. Marcus and coworkers (2022) give an example of 

prompting DALL-E2 to put a red ball on top of blue pyramid behind a car that is above a toaster. DALL-E2 generates 

ten different images depicting this request, but none of the images are correct in terms of the specified relationships. 

Compositionality is an important property. Without compositionality an artificial system would essentially need to 

see every permutation of a myriad of situations in order to learn them, i.e., effectively requiring infinite memorization. 

Compositionality allows humans, for example, to understand and generate an unlimited number of different sentences, 

images, gestures, and so on, without having to train on billions or trillions of parameters of language, such as occurs 

with contemporary large language systems (Brushe et al., 2020; Levine et al., 2020). 

Given the compositional weaknesses of traditional connectionist systems (Marcus et al., 2022), and given the 

difficulty of building practical symbolic AI systems (e.g., learning large amounts of data often is impractical and the 

operation of such systems often proves to be brittle (Hitzler et al., 2022)), there is interest in finding ways to allow 

neural networks to successfully include compositional properties (e.g., Kim, 2021). One approach is further refinement 

to the induction of compositionality in RNNs (e.g., Liška et al., 2018) or in transformers (e.g., Jiang and Bansal, 2021). 

Another approach is neurosymbolic AI which combines the properties of typical artificial neural networks and 

symbolic AI systems, i.e., artificial neural network learning properties with the ability for symbolic reasoning. The 

symbolic abilities of such systems allow compositionality to be more readily achieved. A review of neurosymbolic 

architectures is provided by Kautz (2022) who places them in a number of categories. However, each category of 

neurosymbolic architecture is essentially an overt hybrid of an artificial neural network with a symbolic AI system. 

    This paper describes another approach to achieving compositionality in a system which is not a typical symbolic 

AI system. The Causal Cognitive Architecture is a brain-inspired cognitive architecture (BICA) (Schneider, 2022b, 

2023). It is not a traditional artificial neural network architecture, nor a traditional symbolic AI system. Instead, it uses 

modified neural networks as its fundamental circuits involving manipulations of what are essentially navigation maps 

(described below). This paper does not focus on the actual neural networks, which can take on a variety of forms as 

long as a functional navigation map results (allowing straightforward changes and comparisons to cells in these maps) 

and can be repeated to allow a large number of such maps.  In this paper, evolutionarily feasible improvements to the 

architecture are described which readily allow compositionality including compositional language to emerge in the 

architecture. 

 

 

 

 

1.2 The Causal Cognitive Architecture: Previous Work 

 

The Causal Cognitive Architecture 5 (CCA5) was previously described in the literature (Schneider, 2023). An 

overview of this architecture is shown in Figure 2. The new work described in this paper involved experimentation 

with a CCA5-like architecture. This new work involved brain-inspired evolutionarily plausible changes that resulted 

in an improved architecture yielding compositional behavior including the emergence of the beginnings of 

compositional language. This improved architecture is simply termed the Causal Cognitive Architecture 6 (CCA6). 

An overview is shown in Figure 3, and it is described in more detail in the sections below. 

However, in this sub-section the previous work, the Causal Cognitive Architecture including the CCA5 (Schneider, 

2023), is briefly reviewed. The Causal Cognitive Architecture does not attempt to replicate the brain at the neuronal 

spiking level. Similarly, the architecture does not attempt to behaviorally replicate the top-level psychological 



manifestations of the mammalian brain. Rather, the architecture attempts to consider what middle level mechanisms 

could be occurring in the brain, i.e., at approximately the level of the cortical minicolumn and their postulated 

interactions with each other and other brain circuits and attempts to see what properties and behaviour could emerge. 

Given the assumptions and approximations being made, it is a loose brain-inspired modeling. It is a functionalist 

system to a large extent (Lieto 2021, 2021b) although as Lieto (2021b) notes, there is a continuum between 

functionalist and structuralist models. There are indeed a number of anatomical and biological constraints to the 

architecture. 

The main brain-inspired basis of the architecture is the postulation that just as the hippocampus contains maps of 

spatial items (e.g., O’Keefe, Nadel, 1978; Samsonovich, Ascoli, 2005; Alme et al., 2014) then so does the mammalian 

neocortex (Schneider, 2022b). Numerous genetic and developmental mechanisms have been proposed for mechanisms 

of how brain circuits can duplicate and diverge to new functions, and for the expansion of the neocortex (e.g., Rakic, 

2009, e.g., Chakraborty and Jarvis, 2015). Schafer and Schiller (2018) have also hypothesized that the mammalian 

neocortex contains maps of spatial objects as well as maps of social interactions while Hawkins and colleagues (2019) 

discuss evidence for the equivalent of grid cells in the mammalian neocortex. Thus, millions of cortical minicolumns 

in the mammalian neocortex are modeled in the Causal Cognitive Architecture as millions of spatial navigation maps.  

Thus, an important aspect of this architecture is that the “navigation map” is used as the main data structure 

throughout the Causal Cognitive Architecture. The navigation maps used in the Python simulations of the architecture 

presented previously (e.g., Schneider, 2023) and again in this paper for the improved CCA6 architecture, are greatly 

simplified. An example is shown in Figure 4. This navigation map is representing the cubes, cylinder, and triangle of 

Figure 1. 

Using this navigation map-based architecture, i.e., the Causal Cognitive Architecture, Schneider (2022a) showed 

that causal behavior can emerge from a navigation map-based cognitive architecture system previously showing only 

associative behavior or limited pre-causal behavior. (The limited pre-causal behavior can arise alone from the 

navigation maps being used in the system). Also, the architecture provided a mechanism which showed that with very 

small changes to the architecture (i.e., increasing some feedback pathways), evolution from pre-causal primates to 

fully causal humans was plausible with minimal genetic changes. It also predicted (Schneider, 2020, 2021) that 

psychosis would more readily emerge in the fully causal humans, something that is indeed well known. For example, 

van Os and colleagues (2001) show that more than 10% of humans will have psychosis-like symptoms at some point 

while psychosis is rarely found in other mammals (unlike versions of most of the other human psychiatric disorders) 

(Xu et al., 2015). Continuing exploration of this navigation map-based architecture, Schneider (2023) showed that 

with a number of algorithmic changes and additional operations, inductive analogical operations can readily emerge 

from the architecture. The inductive analogical feedback mechanism allowed significantly enhanced problem-solving 

skills for the architecture. 

Operation of the Causal Cognitive Architecture will be described below in the context of the new work presented 

in this paper, i.e., the Causal Cognitive Architecture 6 (CCA6). 

 

 

1.3 New Work 

 

Experimentation with a number of toy problems showed that if the Navigation Module of a CCA5-like architecture 

(Figure 2) was duplicated into two Navigation Modules, then compositional behavior and the beginnings of 

compositional language emerged quite readily. This is discussed in the sections below.  

As can be seen in the improved CCA6 architecture in Figure 3, the Navigation Modules are now duplicated, along 

with some of their pathways. Navigation Module B is the partially duplicated module. Numerous genetic and 

developmental mechanisms have been proposed for mechanisms of how biological brain circuits can duplicate and 

diverge to new functions (e.g., Rakic, 2009, e.g., Chakraborty and Jarvis, 2015).) As is discussed in more detail below 

in the paper, this duplication of the Navigation Modules is very evolutionarily plausible, i.e., relatively few genetic 

changes can result in large changes in a brain-inspired cognitive architecture’s behavior. In this case, the architecture 

can produce compositional solutions and the start of compositional language. 

Below in the paper the theory behind the duplication of the Navigation Modules and the operation of the resulting 

architecture, i.e., the CCA6, are discussed in more detail. The operation of the new architecture is formalized in a 

series of equations (Appendix A), and a small computer simulation is created which can show compositional results 

occurring based on these equations. 



In an earlier published version of the Causal Cognitive Architecture, it was noted that the basic data structure of the 

architecture—the spatial navigation maps—resulted in the emergence of explainability and the corresponding 

potential for language (Schneider, 2022b). Essentially, the series of navigation maps the Causal Cognitive Architecture 

produced and stored, provided an explanation for any decisions made. In Schneider (2022b) a simple procedure 

(termed “primitive” in the nomenclature of the architecture) could be used to read back and to communicate these 

navigation maps to other agents. This primitive, named navigation_map_to_proto_language(),was discussed but 

no other attempt to comprehend or produce compositional language was made. In this paper, the language abilities of 

the architecture are extended by showing how compositionality allows the emergence of compositional 

comprehension.  

A number of other changes to the previous architecture are made in the new CCA6 architecture of this paper, in 

order to better reflect the mammalian origins and inspiration of the architecture. An example is the more distributed 

storage of the primitives (i.e., procedures) throughout the architecture rather than in one module (e.g., Figure 3 versus 

Figure 2). While these other changes have no large immediate impact on the properties of the architecture (given the 

functionalist nature of the architecture) they do allow better correspondence with the mammalian as well as the human 

brain. The relatively easy emergence of compositional language in this model is then discussed as a possible 

mechanism in how language could have emerged in humans, despite relatively small genetic differences from a 

chimpanzee-human last common ancestor. 

 

 

1.4 Overview of the Paper 

 

In the Introduction section above, the importance of compositionality in intelligent systems is discussed.  The 

compositional weaknesses of traditional connectionist systems are noted. The Causal Cognitive Architecture 6 

(CCA6) is presented as a system which is not a typical connectionist system nor a typical symbolic AI system, but 

which is introduced here as another approach to achieving compositionality. 

The second section is titled “Causal Cognitive Architecture 6 (CCA6): Origins and Operation.” The brain-inspired 

origins of the improvements in this version of the architecture are discussed. This is followed by a more detailed and 

formalized description of the overall operation of the architecture. 

The third section is titled “Compositional Language Understanding.” The improvements in the architecture 

discussed in the previous section with some additional instinctive primitives (i.e., built-in procedures that act on the 

navigation maps containing the data of the system) are shown to allow the start of compositional language 

understanding. 

The fourth section is titled “Demonstration of Compositional Understanding.” A simple computer simulation of 

the new CCA6 architecture is shown to demonstrate language understanding in toy problems. 

The fifth section is the Discussion where the results of this work are considered, i.e., the emergence of 

compositionality in the CCA6 brain-inspired cognitive architecture. The strengths and weaknesses of the results are 

considered. There is also the consideration of the need for better experimental simulation of the architecture on larger 

non-toy datasets, which requires a more robust implementation of the architecture including a much more significant 

collection of instinctive primitives (i.e., built-in procedures). The use of large language models in order to expedite 

the engineering of more robust computer simulations of the CCA6 is discussed. The CCA6 is also compared with 

other cognitive architectures. As well, there is a brief discussion of the architecture suggesting a plausible path for the 

emergence of language in humans.  

The next section is the Conclusion where there is review of the findings of this paper, i.e., demonstrating the 

emergence of compositionality from a navigation map-based architecture such as the CCA6. 

In Appendix A there is a formalization of the main portions of the architecture, including the new work on the 

CCA6 presented in this paper. The equations in Appendix A form the basis for computer simulations of the 

architecture. 

 

 



 

Figure 2. Causal Cognitive Architecture 5 (CCA5). (“D”–changes with development) (Schneider, 2023) 

 

 

 

Figure 3. Overview of the Causal Cognitive Architecture 6 (CCA6)  
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Figure 4. Example of a Navigation Map—the 6x6x0 spatial dimensions are shown containing sensory features, links to other 

navigation maps, and an instinctive primitive {parse_sentence}. This represents the sensory scene of Figure 1. 

 

 

2. The Causal Cognitive Architecture 6 (CCA6): Origins and Operation  

 

2.1 Brain-Inspired Changes to the Causal Cognitive Architecture: Duplication of the Navigation Module 

 

The Causal Cognitive Architecture 6 (CCA6) is a brain-inspired cognitive architecture (BICA). In this subsection 

the inspiration for the changes from the CCA5 architecture to the CCA6 architecture are discussed. As noted above, 

the Causal Cognitive Architecture does not attempt to replicate the brain at the neuronal spiking level, nor does it 

attempt to behaviorally replicate the top-level psychological manifestations of the mammalian brain. Rather, it 

attempts to consider what middle level mechanisms could be occurring in the brain, i.e., at approximately the level of 

the cortical minicolumns and their postulated interactions with each other and other brain circuits. As noted above, it 

is largely a functionalist system (Lieto, 2021b), although restrained by various anatomical and biological constraints. 

The Navigation Module of the CCA5 architecture (Figure 2) is duplicated in the CCA6 (Figure 3) into Navigation 

Modules A (the original Navigation Module) and Navigation Module B (the partially duplicated Navigation Module). 

As noted above, many genetic and developmental mechanisms have been proposed for mechanisms of how brain 

circuits can duplicate and diverge to new functions (e.g., Rakic, 2009, e.g., Chakraborty and Jarvis, 2015). Navigation 

Module B (Figure 3) represents the partially duplicated original Navigation Module, lacking some of the connections 

of the original Navigation Module A, but also developing additional pathways related to language (discussed in more 

detail below concerning the operation of the architecture). In the new CCA6 architecture presented in this paper, 

Navigation Module B is used for both reasoning and communication, i.e., language. Although language is not fully 

implemented in the CCA6, Navigation Module B can perform compositional understanding of language, as will be 

demonstrated further below in the paper. 

 This second Navigation Module B is inspired by the ability of human and non-human primate brains to handle 

communications in a more expressive fashion. The simplistic notion of Wernicke’s area as being the specialized area 

where language is understood may be overly simplistic, and in fact experimental evidence supports an alternative view 

(Binder, 2015).  As well the arcuate fasciculus may more generally connect posterior areas with more general premotor 

areas, albeit involved in language (Bernal and Ardila, 2009) but that speech comprehension and processing involves 

many areas of the brain, as is better reflected by a duplicated Navigation Module. From an evolutionary perspective, 

similarities in the auditory-vocal cortical connectivity in non-human primates and humans (Aboitiz, 2018) would 

support the duplication of the Navigation Module in non-human primates, i.e., before humans emerged. However, 

non-human primates would not have been capable of the full causal and analogical reasoning which emerged later and 

was modeled in the CCA5 (Schneider, 2023).  

Broca’s area is a critical region in the human brain, more often in the left brain, for producing speech. (Note that 

none of the Causal Cognitive Architectures attempt to model two hemispheres but are inspired by a more simplistic 

view of one brain hemisphere.) However, homologues exist in the great apes. For example, Taglialatela and colleagues 



(2008) show that in chimpanzees, hand gestures are associated also with activity in a similar region in the chimpanzee 

left brain. 

As noted above, once navigation maps are being used as the main data structure of the Causal Cognitive 

Architecture, it is a small step to evolve to read through navigation maps and produce a simple proto-language. Such 

a proto-language can involve gestures as well as speech (Taglialatela et al., 2008; Amici et al., 2022). Assuming this 

Causal Cognitive Architecture model of brain evolution, proto-language appears to have occurred prior to the 

existence of humans. Thus, it is assumed in the CCA6 architecture that a partial duplication of the Navigation Module 

circuitry occurred in primates if not earlier, with further adaptation such as to be advantageous to work in conjunction 

with the existing Broca’s area and other proto-language brain areas.  

There are left and right cerebral hemispheres in the mammalian brain. As noted above, the CCA6 currently does 

not model the function of the two hemispheres. For example, in mammals there is interhemispheric transfer of working 

memories as objects switch visual hemifields (Brincat et al., 2021). Rather, the CCA6 considers only the left cerebral 

hemisphere which typically holds the more important regions for language understanding and production. 

As discussed above, in order to allow processing of the instructions associated with Figure 1, compositional 

language processing is required. The main purpose of this paper is to show the ready emergence of compositionality 

from a navigation map-based architecture such as the CCA6. This readily lends itself to the beginnings of 

compositional language, i.e., communication abilities only possessed by humans. However, it should be appreciated 

that while complex language abilities appear to have dramatically arisen evolutionarily quickly in humans, many of 

the structures required for complex language were already present in the common ancestors. For example, human 

forkhead box protein P2 (FOXP2)—a protein encoded by the gene FOXP2 strongly associated with human language 

production, exists not only in mammals but in other vertebrates. For example, upregulation of versions of this gene 

occurs in birds during song mimicry and learning (Wu et al., 2021).  

 

 

 

2.2 Brain-Inspired Changes to the Causal Cognitive Architecture: Distribution of Learned Primitives 

 

As noted above, the term “primitive” refers to procedures or algorithms that give a sequence of potential actions 

that can be taken. “Instinctive primitives” are pre-existing, i.e., the architecture is not a tabula rosa but starts with a 

collection of instinctive primitives. The instinctive primitives are brain inspired by the studies of human infants and 

nonhuman primates by Spelke and other workers (Spelke, 1994; Kinzler and Spelke, 2007). Although not shown in 

Figure 3, but discussed in previous versions of the architecture, the instinctive primitives are developmentally 

sensitive—different portions of the primitives become activated or inhibited depending on the experience level (i.e., 

age) of the architecture.  

“Learned primitives” are not pre-existing, but are learned, as their name suggests. Learned primitives essentially 

become actions representing algorithms encoded on navigation maps. As such, they can be encoded with recorded 

features of the environment, and have a spatial origin, as reflected by the navigation map encoding.  

 Schneider (2023) did not adequately account for the distribution of learned primitives (i.e., learned actions to take) 

throughout the mammalian brain, as well as the functional differences between instinctive and learned primitives. The 

complex fashion in which instinctive behaviors are genetically specified (as an example, work by Weber and 

colleagues (2013) in the instinctive burrowing habits of Peromyscus mice) is obviously different than the way millions 

or billions of byte-equivalents of learned primitives can be accumulated. This is now better reflected in the present 

paper (i.e., in the CCA6 shown in Figure 3), in keeping with its BICA origins. 

In addition, previous versions of the architecture did not adequately account for the evolution of instinctive 

primitives. In this version of the architecture, new instinctive primitives are not artificially created de novo but are 

related to previous instinctive primitives. For example, the new instinctive primitives for language processing added 

to the architecture below, all derive from navigation actions on a navigation map, i.e., processes that already existed 

within other instinctive primitives. 

In the new architecture presented in this paper (Figure 3), learned primitives are physically located within numerous 

sensory modules, as well as being physically devoted for use by the Navigation Modules and other modules of the 

architecture. This will allow better future visual, auditory, and other specialized sensory learning, as well as easier 

operation of the Navigation Modules. 

 

 



2.3 Causal Cognitive Architecture 6: Compositionality and Compositional Language Emerge 

 

As discussed above, compositionality is vital to an intelligent system, whether artificial or natural. Compositionality 

obviates the need for infinite experimentation and memorization. Although this paper will be more focused on 

compositionality in terms of correctly handling objects in the world, as per Figure 1, in fact much of compositionality 

research in general is related to linguistics (Szabó, 2020). 

In an earlier version of the navigation-based BICA Causal Cognitive Architecture it was noted that the basic data 

structure of the architecture—the spatial navigation maps—resulted in the emergence of explainability and the 

corresponding potential for language (Schneider, 2022b). The series of navigation maps the Causal Cognitive 

Architecture produced and stored, effectively provided an explanation for decisions. A very simple procedure (termed 

“primitive” in the nomenclature of the architecture) could be used to read back and to communicate these navigation 

maps to other agents. A simple primitive (i.e., procedure) termed navigation_map_to_proto_language()was 

discussed previously but no other attempt to comprehend or produce compositional language was made. In the CCA6, 

it will be shown below how with the duplicated Navigation Module and a few additional instinctive primitives 

involved in language processing, that compositional language comprehension readily emerges. 

 Given the ease in which compositional language emerges in the model and given how the changes in the 

architecture (i.e., duplication of the Navigation Modules) could have occurred in a biological model with relatively 

few genetic changes, this suggests a plausible mechanism in how language could have emerged in humans from a 

chimpanzee-human last common ancestor. This is briefly considered in the Discussion towards the end of the paper. 

 

 

 

 

 

2.4 Overview of the Operations of the Causal Cognitive Architecture 6: The Navigation Map 

 

In Appendix A there is a more formal representation of the main portions of the architecture, including the new 

work on the CCA6 presented in this paper. The equations in Appendix A form the basis for computer simulations of 

the architecture. 

The main brain-inspired basis of the architecture is that millions of cortical minicolumns in the mammalian 

neocortex are modeled in the CCA6 as millions of spatial navigation maps. The navigation map is used as the main 

data structure throughout the architecture. Sensory data are encoded on navigation maps. Internal computations are 

largely encoded on navigation maps.  

Primitives refer to procedures or algorithms that give a sequence of potential actions that can be taken. Instinctive 

primitives are pre-existing. Learned primitives are not pre-existing but are learned. Both instinctive primitives and 

learned primitives are encoded on navigation maps. As noted above, the biological equivalent of instinctive primitives 

may be stored very differently in the brain than the way the biological equivalent of learned primitives are stored. 

However, for simplification of the architecture, both are encoded similarly on navigation maps, although as Figure 3 

shows, the learned primitives are more broadly distributed in the architecture.  

An example of a navigation map is shown in Figure 4. This “navigation map” in Figure 4 actually represents the 

cubes, cylinder, and triangle of Figure 1. Navigation maps can hold links to other cells within the same navigation 

map or in a different navigation map.  For example, in cell (0,0,0) of the navigation map in Figure 4, there is a link to 

cell (0,0,0) in navigation map #0024. Various core algorithms of the architecture as well as additional instinctive 

primitives can follow these links and retrieve and select navigation maps they link to.  

 

 

2.5 Overview of the Operations of the Causal Cognitive Architecture 6: Cognitive Cycles 

 

    “Cognitive cycles” are cycles of sensory inputs being processed and producing an output or a null output. Consider 

the CCA6 architecture in Figure 5. Each cognitive cycle, sensory detectors stream in sensory inputs into the Input 

Sensory Vectors Shaping Modules (arrow A). As indicated in Figure 5, there is one such shaping module for each 

sensory system, e.g., vision, auditory, and so on, which normalizes sensory inputs for further processing within the 

architecture. In the Input Sensory Vectors Association Modules (arrow B) sensory features are spatially mapped onto 

navigation maps dedicated to one sensory system. Note again from Figure 5 that there is one association module for 



each sensory system, e.g., vision, auditory, and so on. The Object Gateway Modules (arrow C) work with each Input 

Sensory Vectors Association Module—they attempt to recognize what are considered separate objects and figuratively 

pull them out of the sensory scene. 

Inputs of a given sensory system (e.g., vision) are matched against the best matching stored navigation map in that 

(e.g., visual) Input Sensory Vectors Association Module (Figure 5). That best matching stored navigation map is 

retrieved and then updated with the actual sensory input of that sensory system (or a new navigation map is created if 

there are too many changes). As such, there is a type of predictive coding occurring—the architecture anticipates what 

it is sensing and then considers the differences with the actual input signal (Schneider, 2023). This works well for the 

perception of noisy, imperfect sensory inputs. 

 The result at this step is that visual, auditory, and other sensory features of each segmented object, as well as the 

overall scenes, are spatially mapped onto navigation maps dedicated to one sensory system. These newly created or 

updated single-sensory navigation maps are then mapped onto a best matching multi-sensory navigation map taken 

from the Causal Memory Module (arrow D). The best matched navigation map from the Causal Memory Module is 

then considered moved to the Navigation Module A (arrow E). This best matching navigation map is updated with the 

actual sensory information sensed from the environment. The updated navigation map is termed the Working 

Navigation Map (represented by circle G in Figure 5). These operations are similar to the previous architecture CCA5 

(Figure 2) where they have been formalized (Schneider, 2023). A small (but important for compositionality 

functioning) difference is that the architecture now distinguishes between Navigation Modules A and B. The 

operations occurring in the CCA5 largely now occur in Navigation Module A of the newer architecture presented 

here, the CCA6 (Figure 5). As will be shown below, in the newer architecture, Navigation Module B tends to be used 

with cognitive cycles compositionally processing language-related sensory inputs or intermediate results. 

Instinctive and learned primitives, which as noted above are essentially small procedures that can perform 

operations on the current or linked navigation maps, are then selected by a similar matching process in terms of what 

are the sensory inputs as well as in terms of signals from the Goal/Emotion Module (Figure 5) and from the previous 

values of the Navigation Modules (Figure 5). Arrow F shows the actions of the best matching instinctive primitive on 

the Navigation Module A in Figure 5. Circle H represents the best matching instinctive primitive in Figure 5. 

In Navigation Module A in Figure 5, there is the Working Navigation Map represented by circle G, and the best 

matching instinctive primitive represented by circle H. The best matching instinctive primitive (in other cases it could 

instead be a best matching learned primitive) then operates on the Working Navigation Map. The result is an output 

signal to the Output Vector Association Module A (arrow I) and then to the Output Vector Shaping Module (arrow J). 

The latter then causes activation of an actuator or an electronic signal transmission (arrow K). Again, this is largely 

similar to what was presented and formalized by Schneider (2023). 

The navigation map in Figure 4 can be used as an example of a Working Navigation Map represented by circle G 

in Figure 5.  A best matching instinctive primitive (in other cases it could instead be a best matching learned primitive) 

is represented by circle H in Figure 5. This best matching instinctive primitive does not have to be the instinctive 

primitive linked to by cell (0,5,0) in the navigation map of Figure 4 (origin at the lower left corner) but can be any 

instinctive primitive in the Instinctive Primitives module of Figure 5 (or in other cases, can be any learned primitive 

in the Learned Primitives module of Figure 5). As an example, the action of the best matching instinctive primitive 

(circle H) on the Working Navigation Map (circle G, representing the navigation map in Figure 4) could be an action 

to move the triangle of cell (0,0,0) of that map to another cell in the navigation map. Generally, in keeping with 

previous versions of the architecture, primitives act on the Working Navigation Map in Module A. However, in the 

CCA6 as seen in the sections below, newer instinctive primitives are introduced which allow compositional 

understanding of language and compositional actions. 

Compositional operations tend to occur in Navigation Module B, i.e., instinctive primitives associated with 

language and compositionality tend to operate on Navigation Module B (shown by the dashed arrow L in Figure 5). 

As well learned primitives associated with language and compositional operations tend to operate on Navigation 

Module B (shown by the dashed arrow M in Figure 5). Although not fully explored in this paper, Navigation Module 

A and Navigation Module B can work together in more abstract fashions, each holding different working navigation 

maps relating to different aspects of the environment or of a problem being solved. 

Note that these operations in the Navigation Modules in Figure 5 (i.e., the operations of the best matching primitive 

on the navigation map in a Navigation Module) are operations which can be performed on or between arrays, which 

is what essentially navigation maps are. Examples of such operations include, for example, comparing arrays, adding 

or subtracting a vector to an array, and other simple operations that brain-inspired circuitry could reasonably carry 

out. This causes the Navigation Module(s) to produce and send a signal to their Output Vector Association Module(s) 



and then to the external embodiment via the Output Vector Shaping Module. Then the cognitive cycle repeats—

sensory inputs stream in, are processed, and there may be some output action, and then the cycle repeats again, and so 

on. 

 

 

 

 

Figure 5. A Cognitive Cycle in the CCA6 Architecture. Sensory inputs are processed by the various modules (described in text). 

The operation of the best matched instinctive primitive (circle H) on the Working Navigation Map (circle G) produces an output 

signal to the Output Vector Association Module A (arrow I) and then to the Output Vector Shaping Module (arrow J) and then an 

output to the external world which can activate an actuator or transmit an electronic signal. Then another cognitive cycle starts.

   

Arrow A – sensory inputs into the Input Sensory Vectors Shaping Modules 

Arrow B – to the Input Sensory Vectors Association Modules 

Arrow C – to the Object Gateway Modules 

Arrow D – to the Causal Memory Module 

Arrow E – best matched navigation map (“Working Navigation Map”) to the Navigation Module A 

Arrow F – best matched instinctive primitive to the Navigation Module A 

Circle G – Working Navigation Map 

Circle H – best matched instinctive primitive 

Arrow I – to the Output Vector Association Module A 

Arrow J – to the Output Vector Shaping Module 

Arrow K – outputs to the external world (actuator, electronic communication signal))  

Arrow L – instinctive primitives relating to compositionality and language tend to be applied to Navigation Module B 

Arrow M – learned primitives relating to compositionality and language tend to be applied to Navigation Module B 

 

 



2.6 Overview of the Operations of the Causal Cognitive Architecture 6: Feedback Operations 

In some, or many, cognitive cycles, there actually is no output signal produced by the Navigation Module(s). For 

example, the environment may be quiet and inactive. In this case the best matching and processed Working Navigation 

Map and best matching activated instinctive/learned primitive operating on the Working Navigation Map, simply do 

not produce an actionable output from the Navigation Modules A or B. Thus, there is no signal from Navigation 

Modules’ Output Vector Association Modules A or B to the Output Vector Shaping Module. However, this can often 

occur in other non-quiet, i.e., active, situations. It may happen that the best-matched primitive operating on the 

Working Navigation Map does not produce an actionable output. This may occur for another cognitive cycle or two 

(or more), and then a sensory input may change, and some sort of actionable output finally occurs. 

Feedback pathways are advantageous and commonplace throughout the Causal Cognitive Architecture—the current 

state of a downstream module can affect the recognition or processing of sensory inputs or data in more upstream 

modules. Schneider (2021) enhances the feedback pathways from the architecture’s sole Navigation Module to the 

Input Sensory Vectors Association Modules (similar to Figure 2). In cognitive cycles where no actionable output 

occurs from the Navigation Module, its output can be treated as intermediate results, and fed back more fully and 

stored in the Input Sensory Vectors Association Modules. In the next cognitive cycle these essentially intermediate 

results being stored in the Input Sensory Vectors Association Modules will automatically be treated as the processed 

sensory inputs and processed again in the Navigation Module. Sometimes these intermediate results will be operated 

on by a different primitive, or sometimes the changes in the intermediate results allow an actionable result to occur 

this time.  By allowing the architecture to feed back and then re-operate on intermediate results the architecture can 

explore possible cause and effects of actions. 

Schneider (2022a) gives an example where a robot controlled by a Causal Cognitive Architecture (similar to Figure 

2) working as a patient aide encounters a patient who lets go of a walker and starts to lose balance. The robot has not 

been preprogrammed what to do in each situation, but the intermediate results of the patient falling are re-operated on 

with the triggering of a goal/emotion signal which triggers a learned primitive that the patient should not fall. This in 

turn triggers an instinctive primitive that there should be a push back against something falling or moving in order to 

stop that movement. Thus, the robot pushes back on the patient’s body in the direction of the fall.   

Even with re-operating on intermediate results of the Navigation Module, the processed intermediate results nor a 

different primitive being triggered by the processed intermediate results, often still did not produce a causal or any 

actionable output. However, experimentation showed that a further slight modification to the feedback circuits, 

allowed analogical reasoning to emerge (Schneider, 2023). Equations (i) to (v) below represent a pseudocode 

description of this inductive analogical mechanism, re-written for the CCA6 architecture. (These equations are taken 

from the more complete formalization of the architecture in Appendix A where they are listed as equations (95) to 

(99).) 

 

If no actionable result occurs in the Navigation Module, then: 

  ⇒as before, feed back and store the Working Navigation Map values in the Sensory Association Modules  (i) 

  ⇒propagate the Working Navigation Map to the Causal Memory Module, match it with the best map, make 

this the new Working Navigation Map (ii) 

  ⇒see which navigation map(s) this map recently linked to, store the linked navigation map(s) in the TempMap 

temporary memory area of the Navigation Module(s) (iii)  

  ⇒subtract the value of TempMap from the Working Navigation Map and store the result in the Navigation 

Module being used (iv) 

  ⇒in the next cognitive cycle, add the intermediate results being stored in the sensory circuits to the 

Navigation Module being used, with the result forming the new Working Navigation Map  (v) 

 

    A definition of induction by analogy can essentially be given by equations (vi) to (ix). Variable a has features or 

properties F1, F2, F3, F4, … Fn (vi). Variable b also has the same features F1, F2, F3, F4, … Fn (vii). It is now seen that  

variable b has another property G (viii). Therefore in (ix) it can be concluded by induction by analogy that variable a 

also has this other property G. 

 

F1a & F2a & … Fna  (vi) 

F1b & F2b & … Fnb  (vii) 

Gb   (viii) 

∴ Ga  (ix) 



              □ 

 

    In equation (i) above the Working Navigation Map can be referred to as variable a, or perhaps as navigation map 

a. There is a need in the operation of the architecture to want to know what this navigation map a will do next, i.e., 

which navigation map will it call. Consider variable b, or perhaps named as navigation map b, as referring to this 

related but different Working Navigation Map in (ii). It is the best-matching navigation map to navigation map a and 

thus it is reasonable to expect that it will share many features with navigation map a. There is now a need to determine 

what navigation map b does next (i.e., what navigation map does it link to). It can be seen that navigation map b links 

to the navigation map which is then stored in the TempMap temporary memory area of the Navigation Module being 

used in (iii). 

    The difference between navigation map b and TempMap is then stored in the Navigation Module being used (i.e., 

essentially forming a new Working Navigation Map for that moment) as shown in (iv). This value in (iv) is the new 

feature G corresponding to equation (viii). By induction by analogy, since navigation map b has feature G, therefore 

navigation map a also has feature G (ix). Thus, in (v) feature G is added, which is actually the difference which is 

currently stored in the Navigation Module being used, to the navigation map a, which is actually the original Working 

Navigation Map stored in the sensory circuits. The resultant value in the Navigation Module being used, i.e., the new 

Working Navigation Map produced, represents the original Working Navigation Map plus new feature G (v, ix). 

    Despite these improvements made to the architecture, resulting in the CCA5 architecture (Schneider, 2023), it still 

was not able to easily handle compositional tasks such compositional language processing required to follow 

instructions such as in Figure 1. In the sections below it is shown how the new work, which is termed the CCA6 

version of the architecture, and the new instinctive primitives (like the architecture, also brain inspired), now readily 

handle compositional tasks. 

 

 

3. Compositional Language Understanding  

 

3.1 Compositionality Demonstration Problem 

 

Figure 1 above illustrates the instruction “place the white triangle on top of the black block which is not near a 

white cylinder.” To successfully follow this instruction requires an ability to extract the meaning from a non-simple 

expression in terms of its constituent parts and their relations. 

To solve the compositionality problem of Figure 1 the architecture must be capable of a number of tasks. The first 

is the ability to understand the language of the instruction which itself is compositional in nature: “place the white 

triangle on top of the black block which is not near a white cylinder.” This requires decomposing the instruction into 

its relevant parts. The architecture (Figure 3) which includes additional newer instinctive primitives (described below) 

is now able to do this, as demonstrated below. Then the meaning of each decomposed part of the instruction must be 

understood. The newer CCA6 architecture is able to do this, as shown below. Note that these compositional abilities 

are now essentially core mechanisms of the architecture, particularly associated with Navigation Module B—it 

performs these operations in a simple, mechanical fashion. 

 

 

3.2 New Instinctive Primitives included as Part of the CCA6 

 

As shown in Table 1, the CCA6 now includes a collection of other instinctive primitives which allow it to 

understand and react (with actions) to compositional language and allow it to solve compositional tasks such as Figure 

1. The function of these instinctive primitives will be demonstrated in the examples below. (Full names and fuller 

description of the properties of these instinctive primitives are listed in Appendix A.) 

As noted above, new instinctive primitives are not artificially created de novo but are related to previous instinctive 

primitives that exist within the architecture. The new language-related instinctive primitives shown in Table 1 all 

derive from navigation actions on a navigation map, i.e., processes that already existed within other instinctive 

primitives. 

With regard to the generation of language, the instinctive primitive apply_primitive_nav 

_to_protolang()which originated in a previous version of the architecture remains. This instinctive primitive 

simply reads back a navigation map, largely verbatim. It is not compositional, but simply reads back navigation maps 



and can combine navigation maps, somewhat akin to the combinatoriality language abilities in non-human primates 

(e.g., Zuberbühler, 2020). Future versions of the architecture are expected to include primitives for the generation of 

compositional language. However, at present, the instinctive primitives in Table 1 are sufficient for allowing a solution 

to the compositionality problem of Figure 1, as demonstrated further below. 

 

 

 

 

 

 
Instinctive Primitive Description 
apply_primitive_nav_to_protolang() combinatorial, non-compositional 

readback of a navigation map (present also 

in the CCA5 version of the architecture) 
parse_sentence() parses sentence onto an existing 

navigation map (new part of the CCA6) 
physics_near_object() marks objects with a “near” or a “not”  that 

are near  or not near a specified object 

(new part of the CCA6) 
place_object() places the specified object somewhere in 

the navigation map (new part of the 

CCA6) 

Table 1. Language-related Instinctive Primitives in the Causal Cognitive Architecture 6 (CCA6)   

(Full names and properties of these primitives are listed in Appendix A.) 

 

3.3 Approaching the Compositionality Problem of Figure 1 

 

The navigation map shown in Figure 4, represents a far view (as opposed to a close-up view) of the sensory scene 

of Figure 1, i.e., where and what the visual objects are, where and what odors may be, where and what sounds are 

interpreted to be, and so on. This far view sensory scene is constructed from a number of close-up views, reflected by 

the links to individual objects. For example, in cell (0,0,0) there is a link to navigation map #0024 cell (0,0,0) which 

contains the close-up view of the triangle object. The binding of objects in sensory scenes has been discussed 

previously in earlier versions of the architecture. Also, although not relevant in this simple static example, many 

navigation maps may contain motion prediction vectors showing the current and expected motion of an object, as 

discussed in earlier versions of the architecture. 

Please note that the origin (0,0,0) of the navigation map’s coordinate (x, y, z) system is considered to be at the 

lower left corner of the navigation map. Also, please note that in this paper we are considering everything in two 

dimensions, i.e., the z dimension is left at zero. 

The labels in Figure 4 were generated by the identification of the objects. They are taken from a pre-programmed 

catalog and represent little language significance to the architecture at this point. Consider, for example, the cell of 

the navigation map of Figure 4 which has the feature “cylinder, white”. In this navigation map’s cell with coordinates 

(2,1,0) there is also a link to {0023,0,0,0} which represents cell (0,0,0) in navigation map #0023. The cells starting at 

(0,0,0) in that map contain more detailed visual processed sensory data about a close-up view of the object “cylinder, 

white.”  This label “cylinder, white” would have been generated in the previous navigation map as the CCA6 attempted 

to match that navigation map of the close up visual sensory inputs of the white cylinder of Figure 1.  The term 

“cylinder” is simply matched to a catalog of shapes which the visual image was matched to. Again, note that there is 

little understanding of language here. However, there could be in the future as language-related navigation maps build 

up, and additional language-related instinctive primitives are added to the architecture. 

Thus, the Navigation Module is able to follow links in the navigation map of Figure 4 if so instructed by an 

instinctive or learned primitive, i.e., it can effectively zoom into a closer description of the white cylinder, and so on. 

For example, if an instinctive or learned primitive instructed going to the link in the cell of {0023, 0, 0, 0}, then a 

navigation map representing a close-up view of the white cylinder would become the new Working Navigation Map. 



In the introduction to this paper, it was noted that the principle of compositionality is that a non-simple expression 

is function of the meanings of its constituent parts. Indeed, on a feature level, it is seen that navigation maps can easily 

be composed and decomposed (i.e., linked) to constituent navigation maps. 

As noted above, the CCA6 at this point does not understand the English (or other) language at any level of 

sophistication. The label “cylinder, white” is just that to it—a feature label it can match from a catalog of shapes and 

then from a catalog of colors. However, the architecture does perform such operations with compositionality. Different 

features such as shape and color can easily be combined. Navigation maps can effectively zoom in and zoom out to 

compose and decompose objects. 

Similarly, the instruction “place the white triangle on top of the black block which is not near a white cylinder” is 

handled quite mechanically, but again in a compositional manner, by the Causal Cognitive Architecture 6 (CCA6). In 

the next section the operations of the CCA6 in understanding and following the instruction associated with the example 

of Figure 1 will be demonstrated. 

 

 

4. A Demonstration of Compositional Language Understanding  

 

4.1 Demonstration of the Emergence of Compositional Language Comprehension and Behavior in the Architecture 

 

    In this section the demonstration compositional example of Figure 1 will be processed by a simulation of the CCA6 

architecture. The section describes the setup of the problem and then walks through the internal actions taken by the 

architecture. This explanation of the steps taken by the architecture is intended as much to demonstrate to the reader 

the operations of the architecture as it is to show that the abilities for compositional language comprehension and 

behavior, albeit at the level of a toy problem, readily emerge from the CCA6 architecture. 

     At this point in its development the CCA6 architecture is not at the stage to consider operations on a dataset of 

thousands of non-toy compositional examples. This is discussed in more detail in a section below discussing further 

work on the architecture. In particular, larger collections of instinctive primitives are required, and better usage and 

implementation of the learned primitive system is required. As well, in order for the architecture to simply solve a 

compositional problem on its own agency, it first needs to have acquired the necessary navigation maps (a sort of 

education, so to speak) to even understand what is meant by solving a compositional problem. Thus, at this stage, the 

purpose of this paper is to show that with small biologically evolutionarily plausible changes from the previous 

architecture, compositional language comprehension and behavior can emerge. This is done in this section with the 

demonstration example of Figure 1. Then after doing so, further generalization of the example is considered. The 

example of Figure 1 is negated (i.e., it becomes “place the white triangle on top of the black block which is not near 

a white cylinder”). A walk through the steps of the simulation is given again for this example. At the end of the section, 

the behavior of the CCA6 in understanding and solving the problem in Figure 1 is compared with the performance of 

a state of the art (at the time of writing, of course) large language model in understanding and solving the exact same 

problem. 

In Appendix A there is a more formal representation of the main portions of the architecture, including the new 

compositional work on the CCA6 presented in this paper. The equations in Appendix A form the basis for simple 

computer simulations of the architecture. 

 

 

4.2 Python Computer Simulation of the CCA6 Architecture 

 

    A Python-language (van Rossum and Drake, 2014) computer simulation of the CCA6 Architecture is performed. 

The purpose of the simulation at this point is largely conceptual, i.e., to show that the operation of the architecture is 

feasible and is consistent. The simulation is largely based on the more formal description and equations of the CCA6 

architecture listed in Appendix A. 

    The navigation maps in the simulation are 6x6x0 spatial dimensions. A larger number of dimensions is actually 

used to store additional information such as the segmentation of a feature (i.e., to what object in a sensory scene does 

it belong to), and the association of a feature with motion of an object. Given that navigation maps are essentially 

array-like, they are treated as Numpy-library (Harris et al., 2020) array objects (x). The data structure of simulated 

navigation maps is given by the lines of Python code shown in (xi) and (xii). Each cell in an array is specified by 

navigation map number ‘n’, and spatial coordinates (x,y,z). Each cell has an associated ‘s’ dimension, i.e., its 

segmentation, to what object in a sensory scene does it belong to. Similarly, each cell has an associated ‘a’ value, i.e., 



its association value, generally to what motion in a sensory scene does it belong to. (The arrays are actually formatted 

for 6x6x6 spatial dimensions, as (xi) shows, but were only used as 6x6x0 arrays in the simulation.) 

 

import numpy as np       (x) 

self.gb = np.empty((self.maps, 6, 6, 6, self.segs, self.assocns), dtype=object)      (xi) 

# gb[n,x,y,z,s,a]       (xii) 

 

For the compositionality examples such as Figure 1, examples were encoded and entered into the visual perception 

system as simulated-like inputs, with largely null inputs for the auditory and olfactory systems. At present the CCA6 

is not attached to real-world sensors, and all inputs are simulated. Similarly, all outputs are simulated as well. 

Although the CCA6 has the start of a compositional proto-language, it does not yet contain the necessary learned 

primitives to understand the concept of being asked to solve a problem. Rather, the instinctive primitives, including 

those now in Table 1, are mechanically applied to the simulated sensory inputs. Future versions of the CCA6, or at 

least future simulations of this version of the architecture, are expected to have additional instinctive primitives to 

allow simulations more agency in day-to-day actions and recognizing problems to solve. 

The CCA6 can output the navigation maps it creates, which then are typeset for purposes of this paper. For example, 

the actual visual sensory system Local Navigation Map related to Figure 1 is shown in Figure 6. Note that it does not 

contain auditory or olfactory information as it is the navigation map of the visual sensory system. (The blank (i.e., 

null) cells of the computer simulation are replaced for aesthetic reasons in the typeset navigation maps by “air.” For 

the moment this is fine, but in future more complex environments this will be changed.) 

 The Local Navigation Maps are created from their respective input sensory streams. Local Navigation Maps are 

created for the visual sensory system, for the auditory sensory system, for the olfactory sensory system, and for any 

other sensory systems the implementation may be using. These are then combined into a multi-sensory navigation 

map which is matched against the other stored multi-sensory navigation maps from the Causal Memory module 

(Figure 3). The best matching navigation map is then updated with actual sensory inputs from this combined map, and 

then forms the Working Navigation Map. This is the navigation map which is sent to Navigation Module A (normal 

processing) or Navigation Module B (compositional-related associated inputs and primitives).  

The simulation follows the description of the architecture given above. It is better formalized in Appendix A. Due 

to the small size and the small number of navigation maps in the simulation, parallel operations are able to be simulated 

by iterative processing (i.e., one sensory system after another, and one navigation map after another, rather than in 

parallel as would occur in a hardware-based system). Often navigation maps need to be compared with other 

navigation maps. For example, a local navigation map (e.g., visual system or auditory system, and so on) needs to be 

compared with the best matching stored visual sensory system navigation map (or auditory system, and so on, 

depending on the local sensory system). For example, the input sensory data needs to trigger a best matching 

instinctive primitives navigation map and a best matching learned primitives navigation map. While in the future, 

more typical deep learning components can be used, at present a fuzzy string-matching library is used (FuzzyWuzzy 

from pypi.org, fuzzy string matching via Levenshtein distances between sequences). 

 

 

 
Figure 6. Actual Local (Visual) Navigation Map representing the visual sensory inputs of the sensory scene of Figure 1. 

 



 

4.3 Solving the Compositionality Problem of Figure 1: Initial Cognitive Cycles 

 

Consider a robot controlled by a CCA6 architecture. Since no such robot has been built, a Python simulation of 

system is considered. Rather than call the system “computer simulation of robot controlled by a CCA6 architecture,” 

for simplicity the term “CCA6” is used here. Thus, when discussing the operation of the architecture, the term “CCA6” 

refers to a simulation of the CCA6 architecture plus its robotic embodiment. (The effect of the embodiment is beyond 

the scope of this paper. Rather the embodiment should simply be considered as capable of moving itself, moving 

objects much as humans can, and sensing the environment depending on what sensory systems are simulated.) 

The CCA6 encounters Figure 1 and the instruction associated with it: “place the white triangle on top of the black 

block which is not near a white cylinder.” 

The first thing the CCA6 does is to bind the sensory inputs of the sensory scene. (A “sensory scene” is a scene but 

refers to all the senses available, e.g., visual inputs, auditory inputs, olfactory inputs, and so on). As noted above, the 

CCA6 will inspect each object in the sensory scene and make a close-up navigation map of the object. A far visual 

view is then constructed (i.e., the individual objects are added to another navigation map). A far visual navigation map 

of the visual sensory scene is shown, for example, in Figure 6. The Working Navigation Map is the fused navigation 

map of all the local navigation maps (i.e., the different navigation maps constructed by the visual inputs, the auditory 

inputs, the olfactory inputs, and so on). In the case of this example (which involves only visual sensory stimuli) it is 

shown in Figure 7 in Navigation Module A.  

The CCA6 then processes the language instruction associated with Figure 1. At this point in the development of 

the architecture and its computer simulation, it is assumed that either an auditory or visual instruction has simply been 

matched to a catalog of sounds or letters/words (ignoring the reality that perception of instructions actually occurs at 

a much more sophisticated level in humans). The instinctive primitive parse_sentence()(Table 1) is applied to 

the words associated with Figure 1 (i.e., the instruction to place the white triangle) and operates on the sentence in a 

very mechanical fashion.   

The primitive parse_sentence()will copy the instruction (or parts of it) as a navigation map to Navigation 

Module B (Figure 7). Thus, the instruction, “place the white triangle on top of the black block which is not near a 

white cylinder” is now the Working Navigation Map in Navigation Module B. Figure 7 shows the contents of 

Navigation Module A and Module B at this point in time in the simulation. 

The navigation map in Navigation Module A differs somewhat from the navigation map shown in Figure 4. In cell 

(0,5,0) there is no link to the instinctive primitive {parse_sentence}as this primitive was located elsewhere in the 

actual simulation. As well, in cell (5,4,0) there is no bleach_smell sensory feature as no olfactory inputs were used in 

the actual simulation. 

The navigation map in Navigation Module B contains links {+}. These just mean to link to the next cell in the 

navigation map. The x coordinates are incremented until the end of the row and then the y coordinate is incremented, 

and then another row is linked together, and so on. 

The initial cognitive cycles allowed the sensory information from Figure 1 to be processed and bound to the 

navigation maps shown in Figure 7. In the next set of cognitive cycles described in the next section, the sensory inputs 

are ignored (i.e., activity in arrow B of Figure 7 is ignored), and instead there is processing and feedback/temporary 

storage of intermediate results of the navigation maps each cognitive cycle. This occurs each cognitive cycle until the 

sequence of instinctive primitives which were called terminate, and an output action occurs, and then sensory inputs 

are not ignored but processed again.  

 

 

4.4 Solving the Compositionality Problem of Figure 1: Operations on Navigation Modules A and B 

 

At this point, Figure 7 represents the navigation maps in Navigation Modules A and B. The 

parse_sentence()primitive has already been activated, as noted above (and mapped the instruction associated 

with Figure 1 into the navigation map which was moved to Navigation Module B). This primitive then progresses 

through a sentence much like other primitives progress through a path until the primitive times out or is overridden 

by another instinctive or learned primitive. 

Whatever word the parse_sentence()primitive encounters, it matches against the navigation maps stored in 

the Causal Memory Module associated with Navigation Module B. A word or section of a word can be matched with 

one or two cognitive cycles of operations. 



The first word encountered “place” (cell (0,0,0) of the navigation map in Navigation Module B of Figure 7) is 

matched against words in the Causal Memory Module, and recognized as an action. The action will be applied to the 

next words after it, until the primitive comes to another action word. The next words not considered action words are 

“the”, “white” and “triangle”. These words are found in cell (0,0,0) in  the navigation map in Navigation Module A 

of Figure 7. Thus, as shown in Figure 8, the Navigation Module has written <”place”>  in this cell (0,0,0) containing 

the feature white, triangle. (Note that these words in the Causal Memory Module have been pre-programmed from a  
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Figure 7. A navigation map representing a far view of Figure 1 is in Navigation Module A.  Another navigation map 

representing the instruction associated with Figure 1 (“place the white triangle on top of the black block which is not near a white 

cylinder”) is in Navigation Module B. Cognitive cycles occur and ‘mechanically’ process the contents of the Navigation Modules 

via feedback operations which ignore new real-world sensory inputs for the moment (i.e., arrow B has no/ignored activity during 

these internal operations). (link{+}— link to the next cell. Arrow/circle letters from Figure 5.) See text for full description. 

 

catalog in this simple simulation but can be learned via instinctive and learned primitive learning in more advanced 

implementations and simulations.) 

The next word that the primitive encounters in the sentence is “on” which at present does not match in the Causal 

Memory Module, i.e., it will be ignored. However, the next the word “top” (Figure 7, the navigation map in Module 

B) matches as an action word and will be applied to the next words “of”, “the”, “black” and “block”. In the navigation  

map in Module A (e.g., Figure 7) cells (2,0,0) and (4,0,0) both contain “black” and “block”. Thus, as shown in Figure 

9, the Navigation Module in response to the instinctive primitive has written <“top”> in cells (2,0,0) and (4,0,0), which 

contain the words “black” and “block”. The next words “which” and “is” are ignored as the primitive cannot match 

them. The Navigation Modules in conjunction with the instinctive primitives (or learned primitives in other operations) 

are very mechanically operating on the words or labels in the Navigation Modules, and continue to parse the instruction 

sentence. 
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Figure 8. First word of the sentence of Figure 1 being parsed by the instinctive primitive parse_sentence() with 

application to the navigation map of Navigation Module A (Figure 7) representing the sensory scene of Figure 1. The primitive 

has written the action word “place” in the cell containing the features “white, triangle.” (Navigation Module A) 
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Figure 9. The instinctive primitive parse_sentence() has now written the word “top” in the cells containing the features 

“black, block.” (Navigation Module A) 
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Figure. 10. The instinctive primitive physics_near_object() has now written “not” in the cells containing  or 

adjoining cells containing the features “cylinder, white.” (Navigation Module A) 

 

 

 

It should be noted that the Navigation Module will manipulate similarly whatever words or labels such as “black”, 

“block”, and so on, which are in the cells, but that these cells are in fact grounded with links to other navigation maps 

providing more details and/or context about these labels. 

The next word in the instruction of Figure 1 is “not” which is considered an action word when matched against the 

navigation maps in the Causal Memory Module. It is applied to the next word “near” which actually triggers another 

instinctive primitive – physics_near_object().  

The physics_near_object() instinctive primitive will mark cells in a navigation map which are “near” or 

if so specified “not” near a specified object. It continues reading through sentence and encounters the words “a”, 

“white” and “cylinder” before reaching the end of the sentence (Figure 7, Navigation Module B). It matches these 

words to cell (2,1,0) in the navigation map in Navigation Module A. The physics_near_object() instinctive 

primitive will mark “not” (or in other cases where not is not specified, “near”) in the matched cell and all the adjoining 

non-null cells. Thus, as shown in Figure 10, there is now written <“not”> in cell (2,1,0) and adjoining cell (2,0,0). 

The instinctive primitive parse_sentence()now continues again parsing the sentence. There is nothing left to 

parse (as can be seen from Navigation Module B in Figure 7 the instruction sentence has only blank cells after the 

white cylinder words). Thus, the instinctive primitive parse_sentence()goes Navigation Module A and looks 

for tags. As can be seen in Figure 10, in the cell (0,0,0) there is the tag <“place”>. This tag matches against the 

instinctive primitive place_object()which is then activated and starts operating on Navigation Module A. 

At this point, the contents of Navigation Modules A and B are shown in Figure 11.  
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Figure 11. A navigation map representing a far view of Figure 1 is in Navigation Module A.  Another navigation map 

representing the instruction associated with Figure 1 (“place the white triangle on top of the black block which is not near a white 

cylinder”) is in Navigation Module B. Navigation Module A cells have been modified by the instinctive primitives 

parse_sentence()and physics_near_object(). See text for full description. 



The place_object()instinctive primitive will attempt to move and place an object somewhere. The tag 

<“place”> is most closely associated with “triangle, white”—that is the object that will be placed somewhere. The 

primitive now looks for other tagged notations such as <“top”> in the navigation map in Navigation Module A (Figure 

11). In this example, it will see a <“not”> in the cell with the features of a black block at (2,0,0) and not consider the  

<“top”> tag in that cell . However, the cell with the features of black block at (4,0,0) has a valid tag such as <“top”>. 

The instinctive primitive place_object()now triggers the instinctive primitive move()which produces 

actions from Navigation Module A to move the object from cell (0,0,0) (i.e., the white triangle) to the cell (4,0,0) (i.e., 

on top of whatever is in this cell). (The current simulation is running in two dimensions and the result is the simulated 

output is actually for the white triangle to move into the same cell as the black block on the right.) 

The instinctive primitive move() produces actions from Navigation Module A that cause an action signal to go to 

the Output Vector Association Module A. The Output Vector Association Module A performs motion planning and 

motion corrections via feedback from the Sequential/Error Correcting Module. The motion action signal from the 

Output Vector Association Module A is shown as Arrow J in Figure 11. This signal goes to the Output Vector Shaping 

Module which produces the actual signals (arrow K, Figure 11) for actuators to move the white triangle to the cell 

with the black block on the right. Thus, the white triangle is then moved to (and on top of it in three dimensions) the 

black block on the right side. 

Then a new cognitive cycle repeats again, finally processing again the actual sensory inputs streaming into the 

architecture. 

 

  

4.5 Evidence Supporting the Generalization of the CCA6’s Ability to Process Compositional Instructions 

 

Formally proving that a logical system, which the CCA6 is in addition to its other properties, is compositional is 

difficult. In fact, for example, Kracht (2013) argues that logical languages are actually not compositional. While 

natural languages, e.g., English, would intuitively seem to be compositional, in fact the literature contains many 

examples of why they are not fully compositional (e.g., Krempel, 2019; Szabó, 2020). However, our goal at this point 

is not necessarily a fully rigorous mathematical proof of the CCA6’s ability to process compositional instructions, but 

rather, its pragmatic ability to offer such a solution. 

 Symbolic AI systems are considered to have reasonably good potential for compositionality (Fodor and Pylyshyn, 

1988). For example, Winograd’s system from the early 1970s was discussed above (Winograd, 1971). In the presented 

CCA6 architecture, the instinctive primitives can essentially allow any basic symbolic operation that a symbolic 

computer can perform. Thus, from this theoretical consideration, a similar level of compositionality would be expected 

from the CCA6 architecture in theory, as would be expected from a symbolic computer system, the issue of resources 

aside. 

Consider the compositional example from Figure 1 of “place the white triangle on top of the black block which is 

not near a white cylinder.” In the previous sub-section the processing of this example by the CCA6 architecture was 

demonstrated. If the example is now negated, i.e., it becomes “place the white triangle on top of the black block which 

is not near a white cylinder,” then correct compositional comprehension and behavior should still be exhibited by the 

architecture. 

Figure 12 shows the new negated instructions corresponding to Figure 1.  

 

 
Figure 12.   New instructions for the blocks problem shown above in Figure 1: “Place the white triangle on top of the black 

block which is near a white cylinder.” (Note: The dashed arrows, representing the solution, are not shown to the architecture, but 

are for the reader only.) 

 



 

 

 Using similar mechanisms as described in the previous sub-section, the CCA6 architecture maps the objects of 

Figure 12 into Navigation Module A. Using similar mechanisms as described in the previous sub-section, the CCA6 

architecture maps the instructions associated with Figure 12 into Navigation Module B. Similar instinctive primitives 

are triggered, and similar mechanistic steps occur, with operations by the Navigation Module on the contents of 

Navigation Module A.  

 After a number of mechanistic steps (very similar to those in the previous sub-section) the contents of Navigation 

Module A are shown in Figure 13. Note that the tag <“near”> is in cells (2,0,0) and (2,1,0). In the next step the 

place_object() instinctive primitive will find the best match for <“top”> and <“near”> in cell (2,0,0), resulting 

in the placement of the white triangle on top of the black block which is near a white cylinder. 

 As before, the instinctive primitive move() operation on the Navigation Module A causes an action signal to go 

to the Output Vector Association Module A. The Output Vector Association Module A performs motion planning and 

motion corrections via feedback from the Sequential/Error Correcting Module. This signal goes to the Output Vector 

Shaping Module which produces the actual signals (similar to arrow K in Figure 11) for actuators to move the white 

triangle on top (in three dimensions) or simply within the cell (in the two-dimensional simulation) of the black block 

which is indeed near a white cylinder. Then a new cognitive cycle repeats again, finally processing again the actual 

sensory inputs streaming into the architecture. 

 This again, further supports the thesis of this paper that with small biologically evolutionarily plausible changes 

from the previous architecture CCA5, compositional language comprehension and behavior emerge in this new 

CCA6 cognitive architecture. 
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Figure. 13. Intermediate results for the instruction “Place the white triangle on top of the black block which is near a white 

cylinder.”  (Navigation map from the Navigation Module A, similar to what is seen in Figure 11, albeit with different contents.) 

 

4.6 Evidence Supporting the CCA6’s Compositional Abilities: Comparative Evidence 

At the time of this writing, neural network large language models (LLM) have started demonstrating human-like 

responses to many problems. Brown and colleagues (2020) describe the history of pre-trained language representations 

in natural language processing AI systems, with the recent use of transformer language models (Vaswani et al., 2017). 

Brown and colleagues note that as the capacity of transformer language models have increased, so have their abilities 

in text synthesis. For example, they describe a 175 billion parameter autoregressive language model named GPT-3 

created by their company OpenAI with strong performance on various natural language processing (NLP) tasks. 

Versions of this large language model were enhanced with further transfer learning and increased conversational 

abilities via both supervised learning and reinforcement learning. The version named ChatGPT was released by the 

company OpenAI in November 2022 (OpenAI, 2023). 

Soon after the release of ChatGPT, Kung and coworkers (2022) showed that this large language model, without 

any extra specialized training, could actually perform at or near the threshold for passing of the full United States 

Medical Licensing Exam. This multi-part examination is required to become licensed as a physician in many states in 

the USA. The third part of the examination is taken by candidates who have already graduated from medical school. 



It includes complex clinical data and somewhat ambiguous clinical scenarios that can be challenging for graduated 

physicians. 

The compositionality problem given above in Figure 1 and used in the demonstration example of the CCA6 

operation above, was as best as possible identically presented to the ChatGPT large language model. The online, 

readily available version of ChatGPT was used on June 4, 2023 (OpenAI, 2023). The instruction given to ChatGPT is 

shown in Figure 14 as is the response of ChatGPT. Although ChatGPT was able to perform successfully on the 

complex United States medical licensing exams, note that it was not able to compositionally solve the instruction of 

Figure 1 correctly. The question was re-submitted to ChatGPT multiple times since there is a randomness involved in 

how the answer is arrived at. Only on the ninth try did ChatGPT give a response with the triangle correctly on the 

right-hand black block.  

    It should be noted that these results are not expected to remain static. The exact same problem was tried again on 

June 6, 2023, with similar poor results by ChatGPT. However, there may eventually be training by ChatGPT on the 

submitted problem, and in the future ChatGPT may be able to solve it properly. As well, LLM’s are continually 

improving. For example, chain of thought and tree of thought automatic re-prompting of LLM’s can give dramatic 

performance improvements (Yao et al., 2023). However, at the time of writing (June 4 and June 6, 2023), the basic 

compositional abilities which are now part of the Causal Cognitive Architecture, do not, in this simple trial, appear to 

be present in ChatGPT, an LLM which was able to pass the United States medical licensing examinations. 

 

 

 
Figure. 14. The compositionality problem given by Figure 1 is presented to ChatGPT (OpenAI, 2023).  Results of first trial. 

(June 4, 2023; the symbol of person represents the instructions presented to ChatGPT; the swirling symbol is a logo of the 

company OpenAI (reproduced in compliance with usage terms), and represents the response from ChatGPT) 

 

 

 

5.  Discussion 
 

5.1 Comparison of the CCA6 with Other Cognitive Architectures 

 

    Cognitive architectures can be thought of as computational models of cognitive phenomena. As Varma (2014) 

describes, each field of science attempts to create a unified theory of its phenomena, with cognitive architectures 

attempting to provide such an account of phenomena in cognitive science.  

    A large number of cognitive architectures have been presented over the years (Samsonovich, 2010; Kotseruba and 

Tsotsos, 2020). It is beyond the scope of this paper and section to compare the presented CCA6 architecture 

individually against the vast array of cognitive architectures proposed and developed in the past. However, it is useful 



to consider the work of Laird, Lebiere and Rosenbloom (2017) who have proposed a standard model of the mind 

(Figure 15).  In keeping with Varma (2014) this model is essentially a unification of the many cognitive architectures 

which attempt to model the mind, just as the well-known standard model in physics attempts to unify phenomena from 

that field. Figure 15 is a simple depiction of this standard model of the mind, and indeed appears general enough to 

accommodate most cognitive architectures listed in Samsonovich (2010) or Kotseruba and Tsotsos (2020). However, 

despite this very generic model, it does not reasonably capture the core elements of the CCA6 presented above. 

    Unlike the standard model of the mind, in the CCA6, procedural long-term memory can actually be kept in the same 

navigation maps as the declarative long-term memory.  Often the Working Memory, i.e., the Navigation Module is 

involved directly, as per the standard model of the mind, but it does not have to be—operations can actually be 

performed on cells in many navigation maps by primitives in those and other navigation maps simultaneously without 

the direct involvement of the Navigation Module.  

    Other core features of the Causal Cognitive Architecture 6 (CCA6) are somewhat different than many other 

cognitive architectures, again as reflected by the standard model of the mind. For example, the CCA6 is specifically 

defined by the binding of data onto navigation maps which are then bound along with temporal features onto further 

navigation maps. For example, the ability of the CCA6 to feed back intermediate results of navigation maps and obtain 

cause-and-effect results as well as analogous inductive inference from this process, is somewhat novel compared to 

other described cognitive architectures. 

 

 

 

 
Figure. 15. Overview of the Structure of the Standard Model of the Mind 

 

 

 

5.2 A Plausible Evolutionary Path for the Emergence of Language in Humans 

 

     Despite the relatively small genetic differences between chimpanzees and humans (e.g., Analysis Consortium, 

2005), humans are capable of full compositional language usage, while chimpanzees are not (e.g., Oña, Sandler, 

Liebal, 2019). Of interest, the Causal Cognitive Architecture 6 suggests a plausible evolutionary path requiring a 

relatively modest number of genetic changes for the relatively quick emergence of compositional language in humans 

from chimpanzee-human last common ancestors. (“Chimpanzee” is used here as shorthand for Pan, i.e., chimpanzees 

and bonobos.) 
     As noted above, the Causal Cognitive Architecture is brain inspired. It treats the cortical minicolumns in the 

mammalian brain as navigation maps and considers the behavior of a system made up of millions of these navigation 

maps, and the plausible evolutionary paths in such a model. In earlier versions of this type of architecture (Schneider, 

2022b) it was noted that a very simple primitive (i.e., procedure) could be used to read back and to communicate 

navigation maps to other agents. In this paper, given a number of modest architectural changes and the expansion of 

the instinctive primitives, there is the ready emergence of compositional language comprehension.  

    The hardware engineer would find the architecture of the Causal Cognitive Architecture strange—for example, it 

seems inefficient to feed back the intermediate results of the Navigation Module in some contorted fashion and store 

these results in the input sensory circuits (e.g., Schneider, 2022a). Why not instead create some temporary storage 

registers? It is because although the Causal Cognitive Architecture is functionalist in many aspects, it is reasonably 

constrained by biology where this is considered relevant. From an evolutionary point of view, it requires fewer genetic 

modifications to simply enhance the existing ubiquitous feedback circuits and store the intermediate results in the 

upstream module. In the next cognitive cycle these temporarily stored results are in fact swept downstream and 

automatically processed again in the Navigation Module, as discussed above and in the literature. 



Once the advantageous nature of being able to re-operate on the intermediate results became established, it is 

reasonable to hypothesize that it became evolutionarily more likely to genetically further allow other gene duplications 

and modifications to create some neural circuits acting as temporary memory registers, as in fact, were required for 

the analogical reasoning proposed in the CCA5 architecture (Schneider, 2023). These temporary registers are reflected 

by the “TempMap” register in the Navigation Module (Figures 2, 3). 

Architectural changes in the proposed CCA6 architecture of this paper are all biologically constrained as well. Once 

the usefulness of reading back navigation maps (e.g., the primitive (i.e., procedure) mentioned above 

navigation_map_to_proto_language()) to allow simple communication between agents using a Causal 

Cognitive Architecture model occurs (most likely occurring already in the chimpanzee-human last common ancestor 

capable of hand gesture communication, e.g., Taglialatela and colleagues, 2008), it is hypothesized that it became 

evolutionarily more likely to further allow gene duplication and modification of the Navigation Module to a 

Navigation Module B (Figure 3) allowing more efficient reading back and comprehension of navigation maps, i.e., 

the development of compositional language. 

As noted above, the emergence of the second Navigation Module B is inspired by the ability of human and non-

human primate brains to handle communications in a more expressive fashion. As mentioned, it seems reasonable to 

assume that in a chimpanzee-human last common ancestor the left Broca’s area of the brain was already being used 

for hand gesture communications, as Taglialatela et al. (2008) note now occurs in chimpanzees. Also, numerous 

genetic and developmental mechanisms have been proposed for mechanisms of how brain circuits can duplicate and 

diverge to new functions (e.g., Rakic, 2009, e.g., Chakraborty and Jarvis, 2015). As well, similarities in the auditory-

vocal cortical connectivity in non-human primates and humans (Aboitiz, 2018) support the duplication of the 

Navigation Module to include a Navigation Module B in non-human primates, i.e., before humans emerged. 

Leading up to the point of the of the chimpanzee-human last common ancestor, given hypothesized navigation 

maps-like structures (i.e., the cortical minicolumns), it is a small step to evolve to read back these navigation map-like 

structures, and produce a simple proto-language. Observations of extant chimpanzees’ left Broca’s area of the brain 

being used for hand gestures and other simple muscle-controlled communication, supports a simple proto-language 

as this time. As well, as noted above, similarities in the auditory-vocal cortical connectivity supports a language area 

for comprehension starting to have emerged, akin to the duplication of the Navigation Modules in the CCA6 model. 

Changes in the ubiquitous feedback circuits in the brain are postulated in Schneider (2023) to have allowed causal 

abilities and inductive analogical reasoning to emerge from the chimpanzee-human last common ancestor as it did in 

the Causal Cognitive Architecture (as well as to have allowed the development of more frequent psychoses in humans 

(Schneider, 2020)). These same changes, which would not have required extensive modification in the genetic code, 

are required for the mechanisms of the newer compositionality/language instinctive primitives presented in the current 

paper above. These instinctive primitives could have easily emerged from duplications or modifications of other 

primitives that already existed with respect to parsing navigation over landscapes and the physics of objects in the 

environment. 

The result, it is hypothesized, is that much as language and compositionality emerged in the development of the 

Causal Cognitive Architecture, the mammalian and primate brain which the architecture is essentially inspired by, 

similarly could have easily emerged a proto-language and then over no more than a few million years of evolution, a 

full compositional language ability. 

It is important to emphasize that work on the Causal Cognitive Architecture was not initiated from the viewpoint 

of linguistic goals. Full consideration of the evolution of language is beyond the scope of this paper. However, as 

noted above, compositional language abilities seem to readily emerge from the architecture. Given the biological 

constraints on the development and operation of the architecture, the model gives a possible plausible evolutionary 

route for the development of human language in a relatively short evolutionary timescale. 

 

 

5.3 Another Pathway to Real World Artificial Intelligence 

 

    In keeping with the BICA Challenge (Samsonovich, 2012), research of biologically inspired architectures can allow 

cognitive modeling as well as help to create better future AI systems. 

    Since the architecture presented here is loosely modeled on the mammalian and the human brain at the mesoscopic 

scale, it provides a possible brain-inspired pathway towards real world AI. The grounding problem (e.g., Harnad, 

1990; Barsalou, 2020) is more than a philosophical problem (e.g., a person with no knowledge of language A trying 

to learn language A from an A–to–A dictionary) but becomes an engineering problem in creating capable AI systems. 



Fuller grounding allows an AI system to better ascribe meaning to internal representations, allowing better solutions 

to some problems. The Causal Cognitive Architecture, including the CCA6, implements full grounding (Schneider, 

2023), in contrast to many current popular deep learning AI systems, including large language models, which do not. 

    Analogical reasoning can be extremely powerful in solving a host of problems, including many day-to-day ones. 

Analogical reasoning may in fact be at the core of human cognition (Hofstadter, 2001). While various arrangements 

of deep learning systems, including large language models, do have various levels of analogical reasoning, the 

emergent core analogical reasoning of the Causal Cognitive Architecture (Schneider, 2023) in combination with a 

future rich set of instinctive and learned primitives, may prove to yield a robust, human-like reasoning about the world. 

    As shown in this paper, compositionality emerges with the architectural changes in the CCA6. This compositional 

ability allows the very simple simulation of the architecture to solve problems such as moving the white triangle onto 

the black block (Figure 1), while vastly more capable AI systems such as the large language model ChatGPT did not 

succeed in the examples above. While such large language models (LLMs) may eventually replicate most aspects of 

human intelligence, doing so in the near future may require somewhat roundabout techniques. For example, the 

Winograd Schema Challenge (pairs of sentences with referential ambiguities) was difficult for AI systems, particularly 

statistical methods, while being fairly easy for humans (Levesque, Davis, Morgenstern, 2012; Davis, Marcus, 2015). 

Nonetheless, the LLM GPT-3 (related to ChatGPT) was able to approach the level of human performance on this 

challenge (Brown et al., 2020). However, the success of the LLMs on this test may be via biases in the datasets and 

“knowledge leakage” from LLM training data, rather than through human-like commonsense reasoning (Sakaguchi 

et al., 2021; Kocijan et al., 2023). As Davis and Marcus essentially wrote in 2015 and Kocijan and colleagues write 

again in 2023, “the problem of commonsense reasoning still stands as one of the major challenges facing AI.” 

    The purpose of the simulation of the architecture presented in this paper, at this point, is largely conceptual, i.e., to 

show that the operation of the architecture is feasible. In contrast, current large language models are massive 

engineering achievements yielding aspects of human level intelligence (e.g., Kung et al., 2022; Bubeck et al., 2023). 

It is indeed somewhat premature to compare the solution of toy problems by CCA6 architecture to them. Nonetheless, 

the CCA6 architecture presented in this paper, suggests a different approach to possible AI in the future, with its own 

advantages as noted above. 

 

 

5.4 Further Work: Better Experimental Simulations 

 

     As noted earlier, at this point in its development the CCA6 architecture is not at the stage to consider operations 

on a dataset of thousands of non-toy compositional examples. Rather, the purpose of this paper is to show that with 

small biologically evolutionarily plausible changes from the previous architecture, compositional language 

comprehension and behavior emerge. This was done above with a computer simulation and a walk through of the 

mechanisms in the solution of the demonstration example of Figure 1. Then after doing so, further generalization of 

the example was considered in terms of a solution of the negated case. While the demonstration example of Figure 1 

is indeed a toy problem, the performance of the CCA6 architecture on this toy problem in fact compared favorably 

with the performance of a state of the art (at the time of writing, of course) large language model in understanding and 

solving the exact same problem shown in Figure 1. 

A priority in future work on the architecture is in fact the ability to operate and test the architecture on larger 

datasets of compositional problems. The immediate need in this area is a larger collection of instinctive primitives, 

and better usage and implementation of the learned primitive system. As well, in order for the architecture to simply 

solve a compositional problem on its own agency, it first needs to have acquired the necessary navigation maps (a sort 

of education, so to speak) to even understand what is meant by solving a compositional problem.  

It has proved tedious in constructing a default starting collection of instinctive primitives and other navigation maps 

representing experience or education. In the future work, the use of large language models (LLMs) (e.g., Bubeck et 

al., 2023) could be advantageous to rapidly simulate a large collection of navigation maps about the external world to 

be stored in the Causal Memory Module with respect to both Navigation Module A (general navigation maps) and 

Navigation Module B (navigation maps related to language and compositional phenomena). For example, the Python 

library LangChain (Topsakal and Akinci, 2023) has already been included (but not utilized) in the current CCA6 

simulation and allows direct Python access to present and future LLMs. Figure 16 shows part of the code from the 

simulation that uses an LLM to generate the raw data which can be converted into ten versions of a navigation map 

(printed out for now, two versions shown in Figure 17) for any object. As can be seen by the results, conversion of the 

LLM outputs to a useful navigation map will obviously take additional work to create more useful navigation maps, 



but can be automated. However, using the LLM as such could rapidly populate the Causal Memory Module with 

background navigation maps. 

Using a similar LLM approach to generate instinctive primitives (i.e., the basic procedures which the architecture 

defaults with) is more complex, as such navigation maps simply do not exist with any frequency in the vast corpus of 

knowledge the LLM was trained on. However, the LLM could be used generate analogous instinctive primitive 

navigation maps based on prompted instinctive primitives, and future work may reveal methods to filter a generated 

set of instinctive primitives for instinctive primitives which are useful. 

 

 

 
Figure. 16. Python code tested within the simulation of the CCA6 which uses a commercially available LLM to generate ten 

potential versions of navigation maps for various objects. Full text of variable prompt which is partially cut off in the diagram: 

“Use a 6 x 6 table to represent a scene in the world. Please populate this table with features from a  ” 

 

 

 
Figure. 17. For the object “picnic basket” from the code above, two of the ten versions of raw data that can be parsed and 

incorporated into navigation maps to be stored in the Causal Memory Module to give the architecture a store of background 

information about the external world. 

 

 

6.  Conclusion 

 

    Compositionality is an essential property for AI systems. Without compositionality, an intelligent system may need 

to see a myriad of permutations of the many situations it could encounter in order to learn them. In the area of language, 

for example, with compositionality an intelligent artificial system (or human) can understand essentially an unlimited 

number of different sentences. 



    While symbolic systems experimentally for the last half century have been able to implement compositionality, 

artificial neural network AI systems have challenges in implementing this ability. Thus, there has been much interest 

in neurosymbolic-like systems which possess both connectionist and symbolic properties. Many such architectures 

and tools exist (e.g., Kautz, 2022; Bride et al., 2021). However, such systems are usually agglomerations of different 

systems with the corresponding challenges of making them work well together. 

    The Causal Cognitive Architecture is a brain-inspired cognitive architecture (BICA) which is not a traditional 

artificial neural network architecture, nor a traditional symbolic AI system. Instead, based on the postulation that each 

mammalian cortical minicolumn represents a navigation map, the architecture uses modified neural networks as its 

fundamental circuits representing navigation maps. In this paper, the existing Causal Cognitive Architecture 5 (CCA5) 

was changed into a new architecture the Causal Cognitive Architecture 6 (CCA6). A significant change was the 

duplication of the Navigation Module.  

    The duplicated Navigation Module B was inspired by the ability of human and non-human primate brains to handle 

communications in a more sophisticated fashion than seen in other mammals. Indeed, from an evolutionary 

perspective, similarities in the auditory-vocal cortical connectivity in non-human primates and humans (Aboitiz, 2018) 

would support this hypothesis. Given the hypothesis of the previous versions of the Causal Cognitive Architecture 

that enhanced feedback pathways allowed the emergence full causal and analogical abilities in humans (e.g., 

Schneider, 2023), it seemed that this improved ability to operate on intermediate results, should allow much improved 

language abilities as well. 

    The CCA6 architecture was formalized (Appendix A) and a simple, experimental Python computer simulation was 

created. The purpose of the simulation of the architecture presented in this paper, at this point, is largely conceptual, 

i.e., to show that the operation of the architecture is feasible and that with small biologically evolutionarily-like 

plausible changes from the previous architecture, compositional language comprehension and behavior could emerge. 

Figure 7 provides a view into the mechanisms at work in the architecture in processing the sensory scene of Figure 

1 and its instruction to place the white triangle on a black block not near a white cylinder.  Cognitive cycles are cycles 

of sensory inputs being processed and producing an output (or no action or a feedback action allowing continued 

processing of temporary results in the navigation modules, as described above). Inputs of a given sensory system are 

matched against the best matching stored navigation map in that sensory system’s Input Sensory Vectors Association 

Module (Figure 7). That best matching stored navigation map is retrieved and then updated with the actual sensory 

input of that sensory system (or a new navigation map is created if there are too many changes). Predictive-like coding 

occurs—the architecture anticipates what it is sensing and then considers the differences with the actual input signal. 

Matching continues as the single-sensory navigation maps are then mapped onto a best matching multi-sensory 

navigation map taken from the Causal Memory Module (arrow D in Figure 7). The best matched navigation map from 

the Causal Memory Module is then updated with the actual sensory inputs and is copied into Navigation Module A. 

For example, in Figure 7 the sensory scene of the white triangle and other objects of Figure 1 is represented by the 

navigation map in Navigation Module A. 

The availability of a second Navigation Module B allows the instruction associated with Figure 1 (i.e., “place the 

white triangle on top of the black block which is not near a white cylinder”) to be represented here, as shown in Figure 

7. The instruction “place” in Navigation Module B triggers the parse_sentence()instinctive primitive. Whatever 

word the parse_sentence()primitive encounters, it matches against Navigation Module A. To continue the 

example, the first word encountered “place” (cell (0,0,0) of the navigation map in Navigation Module B of Figure 7) 

is matched against words in the Causal Memory Module, and recognized as an action. The action will be applied to 

the next words after it, until the primitive comes to another action word. The next words prior to the next action words 

are “the”, “white” and “triangle”. These words are found in cell (0,0,0) in the navigation map in Navigation Module 

A of Figure 7. Thus, as shown in Figure 8, the Navigation Module has written <”place”> in this cell (0,0,0) 

containing the feature white, triangle. 

The architecture continues processing the contents of Navigation Module A and Module B. By virtue of a series of 

mechanical-like operations, in this example the architecture goes through the instruction “place the white triangle on 

top of the black block which is not near a white cylinder.” In some cognitive cycles a word in the instruction may 

trigger the physics_near_object() instinctive primitive which will mark cells in a navigation map which are 

“near” a specified object. The result is that Navigation Module A becomes modified as shown in Figure 11. The 

place_object()instinctive primitive is triggered by the tag <“place”>  (Figure 11) and attempts to move and 

place an object somewhere. The tag <“place”> is most closely associated with “triangle, white”—that is the object 

that will be placed somewhere. The primitive now looks for other tagged notations such as <“top”> in the navigation 



map (Figure 11). It will see a <“not”> in the cell with the features of a black block at (2,0,0) and not consider the  

<“top”> tag in that cell . However, the cell with the features of black block at (4,0,0) has a valid tag such as <“top”>. 

The instinctive primitive place_object() now triggers the instinctive primitive move() operating on the 

Navigation Module A to move the object from cell (0,0,0) (i.e., the white triangle) to the cell (4,0,0). Thus, the white 

triangle is successfully moved to the black block on the right side—correct compositional action. 

    At a conceptual level the architecture appears to work and readily allows compositional language comprehension 

and behavior. To have solved the compositionality problem of Figure 1 the architecture had to have been capable of a 

number of tasks. The first was the ability to “understand” the language of the instruction which itself was 

compositional in nature: “place the white triangle on top of the black block which is not near a white cylinder.” Then 

the meaning of each decomposed part of the instruction had to be “understood” and correctly processed. The new 

work, i.e., the CCA6 architecture, appeared able, albeit on a limited toy problem, to do so. These compositional 

abilities are now core mechanisms of the architecture, particularly associated with Navigation Module B. Note that 

these operations essentially occur in a simple, mechanical fashion. Each step of the operation has little “understanding” 

of language. The architecture was readily able to solve the negation of this problem. Of interest, as shown above, a 

state of the art (at the time of writing) large language model was not able to correctly solve this simple demonstration 

problem. 

    It is not reasonable at this point to test the architecture on large datasets of real-world problems—a larger collection 

of instinctive primitives and a better implementation of the learned primitive system are required. As well, as 

mentioned above, in order for the architecture to simply solve a compositional problem on its own agency, it first 

needs to have a considerable education to acquire the necessary navigation maps to even understand what is meant by 

solving any sort of problem. Further work on the CCA6 was discussed in terms of using automated means such as 

LLMs to enhance the collection of instinctive primitives and enhancing the architecture’s background of experiential 

navigation maps (i.e., an education so to speak), to allow testing on larger datasets of real-world compositional 

problems. 

Compositional language abilities seem to readily emerge from the CCA6 architecture. Given the mammalian brain 

inspiration of the architecture, it suggests that it is indeed feasible for modest genetic changes from the chimpanzee-

human last common ancestor to have allowed the emergence of compositional language in humans. 

 It is, of course, somewhat incongruous to compare sophisticated engineering achievements such as LLMs or other 

AI models capable of yielding aspects of human level intelligence, with the largely conceptual CCA6 architecture. 

Nonetheless, the presented CA6 architecture does suggest another pathway towards a real-world artificial intelligence, 

albeit one inspired by the mammalian brain.  
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Appendix A 
 

    To provide a compact yet understandable and relevant description of the Causal Cognitive Architecture 6 (CCA6), 

the following formalization is provided. To allow the best continuity with the existing literature, the same 

nomenclature adopted by the previous architecture (CCA5 – Schneider, 2023) is used here again.  The architecture is 

described by a set of equations, albeit with many containing pseudocode. A pseudocode is an English (or other) 

language description of the steps a software routine follows (Kwon, 2014; Olsen, 2005). The pseudocode used in the 

equations below represents relatively small, straightforward operations. As such, the use of pseudocode allows a more 

concise description of the architecture without sacrificing much detail. 

     While the lower-level properties of the CCA6 architecture, and the corresponding equations, are similar to the prior 

CCA5 architecture, the compositional behavior and compositional language properties are new, and equations have 

been modified, as well as new equations added, where relevant. The similarities and differences between the 

architectural versions are described in the text associated with each group of equations. 

     An overview of the operations of the equations in terms of the architecture is provided with the equations. As well, 

an attempt is made to provide explanations of all symbols and all pseudocode used. Bold capitalized letters represent 

arrays. As an example, in equation (18) LNM represents an array which actually represents a navigation map. Vectors 

are represented in bolded italics (e.g., vector s in equation (9)). Many of the values change with time and thus are 

represented with the subscript t. For example, S’σ,t  (18) represents a particular array S’σ whose value changes with 

time t. Note that the equations below largely follow the operation of the architecture over one cognitive cycle. Thus, 

the subscript t-1 represents the previous cognitive cycle and similarly the subscript t+1 represents the following 

cognitive cycle. 

     Although the equations below initially follow the forward flow of the input sensory information through the 

architecture, some of the relevant backward flow of the feedback information is also considered. In any case, an 

overview is always provided describing the information an equation or set of equations is representing. 

     The formalization does not cover the complete operation of the architecture. Many details of the architecture which 

are not in the direct path of the described information flow are left out of these equations.  Thus, the equations do not 

represent, for example, the full formalization of the autonomic reflex modules, the goal/emotion module, and so on. 

Again, the reader should keep in mind that these equations represent a single cognitive cycle through the architecture 

(except for portions of the next cognitive cycle in the re-processing of intermediate results). After a cognitive cycle is 

over, then another cycle begins, and so on. These cognitive cycles occur many times each second and collectively are 

responsible for the overall behavior of the architecture. 

 

 

A.1 Input Sensory Vectors Shaping Modules 

 

In Figure 5, arrow A shows sensory inputs streaming into the Sensory Vectors Shaping Modules of the architecture. 

Sensory inputs for any sense are propagated into the architecture as a two-dimensional or three-dimensional spatial 

array of inputs. Spatial information means some sort of sensory information about a small volume of space which can 

be addressed and modeled as cell x,y,z. For example, for the visual sensory system, this spatial information would be 

visual sensory inputs (e.g., lines or no lines as a very simple example) observed at particular locations in the 

environment.  

    An array Sσ receives the sensory inputs of a sensory system σ every cognitive cycle, i.e., essentially changing with 

respect to time t (1 – 9). Vector s(t) is processed by the Input Sensory Vectors Shaping Modules (via pseudocode 

Input_Sens_Shaping_Mods.normalize(), described below in Table AA1) into vector s’(t) (10). This 

transformation ensures that each element of s’ will be compatible with the dimensions used by the navigation maps in 

many of the modules of the CCA6 (11).  

    As Table A2 shows, processed and normalized sensory system arrays S’σ,t leave this module compatible with the 

other data structures, i.e., the navigation maps, of the architecture. S’σ,t are in arrays of dimensions m x n x o x p 

corresponding to the three spatial dimensions x,y,z and a fourth non-spatial dimension p (used in implementations of 

the architecture for the storage of segmentation data, i.e., defining objects in a scene, and metadata). 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture. 

 



S1 ∈ Rm1 x n1 x o1   (1) 

S1,t = visual inputs(t)  (2) 

S2  ∈ Rm2 x n2 x o2   (3) 

S2,t = auditory inputs(t)  (4) 

S3  ∈ Rm3 x n3 x o3   (5) 

S3,t  = olfactory inputs(t)  (6) 

σ  =  sensory system identification code ∈ N (7) 

ϴ_σ =  total number of sensory systems ∈ N (8) 

s(t) = [ S1,t, S2,t, S3,t, …,  Sϴ_σ,t]  (9) 

 

s’(t) = Input_Sens_Shaping_Mods.normalize(s(t)) = [S’1,t, S’2,t, S’3,t, …,  S’ϴ_σ,t]  (10) 

 

S’σ,t  ∈ Rm  x n x o x p  (11) 

 
S1 ∈ Rm1 x n1 x o1    -defining S1 to be an array of dimensions m1 x n1 x o1 

-the form of our data structures is important; as will be seen below, most of the architecture 

utilizes a ‘navigation map’ data structure, i.e., arrays, of size m  x n x o x p   

-as noted in the text above, an array Sσ receives the sensory inputs of a sensory system σ every 

cognitive cycle; in this case array S1 receives the sensory inputs of sensory system 1, which are 

the visual sensory inputs 

S1,t  an array holding visual sensory inputs, which change with time 

S2,t an array holding auditory sensory inputs, which change with time 

S3,t -an array holding olfactory sensory inputs, which change with time 

-for simplification implementing the olfactory sensory inputs similar to other sensory system, 

although this does not reflect actual mammalian neurophysiology 

σ =1 for visual, =2 for auditory, =3 for olfactory, other senses not used at present 

ϴ_σ total sensory systems which above would be 3 for the current simulation 

s(t) a vector holding all the sensory input arrays 

Input_Sens_Shaping

_Mods.normalize() 

normalizes the sensory input arrays to the same dimensions used by the other navigation maps 

in the architecture 

s’(t) a vector holding all the normalized sensory input arrays, each now with dimensions m x n x o x 

p (which in the simulation in the paper are implemented as 6 x 6 x 6, corresponding to x,y,z axes 

of 6 x 6 x 6, and another dimension used for object segmentation data x 16) 

S’σ,t normalized array (compatible with navigation maps in the other modules of the architecture) of 

sensory inputs of sensory system σ (which change with time) 

Table A1. Explanation of Symbols and Pseudocode in Equations (1) – (11) 

 

Input:  sensory inputs from sensory systems 1…ϴ_σ 

Output: s’(t) -- a vector holding all the normalized sensory input arrays S’1,t … S’ϴ_σ,t 

Description: -Raw sensory inputs from the environment are normalized into a format compatible with navigation 

map data structure used by the other modules of the architecture. 

-The current simulation of the architecture includes an experimental environment simulation module 

(i.e., simulates the sensory inputs). 

Table A2. Summary of the Operations of the Input Sensory Vectors Shaping Modules per Equations (1) – (11) 

 

 

 



 

 

 

Figure 5 REPRODUCED FOR APPENDIX. A Cognitive Cycle in the CCA6 Architecture. Sensory inputs are processed by 

the various modules (described in text). The operation of the best matched instinctive primitive (circle H) on the Working 

Navigation Map (circle G) produces an output signal to the Output Vector Association Module A (arrow I) and then to the Output 

Vector Shaping Module (arrow J) and then an output to the external world which can activate an actuator or transmit an 

electronic signal. Then another cognitive cycle starts.   

Arrow A – sensory inputs into the Input Sensory Vectors Shaping Modules 

Arrow B – to the Input Sensory Vectors Association Modules 

Arrow C – to the Object Gateway Modules 

Arrow D – to the Causal Memory Module 

Arrow E – best matched navigation map (“Working Navigation Map”) to the Navigation Module A 

Arrow F – best matched instinctive primitive to the Navigation Module A 

Circle G – Working Navigation Map 

Circle H – best matched instinctive primitive 

Arrow I – to the Output Vector Association Module A 

Arrow J – to the Output Vector Shaping Module 

Arrow K – outputs to the external world (actuator, electronic communication signal))  

Arrow L – instinctive primitives relating to compositionality and language tend to be applied to Navigation Module B 

Arrow M – learned primitives relating to compositionality and language tend to be applied to Navigation Module B 

 

 

 

A.2 The Input Sensory Vectors Association Modules 

 

 In Figure 5, arrow B shows normalized sensory inputs for each sensory system from the Input Sensory Vectors 

Shaping Modules to the Input Sensory Vectors Association Modules. The normalized sensory input arrays S’1,t … 

S’ϴ_σ,t are fed into corresponding modules (one module for each sensory system) of the Input Sensory Vectors 



Association Modules. Each module will map the sensory inputs it is receiving into a navigation map. This navigation 

map is called a “local navigation map” LNM(σ,mapno)  (i.e., local navigation map LNM with address mapno in sensory 

system σ) (14). Each cell in three spatial dimensions in LNM(σ, mapno) can represent the full contents of each cell, i.e., 

all the features, procedures, and link addresses associated with a cell. As (14) shows there is also a non-spatial 

dimension p which is used in implementations to store various non-spatial information. 

    all_mapsσ,t is a vector holding all the local navigation maps in the σ sensory system Input Sensory Vectors 

Association Module (15). For example, all_maps1,t represents all the stored local navigation maps in the visual Input 

Sensory Vectors Association Module (which as noted above is σ = 1). 

 As noted above S’1,t is an array of the visual processed inputs (i.e., σ = 1). S’2,t are the auditory processed inputs 

since σ = 2, and so on. The visual processed inputs S’1,t should be matched against all_maps1,t , i.e., against all the 

other visual local navigation maps stored in the visual Input Sensory Vectors Association Module. The auditory, 

olfactory and any other sensory inputs should be matched against the respective local area maps stored in a particular 

Input Sensory Vectors Association Module. 

 In (18) Input_Assocn_Modσ.match_best_local_navmap is pseudocode that matches an incoming 

sensory array σ  (e.g., if σ=1 then S’1,t is an array of the visual processed inputs) against the respective stored local 

navigation maps  all_mapsσ,t  (e.g., if σ=1 then all_maps1,t holds all the stored local navigation maps in the visual Input 

Sensory Vectors Association Module). LNM(σ, ϓ ,t) represents the local navigation map LNM in sensory system σ  with 

a mapno of ϓ which is the best match of S’σ,t. For example, if sensory inputs array S’1,t  best matches to mapno 3456 

(as an example) in the local navigation maps stored in the visual Input Sensory Vectors Association Module, then 

LNM(1, ϓ ,t) would be local navigation map 3456 in the visual Input Sensory Vectors Association Module. 

    Above it was noted that the Causal Cognitive Architecture 6 (CCA6) heavily makes use of feedback pathways—

states of a downstream module can influence the recognition and processing of more upstream sensory inputs. Thus, 

the previous cognitive cycle’s Working Navigation Map WNM’t-1 (the navigation map in the Navigation Module A 

in Figure 5) and on which the Navigation Module A can perform operations on) is used in the pseudocode method 

(18) in deciding which is a best match. 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture, although 

there is the allowance of multiple navigation modules in performing operations. 

 

mapno  =  map identification code ∈ N (12) 

ϴ =  total number of used local navigation maps in a sensory system σ  ∈ N (13) 

 

LNM(σ,mapno)  ∈ Rmxnxoxp  (14) 

all_mapsσ,t = [LNM(σ,1,t), LNM(σ,2,t), LNM(σ,3,t), …, LNM(σ, ϴ, t)] (15) 

 

ϓ  = map number of best matching map in a given set of navigation maps ∈ mapno   (16) 

 

WNM’ =  ∈ Rmxnxoxp   (17 and defined again below)  
 

LNM(σ, ϓ ,t) = Input_Assocn_Modσ.match_best_local_navmap( S’σ,t, all_mapsσ,t, WNM’t-1)  (18) 

 

 
LNM(σ,mapno) 

a LNM or “local navigation map” which is a navigation map (i.e., an array of x,y,z dimensions m x n 

x o, which in the simulation in the paper are 6 x 6 x 6, corresponding to x,y,z axes of 6 x 6 x 6) that 

is held in the Input Sensory Vectors Association Module σ (e.g., if σ = 1, then that would be the 

module receiving the visual sensory inputs) and is map number mapno (there may be millions of 

other local navigation maps stored in that Input Sensory Vectors Association Module σ)  

all_mapsσ,t a vector holding all the LNMs in module σ (i.e., starting with the first LNM and going to the last 

utilized LNMϴ) 

e.g., all_maps1,t would be all the LNMs in the Input Sensory Vectors Association Module 1 which are 

all the local navigation maps created and stored from the visual sensory inputs 



-there are new sensory inputs each cognitive cycle, and thus new local navigation maps will be 

produced, and thus there is a t subscript representing a change with time 

WNM’ a WNM is a “Working Navigation Map” 

it is a navigation map which for the moment is in the Navigation Module (Figure 5) and on which the 

Navigation Module can perform operations on  

As will defined below, operations can be performed by Navigation Module A or Navigation Module 

B, where are referred to as ‘Navigation Module’ in this section 

Input_Assocn_Mo

dσ.match_best_l

ocal_navmap(S’σ,t, 

all_mapsσ,t, WNM’t-1)   

pseudocode for an algorithm which will match the σ sensory inputs (e.g., if σ = 1 then it would be 

visual sensory inputs) against all the local navigation maps stored in the σ module of the Input Sensory 

Vectors Association Modules (Figure 5) and returns the best matched local navigation map LNM for 

that sensory module 

-note that the results of the Navigation Module in the previous cycle as represented by previous 

cognitive cycle’s Working Navigation Map WNM’t-1 are considered in the determining the best match  

ϓ represents a map number of a navigation map in an Input Sensory Vectors Association Module 

LNM(σ, ϓ ,t) the local navigation map LNM stored in the Input Sensory Vectors Association Module σ with map 

number ϓ which best matches in the incoming σ sensory inputs (e.g., if σ = 1 then it would be visual 

sensory inputs) 

e.g. if the visual sensory inputs best match the local navigation map #3456 in the visual module of the 

Input Sensory Vectors Association Modules, then at that moment LNM(1, ϓ ,t) would be navigation map 

#3456 in the visual module 

Table A3. Explanation of Symbols and Pseudocode in Equations (12) – (18) 

 

 

 

At this point, in every sensory module in the Input Sensory Vectors Association Modules (Figure 5), there is a best 

matching LNM(σ, ϓ ,t) (“local navigation map” since these navigation maps are stored locally in the sensory module 

rather than being stored in the Causal Memory Module attached to the Navigation Module, as seen in Figure 5). The 

next operation is to update the best matching local navigation map LNM(σ, ϓ ,t) with the actual sensory inputs S’σ,t
  (21), 

creating an updated best matching navigation map LNM’(σ, ϓ ,t)  which is renamed (for simulation compatibility issues) 

to LNM(σ, ϓ ,t)  again. 

If too many differences exist between the actual sensory inputs S’σ,t
  and the best matching navigation map 

LNM(σ,ϓ,t), then instead of updating the matched navigation map LNM(σ, ϓ ,t), a new local navigation map 

LNM(σ,new_map,t)  is created and updated with the actual sensory inputs S’σ,t
  forming an updated best matching 

navigation map LNM’(σ, ϓ ,t)  (22), which is renamed (for simulation compatibility issues) to LNM(σ, ϓ ,t)  again. 

In each sensory system Input Sensory Vectors Association Module the updated local navigation map (or newly 

created and updated one) is stored in the Input Sensory Vectors Association Module σ, and in future cognitive cycles, 

sensory inputs will be matched against it and the other local navigation maps stored there. 

Vector lnmt represents the best-matching and updated local navigation maps LNM(σ, ϓ, t ) of all the different sensory 

modules of the Input Sensory Vectors Association Modules (23). 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture, although 

there is the allowance of multiple navigation modules in performing operations. 

 

 

h = number of differences allowed to be copied onto existing map ∈ R   (19) 

 

new_map = map number of new local navigation map added to current sensory system σ ∈ mapno   (20) 

 

 

   | Input_Assocn_Modσ.differences (S’σ,t , LNM(σ, ϓ ,t)) |  ≤h , 

 ⇒ LNM(σ, ϓ ,t) = LNM’(σ, ϓ ,t) = LNM(σ, ϓ ,t) ∪ S’σ,t
   (21) 

 

| Input_Assocn_Modσ.differences (S’σ,t , LNM(σ, ϓ ,t)) | > h , 

 ⇒ LNM(σ, ϓ ,t) = LNM’(σ, ϓ ,t) = LNM(σ, new_map,t) ∪ S’σ,t
   (22) 



lnmt = [LNM(1, ϓ ,t), LNM(2, ϓ ,t), LNM(3, ϓ ,t), …,  LNM(ϴ_σ, ϓ ,t)]  (23) 

 

 
h the number of differences allowed to be copied onto existing map – if there are too many 

differences between the best matching local navigation map retrieved from the  sensory system’s 

Input Sensory Vectors Association Module and the actual input sensory signal (i.e., S’σ,t
   ) then 

rather than copying the information from input sensory array onto the best matching local 

navigation map, and simply makes S’σ,t
   into a new local navigation map 

new_map the mapno of an empty local navigation map in a sensory system’s Input Sensory Vectors 

Association Module used when making S’σ,t
   into a new local navigation map 

Input_Assocn_Modσ

.differences 
-pseudocode for an algorithm that calculates the differences between two navigation maps 

-used in (21) and (22) to calculate the differences between the input sensory signal S’σ,t and the 

retrieved best matching local navigation map LNM(σ, ϓ ,t) 

LNM(σ, ϓ ,t) ∪ S’σ,t
    

→ LNM’ → LNM 

update LNM(σ, ϓ ,t) with any new information in input sensory signal S’σ,t
   (i.e., copy S’σ,t

   onto 

LNM(σ, ϓ ,t) ) thereby creating an updated LNM’(σ, ϓ ,t) 

(for simulation compatibility issues renaming LNM’(σ, ϓ ,t)   to LNM(σ, ϓ ,t)  again) 

LNM(σ,new_map,t)∪ S’σ,t
   

→ LNM’ → LNM 

 copy S’σ,t
   onto an empty LNM(σ, new_map ,t) thereby creating an updated LNM’(σ, ϓ ,t) 

(for simulation compatibility issues  renaming LNM’(σ, ϓ ,t)   to LNM(σ, ϓ ,t)  again) 

lnmt i.e., a vector holding  [LNM(1, ϓ ,t), LNM(2, ϓ ,t), LNM(3, ϓ ,t), …,  LNM(ϴ_σ, ϓ ,t)]  -- the local 

navigation maps LNM of each sensory system which best matches the corresponding sensory 

input array S’σ,t and then are updated to LNM’ with the actual sensory information conveyed by 

S’σ,t  (for simulation compatibility issues  renaming LNM’(σ, ϓ ,t)   to LNM(σ, ϓ ,t)  again) 

Table A4. Explanation of Symbols and Pseudocode in Equations (19) – (23) 

 

 

Input:  s’(t) -- a vector holding all the normalized sensory input arrays S’1,t … S’ϴ_σ,t 

Output: lnmt = [LNM(1, ϓ ,t), LNM(2, ϓ ,t), LNM(3, ϓ ,t), …,  LNM(ϴ_σ, ϓ ,t)]   

The local navigation maps LNM of each sensory system which best match the corresponding 

sensory input array S’σ,t , and then are updated to LNM’ with the actual sensory information 

conveyed by S’σ,t  (for simulation compatibility issues renaming LNM’(σ, ϓ ,t)   to LNM(σ, ϓ ,t)  again) 

Description: -The normalized sensory input arrays are best matched with stored navigation maps in each sensory 

system (called a local navigation map LNM). 

-The best matched LNMs in each sensory system are then updated with the actual sensory 

information from the sensory input for that sensory system. 

-The updated best matched LNM is stored locally in that Input Sensory Vectors Shaping Module 

for matching against future sensory inputs. 

-The updated best matched LNM is output from this module; the best matched LNMs from each 

Input Sensory Vectors Shaping Module together make up vector lnmt –the effective output. 

Table A5. Summary of the Operation of the Input Sensory Vectors Associations Modules per Equations (12) – (23) 

 

A.3 Data Structures in the CCA6 

 

This section reviews a number of data structures used in the CCA6 architecture, most of them being compatible 

with the navigation map data structure. Equation (14) defines the local navigation map LNM as an array of four (or 

more) dimensions. There are three spatial dimensions (m,n,o in the definition representing x,y,z) as well as an extra 

dimension p for non-spatial information such storing which features belong to which objects, for storing meta-data, 

and so on.  

Local navigation maps (i.e., stored locally in each sensory Input Sensory Vectors Association Module) were defined 

above in (14). Multisensory navigation maps NM, instinctive primitive navigation maps IPM, and learned primitive 

navigation maps LPM are similarly defined in (24). The multisensory navigation maps NM are stored in the Causal 

Memory Module (Figure 5) and contain visual, auditory, olfactory, etc. sensory features unlike the local navigation 

maps which have features from only one sensory system. The instinctive primitive navigation maps IPM and the 



learned primitive navigation maps LPM have the same dimensional structure as other navigation maps, but they 

contain largely only procedures to perform on other navigation maps. 

Equation (26) defines all_LNMst as holding all the local navigation maps LNM in all the different Input Sensory 

Vectors Association Modules. Recall from above that all_mapsσ,t holds all the local navigation maps LNM within a 

given Input Sensory Vectors Association Module. In (27) all_NMst are defined as holding all the multisensory 

navigation maps NM in the Causal Memory Module (Figure 5). In (28) all_IPMst are defined as holding all the 

instinctive primitive navigation maps IPM (or “instinctive primitives”—the procedures that are included with the 

architecture) in the Instinctive Primitives Module (Figure 5). In (29) all_LPMst are defined as holding all the learned 

primitive navigation maps LPM (or “learned primitives”—the procedures that are learned by the architecture) in the 

Learned Primitives Module (Figure 5). And in (30) all_navmapst are defined as holding all of these preceding 

navigation maps, i.e., [all_LNMst, all_NMst, all_IPMst, all_LPMst] . (The vector all_navmapst does not hold the 

entirety of navigation maps in the CCA6 architecture as there are a number of other specialized navigation maps, 

particularly in the Sequential/Error Correcting Module.) 

In (31–33) an addressing protocol is defined to address any particular cell within any particular navigation map 

within all_navmapst . For example, χmodcode=*Causal_Memory_Mod*, mapno=3456,x=2,y=3,z=4 is cell x=2,y=3,z=4 in map number 

3456 in the Causal Memory Module. 

In (34) a “feature” is defined as some arbitrary real number representing a feature modality and value. For example, 

feature3,(χmodcode=*Causal_Memory_Mod*, mapno=3456, x=2,y=3,z=4) would be feature number 3 in the cell x=2,y=3,z=4 in map 

number 3456 in the Causal Memory Module. Its value, for example, could represent a visual line. In (35) similarly a 

“procedure” is defined as some arbitrary real number representing a procedure modality and value. For example, 

procedure3,(χmodcode=*Causal_Memory_Mod*, mapno=3456, x=2,y=3,z=4) would be procedure number 3 in the cell x=2,y=3,z=4 in map 

number 3456 in the Causal Memory Module. Its value, for example, could represent a procedure (and required sub-

procedures too; the value can have an unlimited number of digits) to move forward. In (36) a linkaddress is defined 

as χ’, i.e., pointing to χ’ which is some cell location in some navigation map in the architecture. The linkaddress 

provides a link between one cell in one map to another cell, possibly in the same map but often in a different navigation 

map. (Note: For stylistic reasons, in some places in the text “features” may be written which should be taken as the 

same variable as “feature”.) 

 In (38) the equation defines cellfeaturesχ,t as all the features within a given cell χ . In (39) the equation defines 

cellproceduresχ,t as all the procedures within a given cell χ . In (40) the equation defines linkaddressesχ,t as all the 

linkaddresses within a given cell χ. In (41) the equation defines cellvaluesχ as all the values—the features, the 

procedures, the link addresses—held by a cell of a navigation map at location χ. The numbers in each cell can represent 

any collection of low-level sensory features, higher-level sensory features, procedures, and links. 

 As shown above, all_navmaps represents all the navigation maps in the architecture. In (41) it is seen that the value 

of a cell in one of the navigation maps in all_navmaps are its cellvaluesχ,t , i.e., the features, the procedures and the 

linkaddresses that the cell contains. Equation (42) shows that the pseudocode link(χ,t) will return all the links that a 

cell at address χ contains. 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture. 

 

  

NMmapno  ∈ Rmxnxoxp, IPMmapno ∈ Rmxnxoxp, LPMmapno ∈ Rmxnxoxp   (24) 

 

ϴ_NM = total used NM’s ∈ N,  ϴ_IPM = total used IPM’s ∈ N,  ϴ_LPM = total used LPM’s ∈ N (25) 



all_LNMst = [all_maps1,t, all_maps2,t, all_maps3,t, …, all_mapsϴ_σ,t]  (26) 

all_NMst = [NM1,t, NM2,t, NM3,t, …, NMϴ_NM,t]  (27) 

all_IPMst = [IPM1,t, IPM2,t, IPM3,t, …, IPMϴ_IPM,t]  (28) 

all_LPMst = [LPM1,t, LPM2,t, LPM3,t, …, LPMϴ_LPM,t]  (29) 

all_navmapst = [all_LNMst, all_NMst, all_IPMst, all_LPMst]  (30) 

modcode = module identification code ∈ N (31) 

mapcode = [modcode, mapno] (32) 

χ = [mapcode, x, y, z] (33) 

feature ∈ R (34) 

procedure ∈ R (35) 

linkaddress χ’ ∈ χ (36) 

 

Ф_feature = last feature contained by a cell, Ф_procedure = last procedure contained by a cell, 

 Ф_χ = last χ (i.e., address) contained by a cell (37) 

cellfeaturesχ,t = [feature1,t,  feature2,t,   feature3,t, …,  featureФ_feature,t]  (38) 

cellproceduresχ,t = [procedure1,t,  procedure2,t,   procedure3,t, …,  procedureФ_procedure,t]  (39) 

linkaddressesχ,t = [χ1,t, χ2,t, χ3,t, …, χФ_χ,t]  (40) 

cellvaluesχ,t =  [cellfeaturesχ,t, cellproceduresχ,t, linkaddressesχ,t]  (41) 

cellvaluesχ,t = all_navmapsχ,t (42) 

linkaddressesχ,t = link(χ,t) (43) 

 

 

 
LNM local navigation map – one sensory system maps to any local navigation map 

different set of LNMs for each sensory system 

each set of LNMs stored in that particular sensory Input Sensory Vectors Association Module 

(Figure 5) 

array structure of dimensions m,n,o,p (x,y,z and non-spatial p dimension) 

NM multisensory navigation map – different sensory system features can be written to this map 

stored in the Causal Memory Module (Figure 5) 

array structure of dimensions m,n,o,p (x,y,z and non-spatial p dimension) 

IPM -instinctive primitive navigation map – “instinctive primitive” 

-primitives are procedures to perform on cells of other navigation maps 

-primitives are navigation maps mainly filled with procedures in their cells, but they can store 

features and linkaddresses in their cells as well 

-these primitives come with the architecture 

-stored in the Instinctive Primitives Module (Figure 5) 



-array structure of dimensions m,n,o,p (x,y,z and non-spatial p dimension) 

LPM -learned primitive navigation map – “learned primitive” 

-primitives are procedures to perform on cells of other navigation maps 

-primitives are navigation maps mainly filled with procedures in their cells, but they can store 

features and linkaddresses in their cells as well 

-these primitives are learned by the architecture 

-stored in the Learned Primitives Module (Figure 5) 

-array structure of dimensions m,n,o,p (x,y,z and non-spatial p dimension) 

all_maps1 vector of all of the LNMs in σ=1, i.e., visual Input Sensory Vectors Association Module 

(note: ‘t’ which indicates changes with time has been removed here and following entries for 

simplification purposes) 

(all_maps2 i.e., σ=2, is auditory module, and so on) 

all_LNMs vector of all of the LNMs in all of the Input Sensory Vectors Association Modules 

all_NMs vector of all of the NM’s in the Causal Memory Module 

all_IPMs vector of all of the IPM’s in the Instinctive Primitives Module 

all_LPMs vector of all of the LPM’s in the Learned Primitives Module 

all_navmaps vector of all of the LNMs, NM’s, IPM’s, LPM’s in the architecture 

mapcode [module identification code, map number] 

points to a particular navigation map among all the LNMs, NM’s, IPM’s, and LPM’s in the 

architecture 

χ [mapcode, x, y, z] 

points to particular cell (x,y,z) in a particular navigation map ([module identification code, map 

number]) 

feature 

features 

arbitrary real number representing a feature modality and value within a cell χ 

(Note: For stylistic reasons, in some places the text  may write “features” which should be taken 

as the same variable as “feature”.) 

procedure arbitrary real number representing a procedure modality and value within a cell χ 

linkaddress address within a cell χ  pointing to another cell (possibly in another navigation map) χ’  

cellfeaturesχ vector of all the features within a cell χ   

cellproceduresχ vector of all the procedures within a cell χ   

linkaddressesχ vector of all the linkaddress within a cell χ   

cellvaluesχ vector of all of the features, procedures and linkaddresses within a cell χ   

all_navmapsχ vector of all of the features, procedures and linkaddresses within a cell χ   

note that the value of some cell χ in some cell in some navigation map (i.e., within the collection 

of  all_navmaps) = cellvaluesχ 

link(χ,t) pseudocode that returns all the linkaddresses within a cell χ , i.e., same value as linkaddressesχ 

Table A6. Explanation of Symbols and Pseudocode in Equations (24) – (43) 

 

 

Input:  not applicable – definitions of data structures in this section 

Output: not applicable – definitions of data structures in this section 

Description: -In this section some of the key data structures utilized by the architecture are discussed. 

-These data structures are largely based on the “navigation map” which maps spatial features (e.g., 

are there pixels representing ground at this x,y,z coordinate?), potential procedures (e.g., do 

something with the data in this or other cells of the navigation map), and link addresses (e.g., possibly 

go to the cell in possibly another navigation map specified by the link address) at a particular x,y,z 

coordinate (“cell” or “cube”). 

-The architecture in conjunction with the navigation map data structure allows a solution to the 

classical binding problem. 

Table A7. Summary of the Operation of Equations (24) – (43) 

 

 

A.4 The Sequential/Error Correcting Module 

 

    Consider the sensory inputs through the CCA6 architecture as they become temporally bound. The Sequential/Error 

Correcting Module plays a key role in temporally binding the sensory inputs. 

 Normalized sensory input arrays S’σ,t represented by s’(t) (from the output of the Input Sensory Vectors Shaping 

Modules (10, 11)) feed into the Sequential/Error Correcting Module. After processing these signals the 

Sequential/Error Correcting Module sends a “motion prediction vector” to the Navigation Module. The motion 



prediction vector allows changes in an object(s) in a navigation map to be represented much as other spatial features 

on a navigation map. 

 In (44) s’_seriest is a time series of the input sensory vector s’(t). In (45) and (46) the visual and auditory sensory 

times series are extracted from s’_seriest and stored respectively as visual_seriest and auditory_seriest. Although it is 

possible to create motion prediction vectors for all the senses, in the current simulation this is only done so for the 

visual and auditory sensory systems. 

 In (47) the pseudocode Sequential_Mod.visual_match()matches visual_seriest with visual time series 

stored in the Sequential/Error Correcting Module.  If there is a reasonable match with few differences, then the 

matched time series will be updated with the new information. If there is no close enough match, then a new times 

series will be stored in the Sequential/Error Correcting Module. A motion prediction vector  visual_motiont is then 

computed from visual time series data (47). A similar process occurs in computing the motion prediction vector 

auditory_motiont (48). These motion prediction vectors are then stored much like any spatial feature in a navigation 

map called the Vector Navigation Map VNM’’t  (50a, 50b). VNM’’t is then propagated to the Navigation Module 

complex (Figure 5). 

 In (51) the pseudocode Sequential_Mod.auditory_match_process() extracts sound patterns from 

auditory_seriest, and stores these patterns spatially in a navigation map AVNMt. Then AVNMt is propagated to the 

Navigation Module A (Figure 5). 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture, other than 

distinguishing the two Navigation Modules as mentioned in the text. 

 

 

 

s’_seriest  = [s’(t-3), s’(t-2), s’(t-1), s’(t)]  (44) 

 

visual_seriest  = Sequential_Mod.visual_inputs( s’_seriest )  (45) 

 

auditory_seriest  = Sequential_Mod.auditory_inputs( s’_seriest )  (46) 

 

visual_motiont  = Sequential_Mod.visual_match( visual_seriest )  (47) 

 

auditory_motiont  = Sequential_Mod.auditory_match( auditory_seriest ) (48) 

 

VNM ∈ Rmxnxoxp,  AVNM ∈ Rmxnxoxp  (49) 

 

VNM’t = VNMt ∪ visual_motiont   (50a) 

 

VNM’’t = VNM’t ∪ auditory_motiont   (50b) 

 

AVNMt  = Sequential_Mod.auditory_match_process( auditory_seriest )  ((51) 

 

 

In the next section it will be seen that the Object Segmentation Gateway Module (Figure 5) will segment a sensory 

scene into objects of interest. The individual objects segmented in the sensory scene, as well as the entire scene itself 

treated as one composite object, will then trigger similar navigation maps in the Causal Memory Module to be retrieved 

and moved to the Navigation Module A. For example, a visual scene of a river, a rock and a leaf floating in the river, 

might be segmented in the river object, the rock object and the leaf object. In order to obtain the motion information 

about a segmented object, each segmented object navigation map must be sent to the Sequential/Error Correcting 

Module. 

In (52) a navigation map called the Visual Segmented Navigation Map VSNM is defined. VSNMi,t-3, VSNMi,t-2, 

VSNMi,t-1, and VSNMi,t containing a visual segmented object on a navigation map at different time intervals, are sent 

from the Object Segmentation Gateway Module to the Sequential/Error Correcting Module where they are stored in 

vector visual_segmented_seriesi,t (53). There may be several VNSM’s produced for one sensory scene in the Object 

Segmentation Gateway Module, e.g., a sensory scene of a river with a rock and leaf floating in, it will produce a 

VSNM for the river, for the rock and for the leaf. Hence, the use of subscript i to refer to a particular VSNMi for the 

sensory scene in a cognitive cycle. 



The same pseudocode used in (47) is used again in (54) but this time on visual_segmented_seriesi,t and produces  

visseg_motioni,t which is a motion prediction vector for the motion information, if any, in visual_segmented_seriesi,t. 

This motion prediction vector is copied, like any spatial feature, onto the original navigation map VSNMi,t and the 

updated Visual Segmented Navigation Map VSNM’i,t is then sent back to the Object Segmentation Gateway 

Module/Navigation Module (55). 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture, other than 

distinguishing the two Navigation Modules as mentioned in the text. 

 

 

 

VSNM ∈ Rmxnxoxp  (52) 

 

visual_segmented_seriesi,t  = [VSNMi,t-3, VSNMi,t-2,VSNMi,t-1, and VSNMi,t]  (53) 

 

visseg_motioni,t  = Sequential_Mod.visual_match(visual_segmented_seriesi,t)  (54) 

 

VSNM’i,t = VSNMi,t ∪ visseg_motioni,t  (55) 

 

 

 
s’(t) -vector representing the normalized sensory input sensory arrays of the different sensory 

systems S’σ,t produced by the Input Sensory Vectors Shaping Module (Figure 5)  

-sent to both Input Sensory Vectors Association Modules and to the Sequential/Error 

Correcting Module (Figure 5) 

s’(t-1) s’(t) value in the previous cognitive cycle, i.e., t-1 

s’_seriest  a time series of s’ at time t, time t-1, time t-2 (two cognitive cycles ago) and time t-3 

= [s’(t-3), s’(t-2), s’(t-1), s’(t)]   
Sequential_Mod.visual_in

puts(s’_seriest)   

→ visual_seriest 

-pseudocode for an algorithm that extracts the visual sensory normalized inputs, i.e., S’1,t 

(σ =1 for visual system) from s’(t) 

-produces visual_seriest as its output, which essentially is [S’1,t, S’1,t-1, S’1,t-2, S’1,t-3] 

Sequential_Mod.auditory_

inputs(s’_seriest)   

→ auditory_seriest 

-pseudocode for an algorithm that extracts the auditory sensory normalized inputs, i.e., 

S’2,t (σ =2 for auditory system) from s’(t) 

-produces auditory_seriest as its output, which is [S’2,t, S’2,t-1, S’2,t-2,S’2,t-3] 

Sequential_Mod.visual_ma

tch( visual_seriest )   

→ visual_motiont 

-pseudocode for an algorithm that matches visual_seriest with visual time series stored 

in the Sequential/Error Correcting Module (Figure 5) 

-a best match is chosen (or if no matches close enough then visual_seriest used itself as 

the best match 

-the best match is then updated from visual_seriest (much in the same manner as for 

example the matching and updating of navigation maps illustrated above in Figures 4 

and 5) 

-the updated best match is stored in the Sequential/Error Correcting Module for future 

matching 

-the updated best match is then transformed into a motion prediction vector (i.e., showing 

and predicting the motion of the object) is output  as visual_motiont 
Sequential_Mod.auditory_

match(auditory_seriest) 

→ auditory_motiont 

-pseudocode for an algorithm that matches auditory_seriest with auditory time series 

stored in the Sequential/Error Correcting Module (Figure 5) 

-a best match is chosen (or if no matches close enough then auditory_seriest used itself 

as the best match 

-the best match is then updated from auditory_seriest (much in the same manner as for 

example the matching and updating of navigation maps illustrated above in Figures 4 

and 5) 

-the updated best match is stored in the Sequential/Error Correcting Module for future 

matching 

-the updated best match is then transformed into a motion prediction vector (i.e., showing 

and predicting the motion of the object) and is output  as auditory_motiont 

VNM a “Vector Navigation Map” is just another ordinary navigation map used to store the 

motion prediction vectors 



AVNM an “Audio Vector Navigation Map” is just another ordinary navigation map used to store 

more detailed motion prediction vectors about the sound patterns, useful for advanced 

analysis of sound patterns in perceiving the environment and for language 

VNMt ∪ visual_motiont 

→ VNM’t 

the visual_motiont motion prediction vector is copied to, i.e., stored, in the Vector 

Navigation Map VNM just like any other spatial feature – binding of temporal features 

as a spatial feature occurs here 

VNM’t is the updated VNM (essentially a new navigation map has visual_motiont 

copied to it) 

VNM’t ∪ auditory_motiont 

→ VNM’’t 

-the auditory_motiont motion prediction vector is copied to, i.e., stored, in the Vector 

Navigation Map VNM’ just like any other spatial feature – binding of temporal features 

as a spatial feature occurs here again 

-VNM’’t is the updated VNM’ (essentially VNM’’t is a navigation map which has 

visual_motiont and auditory_motiont copied to it – vectors respectively showing the 

previous and predicted motion of an object based on visual sensory inputs and based on 

auditory sensory inputs ) 

-(note: in the simulation at present if there are different visual_motiont and 

auditory_motiont vectors, i.e., pointing in different directions, then the better quality 

result is used as a sole result in upstream algorithms in the Navigation Module; in the 

future more sophisticated algorithms can be used to take advantage of these motion 

prediction vectors) 
Sequential_Mod.auditory_

match_process 

(auditory_seriest )   

 

→ → AVNMt 

-pseudocode for an algorithm that matches auditory_seriest with auditory time series 

stored in the Sequential/Error Correcting Module (Figure 5) 

-a best match is chosen (or if no matches close enough then auditory_seriest used itself 

as the best match 

-the best match is then updated from auditory_seriest (much in the same manner as for 

example the matching and updating of navigation maps illustrated above in Figures 4 

and 5) 

-the updated best match is stored in the Sequential/Error Correcting Module for future 

matching 

-the updated best match is then transformed into a complex advanced motion prediction 

vector (i.e., showing in more detail the pattern of the auditory sensations) and is output  

as AVNMt   (which as described above is an “Audio Vector Navigation Map”) 

VSNMi,t -a “Visual Segmentation Navigation Map” VSNM which is an ordinary navigation map 

with visually segmented information stored on it 

-the Object Segmentation Gateway Module (Figure 5) will “segment” a sensory scene 

into objects of interest (described in more detail in the following section) 

-each segmented object is treated as a separate navigation map (there is also a navigation 

map of all the objects together on the navigation map) 

-the subscript i refers to multiple VSNM’s that can be created for a given sensory scene 

-the subscript t refers to time since the values change each cognitive cycle 

-it is useful to calculate motion prediction vectors, if they exist (often they will not) for 

each segmented object (e.g., if there is a river object, a rock object and leaf floating in 

the river object, then it is very useful to segment the sensory scene into these objects 

(i.e., river, rock and leaf) and a motion prediction vector to show the motion of the leaf 

is very useful – thus there will be VSNM1,t for river, VSNM2,t for rock and VSNM3,t for 

leaf, in this example) 

-only visual motion is calculated for segmented objects (auditory motion and motion of 

other senses is not calculated in the current simulation, but could be in the future, for 

example, the motion of a radar signal in a future embodiment) 

 

visual_segmented_seriesi,t 

 

 

-a time series of the current VSNMi,t and VSNMi from one cognitive cycle ago (i.e., t-

1), two cycles ago (i.e., t-2) and three cycles ago (i.e., t-3) 

= [VSNMi,t-3, VSNMi,t-2,VSNMi,t-1, and VSNMi,t]   

-if there were three VSNM’s produced from scene (such as the example of the river with 

the rock and the leaf floating in it) then there would be three different 

visual_segmented_seriesi,t  produced, with i=1, i=2, and i=3 
Sequential_Mod.visual_ma

tch(visual_segmented_seriesi,t)   

 

→ visseg_motioni,t 

-pseudocode for an algorithm that matches visual_segmented_seriesi,t  with visual time 

series stored in the Sequential/Error Correcting Module (Figure 5) 

-a best match is chosen (or if no matches close enough then visual_segmented_seriesi,t  

is used itself as the best match 



-the best match is then updated from visual_segmented_seriesi,t (much in the same 

manner as for example the matching and updating of navigation maps illustrated above 

in Figures 4 and 5) 

-the updated best match is stored in the Sequential/Error Correcting Module for future 

matching 

-the updated best match is then transformed into a motion prediction vector (i.e., showing 

and predicting the motion of the object) and is output  as visseg_motioni,t 

VSNMi,t ∪ visseg_motioni,t  

→ VSNM’i,t 

-VSNMi,t was previously received from the Object Segmentation Gateway Module 

(Figure 5) containing the spatial information about an object (e.g., it could be the leaf 

mentioned above floating in the river, and shown in Figure 7) (also received and stored 

were [VSNMi,t-3, VSNMi,t-2,VSNMi,t-1, and VSNMi,t]  so that a motion prediction vector 

could be calculated) 

-in this step the motion prediction vector visseg_motioni,t  about the object (e.g., perhaps 

the leaf in the example above) in this VSNMt navigation map is copied to the VSNMi,t 

navigation map–binding of temporal features as a spatial feature occurs here for this 

segmented object 

-VSNM’i,t is produced in this operation (i.e., the original VSNMi,t plus the motion 

prediction vector (visseg_motioni,t) and is sent back to Object Segmentation Gateway 

Module/Navigation Module (Figure 5) 

-if there were three VSNM’s produced from scene (such as the example of the river with 

the rock and the leaf floating in it) then there would be three different VSNM’i,t produced 

and returned to the Object Segmentation Gateway Module/Navigation Module (Figure 

5),   with i=1, i=2, and i=3 

Table A8. Explanation of Symbols and Pseudocode in Equations (44) – (55) 

 

 

Input:  - s’(t) is a vector representing all the normalized sensory input arrays S’1,t … S’ϴ_σ,t 

(s’(t-1), s’(t-2), s’(t-3) also from t-1, t-2 and t-3 previous cognitive cycles are stored so that a time 

series can be processed) 

-VSNMi,t is one of several VSNM navigation maps propagated from the Object Segmentation 

Gateway Module containing visual segments (hence the name VSNM), i.e., segments of the sensory 

scene recognized as distinct objects 

-e.g., if the sensory scene was a river with a rock and a leaf floating down a river, a VSNM1,t could 

contain the river, aVSNM2,t could contain the rock, and a VSNM3,t could contain the leaf – they are 

being sent to the Sequential/Error Correcting Module for temporal binding of motion, i.e., for 

insertion of a motion prediction vector if the object is moving 

Output: -VNM’’t is a navigation map binding visual motion and auditory motion of the sensory scene) 

propagated to the Navigation Module A complex (Figure 5) 

-AVNMt  is a navigation map binding advanced auditory patterns propagated to the Navigation 

Module A complex (Figure 5) (useful for auditory analysis as in better recognition of the 

environment and language) 

-VSNM’i,t is the original VSNMi,t from the Object Segmentation Gateway Module with a motion 

prediction vector added if the object was moving (or else unchanged if there was no movement), and 

it is then returned to the Object Segmentation Gateway Module/Navigation Module  A (Figure 5) 

Description: -If there is movement in a sensory scene rather than requiring thirty versions of the sensory scene 

per second, only a single version is required but a motion prediction vector is added to show motion 

that has occurred and is still predicted to occur. 

-VNM’’t is a navigation map produced with motion prediction vectors showing any motion with 

regard to overall visual and sound features in the sensory scene. 

-AVNMt  is a navigation map produced with multiple motion prediction vectors showing more 

detailed and advanced sound patterns useful for environment recognition and spoken language. 

-VSNM’i,t is  a navigation map for a given object (or “segment”) of the sensory scene with a motion 

prediction vector added if there is motion of the object. There can be several (i.e., i=1, i=2, and so 

on) VSNM’i,t navigation maps for any given scene. 

-VNM’’t , AVNMt , and VSNM’i,t  are sent to the Object Segmentation Gateway Module/Navigation 

Module (Figure 5). 

-This module allows a solution to the temporal binding. 



-Although the examples such as  river, rock and leaf floating in it, are very concrete ones, there can 

be binding of motion of more abstract concepts by the same mechanisms described above. 

Table A9. Summary of the Operation of the Sequential/Error Correcting Module per Equations (44) – (55) 

 

 

A.5 The Object Segmentation Gateway Module 

 

At this point the sensory inputs have been transformed into best matching and updated visual, auditory, and 

olfactory local navigation maps (represented by the vector lnmt ). The local navigation maps LNMs are propagated 

to the Object Segmentation Gateway Module.  The complex of three tightly connected modules—the Object 

Segmentation Gateway Module, the Navigation Module and the Causal Memory Module will transform the input 

sensory data into a Working Navigation Map WNM upon which instinctive and learned primitives (i.e., essentially 

small algorithms) can act and possibly produce an action output. 

The Object Segmentation Gateway Module will attempt to segment each sensory scene into different objects. In 

the current version of the CCA6 it is only performed visually—the module attempts to recognize coherent visual 

shapes in the sensory scene. (In theory, this could be done with multiple senses, and may be done in future versions 

of the architecture.) 

Continuing the example given above of a sensory scene with only visual stimuli– a river with a rock and leaf 

floating in the river, the leaf, the rocks and the river are recognized by the Object Segmentation Gateway Module and 

segmented as separate objects each on their own VSNM navigation map (while at the same time keeping the entire 

scene and all objects on another navigation map).  There will be an attempt to calculate motion prediction vectors for 

each different object’s navigation map, but only the leaf will have a motion prediction vector since its position is 

changing in this example. Note that the use of labels such as ‘river’, ‘rocks’, ‘leaf’ is for the benefit of the reader. The 

CCA6 does not have a full English language implemented at this time, and uses its own internal labels. As well, current 

recognition is from a catalog of objects and simulated—the architecture has little deep understanding of the objects. 

    The “Visual Segmentation Navigation Map” VSNMi,t (52) is an ordinary navigation map with visually segmented 

information stored on it, i.e., each object such as the leaf floating in the river, the rocks, and the river of the example 

get put onto a separate VSNMi navigation map. For example, VSNM1,t for river, VSNM2,t for one of the group of 

rocks, and perhaps VSNM3,t for the leaf. (There is a subscript t since the values of these navigation maps change each 

cognitive cycle.)  

    The pseudocode/algorithm Object_Seg_Mod.visualsegment in equation (61) takes the best-matching 

visual input sensory local navigation map LNM(1, ϓ ,t) and segments it into whatever objects it can find in its local 

memory stores or that meet certain algorithmic criteria (e.g., pixels separate from other pixels, and so on). The 

navigation maps VSNMt,i=1..ϴ_i (e.g., in the example above of the river, group or rocks and leaf producing VSNM1,t 

for river, VSNM2,t for one of the group of rocks, and perhaps VSNM3,t for the leaf) are produced as a result. These 

navigation maps VSNMt,i=1..ϴ_i are sent to Sequential/Error Correcting Module where according to equations (52–55) 

attempts are made to see if there is motion occurring (via time series of VSNM’s from different cognitive cycles) and 

if so a motion prediction vector is bound onto the particular VSNM navigation map, which is returned back to the 

Object Segmentation Gateway.  

    One of the arguments to pseudocode/algorithm Object_Seg_Mod.visualsegment (61) is as noted above 

the best-matching visual input sensory local navigation map LNM(1, ϓ ,t). This LNM is actually transmitted in parallel 

to the Object Segmentation Gateway Module along with the other LNMs from other sensory system. Having the 

different sensory systems’ best-matching LNMs via vector lnm, and in (56) it is trivial to extract LNM(1, ϓ ,t). Another 

argument is the contextual value CONTEXT, which actually is a navigation map, and will help influence which 

objects are detected. In (57–59) it is seen to be set to the value of the previous cognitive cycle’s Working Navigation 

Map WNM’, which effectively is the previous cognitive cycle’s action taken or intermediate results. The contextual 

value will help influence which objects are detected. The third argument to (61) is VNM’’t. As shown above in the 

Sequential/Error Correcting Module, VNM’’t  shows the main visual motion and sound motion of the overall sensory 

scene. The vector navigation map VNM’’t helps influence segmentation in (61) by different motions and sound 

production. In (62) LNM(1, ϓ ,t) is updated to LNM’(1, ϓ ,t) with the information (i.e., motion prediction vectors, which 

does include visual and sensory motion of the main object in the scene) from VNM’’t . 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture. 

 

LNM(1, ϓ ,t) = lnmt[0]  (56) 



 

CONTEXT =  ∈ Rmxnxoxp (57) 

 

WNM’ =  ∈ Rmxnxoxp   (58) 

 

CONTEXTt = WNM’t-1 (59) 

 

ϴ_i = total objects segmented in this sensory scene ∈ N (60)  

 

VSNMt,i=1..ϴ_i = Object_Seg_Mod.visualsegment( LNM(1, ϓ ,t), CONTEXTt, VNM’’t )  (61) 

 

LNM’(1, ϓ ,t)  = LNM(1, ϓ ,t) ∪ VNM’’t   (62) 

 

 

 

 
LNM(σ, ϓ ,t) 

Equation (18) described in an earlier 

section 

the local navigation map LNM stored in the Input Sensory Vectors Association 

Module σ with map number ϓ which best matches in the incoming σ sensory inputs 

(e.g., if σ = 1 then it would be visual sensory inputs) 

e.g., if the visual sensory inputs best match the local navigation map #3456 in the 

visual module of the Input Sensory Vectors Association Modules, then at that 

moment LNM(1, ϓ ,t) would be navigation map #3456 in the visual module 

LNM(σ, ϓ ,t) ∪ S’σ,t
    

→ LNM 

Equation (21) described previously 

as shown previously: 

update LNM(σ, ϓ ,t) with any new information in input sensory signal S’σ,t
   (i.e.,  copy 

S’σ,t
   onto LNM(σ, ϓ ,t) ) thereby creating an updated LNM(σ, ϓ ,t) 

LNM(σ,new_map,t)∪ S’σ,t
   

→ LNM  

Equation (22) described previously 

OR  

copy S’σ,t
   onto an empty LNM(σ, new_map ,t) thereby creating an updated 

 LNM(σ, ϓ ,t) 

lnmt 

Equation (23) described previously 

i.e., a vector holding  [LNM(1, ϓ ,t), LNM(2, ϓ ,t), LNM(3, ϓ ,t), …,  LNM(ϴ_σ, ϓ ,t)]  -- the 

local navigation maps LNM of each sensory system which best match the 

corresponding sensory input array S’σ,t and then are updated to LNM with the actual 

sensory information conveyed by S’σ,t 

LNM(1, ϓ ,t) from the definition of lnmt this is just the first member of  lnmt which is lnmt[0]  

(indexing starts from 0 in this array) which is the LNM for the visual sensory inputs 

WNM’ -Working Navigation Map 

-the current Working Navigation Map WNM’t  is the navigation map which the 

Navigation Module A focuses its attention on, i.e., applies operations on to make a 

decision to take some sort or no action 

-as will be seen in the following sections, a navigation map can be assigned as being 

the WNM’t for that cognitive cycle, and then a different one in the next cognitive 

cycle, and so on, depending on the sensory information being processed and the 

results obtained 

CONTEXT -a normal navigation map (i.e., same dimensions as the other navigation maps in the 

architecture) used to hold contextual information which help influence which objects 

are detected 

-at present it is set to the value of the previous (i.e., in the previous cognitive cycle) 

Working Navigation Map WNM’t-1 

VNM 

Equation (49) described previously 

a “Vector Navigation Map” is just another ordinary navigation map used to store the 

motion prediction vectors 

VNM’’t 

Equations (50a, 50b) 

described previously 

as described previously in the Sequential/Error Correcting Module: 

-essentially VNM’’t is a navigation map which has visual_motiont and 

auditory_motiont copied to it – vectors respectively showing the previous and 

predicted motion of an object based on visual sensory inputs and based on auditory 

sensory inputs 



-tends to refer to motion of the overall scene or major object rather than the 

segmented objects in the sensory scene 

VSNMi,t 

→ VSNM’i,t 

(Note: VSNMi,t is first created in the 

Object Segmentation Gateway Module, 

and then updated to VSNM’i,t in the 

Sequential/Error Correcting Module) 

-a “Visual Segmentation Navigation Map” VSNM which is an ordinary navigation 

map with visually segmented information stored on it 

-the Object Segmentation Gateway Module (xxxFigures 9, 10) will “segment” a 

sensory scene into objects of interest 

-each segmented object is treated as a separate navigation map (there is also a 

navigation map of all the objects together on the navigation map) 

-the subscript i refers to multiple VSNM’s that can be created for a given sensory 

scene 

-the subscript t refers to time since the values change each cognitive cycle 

-it is useful to calculate motion prediction vectors, if they exist (often they will not) 

for each segmented object (e.g., if there is a river object, a rock object and leaf 

floating in the river object, then it is very useful to segment the sensory scene into 

these objects (i.e., river, rock and leaf) and a motion prediction vector to show the 

motion of the leaf is very useful – thus there will be VSNM1,t for river, VSNM2,t for 

rock and VSNM3,t for leaf, in this example) 

-continuing this example: VSNM1,t for river, VSNM2,t for rock and VSNM3,t for leaf 

will be propagated to the Sequential/Error Correcting Module for computation of 

motion prediction vectors for each of these VSNM’s 

-continuing this example: a motion prediction vector is computed and stored on 

VSNM3,t for leaf, but VSNM1,t for river, VSNM2,t for rock did not have enough 

motion for such vectors and are unchanged 

-continuing this example: VSNM’1,t for river (unchanged), VSNM’2,t for rock 

(unchanged) and VSNM’3,t for leaf (motion prediction vector added) are then 

returned back to the Object Segmentation Gateway Module 

VSNMt,i=1..ϴ_i -all the Visual Segmentation Navigation Maps VSNM’s created for a sensory scene 

-for example, in the example just given there would be VSNM1,t for river, VSNM2,t 

for rock and VSNM3,t for leaf 

(xxxfor the actual example in Figure 10 there would be additional VSNM’s for the 

additional rocks:  VSNM1,t for river, VSNM2,t for rocks, VSNM3,t for leaf, VSNM4,t 

for rocks, VSNM5,t for rocks) 

Object_Seg_Mod.visualsegme

nt( LNM(1, ϓ ,t), CONTEXTt, VNM’’t )   

 

→ VSNMt,i=1..ϴ_i 

-pseudocode for an algorithm that takes the best-matching visual input sensory local 

navigation map LNM(1, ϓ ,t) and segments it into whatever objects it can find in its 

local memory stores or that meet certain algorithmic criteria (e.g., pixels separate 

from other pixels, and so on) 

-currently only segments via visual features (although one of the arguments VNM’’t 

can contain information about auditory motion) 

-arguments were described above: 

  LNM(1, ϓ ,t) : the best-matching visual input sensory local navigation map 

  CONTEXTt : to hold contextual information which help influence which objects 

are detected 

  VNM’’t : auditory and visual motion of the overall scene or major object 

-produces VSNMt,i=1..ϴ_i which are all the Visual Segmentation Navigation Maps 

VSNM’s created for a sensory scene 

LNM’(1, ϓ ,t)  LNM’(1, ϓ ,t)  is the updated best-matching visual sensory Local Navigation Map 

LNM(1, ϓ ,t)  further updated with any visual or auditory motion prediction vectors 

from VNM’’t    

Table A10. Explanation of Symbols and Pseudocode in Equations (56) – (62) 

 

 

 

 

 



Initial Input:  -AVNMt  : a navigation map binding advanced auditory patterns; used in the next section 

-LNM(1, ϓ ,t) : the best-matching visual input sensory local navigation map; from the Input Sensory 

Vectors Association Module (Figures 1,9); will be segmented for objects in the sensory scene 

-other sensory system LNMs (represented by lnmt); used in the next section 

-WNM’t : Working Navigation Map from the Navigation Module (Figure 1); stored and used as 

WNM’t-1 to produce a value for CONTEXTt which holds contextual information which helps 

influence which objects are detected 

-VNM’’t : auditory and visual motion of the overall scene or major object; from the Sequential/Error 

Correcting Module (Figure 1) 

Initial Output: -produces VSNMt,i=1..ϴ_i which are all the Visual Segmentation Navigation Maps VSNM’s created 

for a sensory scene; sent to the Sequential/Error Correcting Module (Figure 1) 

Final Input: -VSNM’t,i=1..ϴ_i  : the Sequential/Error Correcting Module (Figure 1) will add where indicated a 

motion prediction vector to the VSNM’s it receives if there is motion of the object, and then send 

the VSNM’t,i i=1..ϴ_i  (i.e., all the VSNM’s) back to the Object Segmentation Gateway Module 

-e.g., in the example above: : VSNM’1,t for river (unchanged), VSNM’2,t for rock (unchanged) and 

VSNM’3,t for leaf (motion prediction vector added since apparent motion of leaf detected) 

Final Output:  - VSNM’t,i=1..ϴ_i  : visual segmented (i.e., objects separated) navigation maps with motion prediction 

vectors if motion detected 

- AVNMt  : a navigation map binding advanced auditory patterns; used in the next section 

- LNM’(1, ϓ ,t) : updated best-matching visual sensory Local Navigation Map LNM(1, ϓ ,t) including 

any motion prediction vectors from VNM’’t 

- other sensory system LNMs (represented by lnmt); passed through the module; used in the next 

section 

Description: -This module attempts to segment the input sensory by objects in it. 

-Segmentation is largely visual at present (although some limited auditory motion at present). 

-After segmenting a sensory scene into objects, the individual objects are sent to the Sequential/Error 

Correcting Module to detect motion of the objects, and if motion exists then a motion prediction 

vector is added to the VSNM navigation maps representing each object producing VSNM’. 

-Figure 10 illustrates the segmentation and additional of motion prediction vectors 

Table A11. Summary of the Operation of the Object Segmentation Gateway Module per Equations (56) – (62) 

 

 
 

 
Figure 1 REPRODUCED FOR APPENDIX.   The instruction to “place the white triangle on top of the black block 

which is not near a white cylinder” may be difficult to successfully follow by connectionist systems. The dashed arrow represents 

the correct solution to this instruction. (Note: The dashed arrow is not shown to the computer system being asked to follow this 

instruction.) 
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Figure 7  REPRODUCED FOR APPENDIX. A navigation map representing a far view of Figure 1 is in Navigation Module A.  

Another navigation map representing the instruction associated with Figure 1 (“place the white triangle on top of the black block 

which is not near a white cylinder”) is in Navigation Module B. Cognitive cycles occur and ‘mechanically’ process the contents 

of the Navigation Modules via feedback operations which ignore new real-world sensory inputs for the moment (i.e., arrow B has 

no/ignored activity during these internal operations). (link{+}— link to the next cell. Arrow/circle letters from Figure 5.) See 

text for full description. 



 

 

 
air air  air air  air air  

air air air air air air 

air air air air air air  

air air air air air air  

air air cylinder,white, 

link 

{0023,0,0,0} 

air air air 

<”place”> 

triangle, 

white, link 

{0024,0,0,0} 

air block, black, 

link 

{0022,3,3,0} 

air black, 

block, link 

{0021,0,0,0} 

air 

Figure 8 REPRODUCED FOR APPENDIX. First word of the sentence of Figure 1 being parsed by the instinctive 

primitive parse_sentence() with application to the navigation map of Navigation Module A (Figure 7) representing the 

sensory scene of Figure 1. The primitive has written the action word “place” in the cell containing the features “white, triangle.” 

(Navigation Module A) 
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Figure 9 REPRODUCED FOR APPENDIX. The instinctive primitive parse_sentence() has now written the 

word “top” in the cells containing the features “black, block.” (Navigation Module A) 
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Figure. 10  REPRODUCED FOR APPENDIX. The instinctive primitive physics_near_object() has now 

written “not” in the cells containing  or adjoining cells containing the features “cylinder, white.” (Navigation Module A) 
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Figure 11 REPRODUCED FOR APPENDIX. A navigation map representing a far view of Figure 1 is in Navigation Module 

A.  Another navigation map representing the instruction associated with Figure 1 (“place the white triangle on top of the black 

block which is not near a white cylinder”) is in Navigation Module B. Navigation Module A cells have been modified by the 

instinctive primitives parse_sentence()and physics_near_object(). See text for full description. 



 

 

 

 

A.6 The Causal Memory Module 

 

 The input sensory inputs at this point have been transformed as follows: 

• visual sensory inputs → VSNM’(t,i=1...ϴ_i)  : visual segmented (i.e., objects separated) navigation maps 

with motion prediction vectors if motion detected 

• visual sensory inputs → LNM’(1, ϓ ,t) : updated best-matching visual sensory Local Navigation Map 

LNM(1, ϓ ,t) including any motion prediction vectors from VNM’’t 

• auditory sensory inputs → AVNMt  : a navigation map binding auditory patterns 

• olfactory sensory inputs → LNM(3, ϓ ,t) : updated best-matching olfactory sensory Local Navigation Map 

LNM(3, ϓ ,t) 

• other sensory systems inputs → LNM(4…n_σ, ϓ ,t) : updated best-matching other sensory (e.g., tactile, radar, 

etc.)  Local Navigation Maps LNM(4…n_σ,ϓ,t) 

 

 

These single sensory system navigation maps will now be matched against the previously stored multi-sensory 

navigation maps stored in the Causal Memory Module. The matching algorithm 

Object_Seg_Mod.match_best_map (63) chooses previously stored Navigation Map A as the best match. 

Thus, Navigation Map A (i.e., χ = [[modcode=Causal_Mem_Mod, mapno=3579], x,y,z] ) is set to become the 

Working Navigation Map WNM (63). 

 WNM must be updated with the actual sensory inputs, since after all it is at this point simply a retrieved best 

matching navigation map. If there are too many changes between the actual sensory inputs actualt (64) and an arbitrary 

threshold h’ (65), then rather than update WNM a new Working Navigation Map WNM’ will be created from the 

actual sensory inputs actualt via copying the actual sensory inputs actualt to an empty navigation map TempMap 

(69). Note from (66) that TempMap is actually defined as the temporary memory area “TempMap” within the 

Navigation Module  A(Figure 5). Often values from the Causal Memory Module (e.g., a linked navigation map) or 

Navigation Module may have automatically been sent (i.e., copied) to TempMap. Thus, the pseudocode 

Nav_ModA.TempMap.erase() (68)  is called to ensure TempMap has no contents and is equivalent to an empty 

navigation map before using it in (69).  

    However, if WNM (i.e., which is a retrieved navigation map from the Causal Memory Module) (63) is close enough 

to the actual input sensory inputs actualt , then the information from actualt is copied to WNM, and creates the updated 

Working Navigation Map WNM’t (67).  

In (70) WNM’ is stored in the Causal Memory Module—in future operations of the architecture it will also be 

matched against various sensory inputs. This pseudocode also specifies that there is updating of the linkaddresses to 

and from other navigation maps in the Causal Memory Module and the updated Working Navigation Map WNM’t . 

These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture, other than 

distinguishing the two Navigation Modules. 

 

 

 

WNMt = Object_Seg_Mod.match_best_map 

(VSNM’(t,i=1…ϴ_i) ,  LNM’(1, ϓ ,t) , AVNMt , LNM(3, ϓ ,t) , LNM(4…n_σ,ϓ,t))  (63) 

 

actualt = [VSNM’(t,i=1...ϴ_i ),  LNM’(1, ϓ ,t) , AVNMt , LNM(3, ϓ ,t) , LNM(4…n_σ,ϓ,t)]  (64) 

 

h’ = number of differences allowed to be copied onto existing navigation map ∈ R   (65) 

‘ 

TempMap = Nav_ModA.TempMap ∈ Rmxnxoxp   (66) 

 

| Object_Seg_Mod.differences(actualt , WNMt)|   ≤h’,  

⇒ WNM’t = WNMt ∪ actualt (67) 



 

Nav_ModA.TempMap.erase() (68) 

 

| Object_Seg_Mod.differences(actualt , WNMt)|   >h’,  

⇒ WNM’t = TempMap ∪ actualt (69) 

 

Causal_Mem_Mod.store_WNM_update_links(WNM’t)  (70) 

 

 

 
Object_Seg_Mod.match_best_ 

map( 

  VSNM’(t,i=1…ϴ_i) , 

  LNM’(1, ϓ ,t) , 

  AVNMt , 

  LNM(3, ϓ ,t) ,  

  LNM(4…n_σ,ϓ,t) ) 

 

→ WNM 

 

-pseudocode for an algorithm that takes processed single sensory navigation maps 

and matches them to the best matching multisensory navigation map in the Causal 

Memory Module (Figure 1) 

-note that this pseudocode is run from the Object Segmentation Gateway Module 

since all of the arguments of this pseudocode are in the latter module 

-a small example of this algorithm is illustrated in Figure 11 where the best-matching 

visual local navigation map LNM’(1, ϓ ,t), the visual segmentation navigation maps 

VSNM’(t,i=1…ϴ_i), the navigation map binding auditory patterns AVNMt , and the 

olfactory local navigation map LNM(3, ϓ ,t) ,  are matched against the multi-sensory 

navigation maps of the Causal Memory Module 

-the arguments to the algorithm (VSNM’(t,i=1...ϴ_i ),  LNM’(1, ϓ ,t) , AVNMt , LNM(3, 

ϓ ,t) , LNM(4…n_σ,ϓ,t)) are described individually below 

-the best matching multisensory map is designated as the Working Navigation Map 

WNM 

argument used in match_best_ 

map: VSNM’t,i=1...ϴ_i 

 

 

VSNMt,i=1…ϴ_i 

→ VSNM’t,i=1...ϴ_i 

(Note: VSNM is first created in the 

Object Segmentation Gateway Module, 

and then updated to VSNM’ in the 

Sequential/Error Correcting Module) 

-a “Visual Segmentation Navigation Map” VSNM is an ordinary navigation map 

with visually segmented information stored on it 

-the Object Segmentation Gateway Module (xxxFigures 9, 10) will “segment” a 

sensory scene into objects of interest 

-each segmented object is treated as a separate navigation map (there is also a 

navigation map of all the objects together on the navigation map) 

-the subscript i refers to multiple VSNM’s that can be created for a given sensory 

scene 

-i=1…ϴ_i refers to the full set for VSNM’s created for a given sensory scene, i.e.,  

VSNM1 to the last VSNMϴ_i created  

-the subscript t refers to time since the values change each cognitive cycle 

-it is useful to calculate motion prediction vectors, if they exist (often they will not) 

for each segmented object (e.g., if there is a river object, a rock object and leaf 

floating in the river object, then it is very useful to segment the sensory scene into 

these objects (i.e., river, rock and leaf) and a motion prediction vector to show the 

motion of the leaf is very useful – thus there will be VSNM1,t for river, VSNM2,t for 

rock and VSNM3,t for leaf, in this example) 

-continuing this example: VSNM1,t for river, VSNM2,t for rock and VSNM3,t for leaf 

will be propagated to the Sequential/Error Correcting Module for computation of 

motion prediction vectors for each of these VSNM’s 

-continuing this example: a motion prediction vector is computed and stored on 

VSNM3,t for leaf, but VSNM1,t for river, VSNM2,t for rock did not have enough 

motion for such vectors and are unchanged 

-continuing this example: VSNM’1,t for river (unchanged), VSNM’2,t for rock 

(unchanged) and VSNM’3,t for leaf (motion prediction vector added) are then 

returned back to the Object Segmentation Gateway Module 

argument used in match_best_ 

map: 

 LNM’(1, ϓ ,t) 

-LNM’(1, ϓ ,t)  is the updated best-matching visual sensory Local Navigation Map --

LNM(1, ϓ ,t)  is further updated with any visual or auditory motion prediction vectors 

from VNM’’t  to create LNM’(1, ϓ ,t)  



argument used in match_best_ 

map: 

AVNMt 
 

 

Sequential_Mod.auditory_ 

match_process 

(auditory_seriest )   

 

→ → AVNMt 

-pseudocode for an algorithm that matches auditory_seriest with auditory time series 

stored in the Sequential/Error Correcting Module (Figure 1) 

-a best match is chosen (or if no matches close enough then auditory_seriest used 

itself as the best match) 

-the best match is then updated from auditory_seriest (much in the same manner as 

for example the matching and updating of navigation maps illustrated above in 

Figures 4 and 5) 

-the updated best match is stored in the Sequential/Error Correcting Module for 

future matching 

-the updated best match is then transformed into a complex advanced motion 

prediction vector (i.e., showing in more detail the pattern of the auditory sensations) 

and is output  as AVNMt   (which as described above is an “Audio Vector Navigation 

Map”) 

argument used in match_best_ 

map: 

  LNM(3, ϓ ,t) 

the local navigation map LNM stored in the Input Sensory Vectors Association 

Module σ with map number ϓ which best matches in the incoming σ sensory inputs 

(e.g., if σ = 3 then it would be olfactory sensory inputs) 

argument used in match_best_ 

map: 

  LNM(4…n_σ,ϓ,t) 

 

-for illustrative purposes only  three sensory systems: visual, auditory and olfactory 

are often used here, but  there can be additional ones such as tactile, or synthetic ones 

such as radar, etc. 

-4…n_σ means from LNM4  to the last sensory system being used and its local 

navigation map LNMn_σ 

actualt  -this is a vector that holds all the arguments for the pseudocode match_best_map 

=[VSNM’(t,i=1...ϴ_i ),  LNM’(1, ϓ ,t) , AVNMt , LNM(3, ϓ ,t) , LNM(4…n_σ,ϓ,t)] 

TempMap (NavMod A module) -a navigation map of the same dimensions as the other navigation maps in the 

architecture but it is a short-term memory region in the Navigation Module A 

Nav_ModA.TempMap rather than being an ordinary navigation map  

Object_Seg_Mod. 

differences() 
-pseudocode for an algorithm that calculates the differences between two navigation 

maps 

-similar to Input_Assocn_Modσ.differences described above (21, 22) 

-used in (67) and (68) to calculate the differences between the processed input 

sensory signal actualt  and the retrieved best matching multi-sensory navigation map 

WNMt 

WNMt ∪ actualt 

→ WNM’t 

 

-WNM must be updated with the actual sensory inputs 

-the processed sensory inputs actualt are copied to WNM, thereby forming WNM’ 

the updated Working Navigation Map which will be used by the Navigation Module 

in the section below 

h’ 

TempMapt ∪ actualt 

→ WNM’t 

 

-WNM must be updated with the actual sensory inputs 

-if there are too many changes between the actual sensory inputs actualt (64) and this 

arbitrary threshold h’, then rather than update WNM , the actual sensory inputs 

actualt  will be used to create a new navigation map which is considered the Working 

Navigation Map WNM’ which will be used by the Navigation Module in the section 

below 

-as noted above TempMap is a temporary memory region in the Navigation Module 

A that simulates a navigation map; actualt is being copied to an empty navigation 

map and results in WNM’t 

WNM’t -updated Working Navigation Map 

-the current Working Navigation  Map WNM’t  is the navigation map which the 

Navigation Module A focuses its attention on, i.e., applies operations on to make a 

decision to take some sort or no action 

-as will be seen in the following sections, a navigation map can be assigned as being 

the WNM’t for that cognitive cycle, and then a different one in the next cognitive 

cycle, and so on, depending on the sensory information being processed and the 

results obtained 



Causal_Mem_Mod. 

store_WNM_update_links 

(WNM’t)   

-pseudocode specifying that the updated Working Navigation Map WNM’t is stored 

in the Causal Memory Module 

- pseudocode specifying updating of the linkaddresses to and from the updated 

Working Navigation Map WNM’t is stored in the Causal Memory Module 

-in future cognitive cycles the processed sensory inputs actualt will be matched 

against the navigation maps in the Causal Memory Module which includes this 

newly stored navigation map 

Nav_ModA.TempMap.erase() 

 
-pseudocode specifying that TempMap is erased 

-thus, it will act as an empty navigation map the next time it is required 

Table A12. Explanation of Symbols and Pseudocode in Equations (63) – (70) 

 

 

 

Input:   -VSNM’(t,i=1…ϴ_i) : visual segmented (i.e., objects separated) navigation maps with motion 

prediction vectors if motion detected 

 -LNM’(1, ϓ ,t)  : best-matching visual sensory Local Navigation Map LNM(1, ϓ ,t) including any motion 

prediction vectors from VNM’’t 

 -AVNMt  : a navigation map binding auditory patterns 

 -LNM(3, ϓ ,t) : the olfactory local navigation map 

 -LNM(4…n_σ,ϓ,t) : other sensory local navigation maps 

(these processed sensory inputs are represented by the vector actualt ) 

Output: WNM’t : updated Working Navigation Map which will be used in the Navigation Module A (as well 

as other modules of the architecture) 

Description: -In this module the processed single sensory system navigation maps (actualt) will be matched 

against the previously stored multi-sensory navigation maps stored in the Causal Memory Module. 

-The best matching navigation map is then updated with the actual sensory inputs, i.e., actualt , and 

acts as the Working Navigation Map WNM’ for this cognitive cycle. 

-The current Working Navigation  Map WNM’t  is the navigation map which the Navigation Module 

A focuses its attention on, i.e., applies operations on to make a decision to take some sort or no 

action. 

Table A13. Summary of the Operation of the Causal Memory Module per Equations (63) – (70) 

 

 

A.7 Navigation Module A 

 

    As seen in Figure 3 there are now in the CCA6 two Navigation Modules—Navigation Module A and Navigation 

Module B (as opposed to the single Navigation Module in the prior CCA5 architecture, as seen in Figure 2). In the 

Navigation Module A an instinctive primitive or a learned primitive (which themselves are navigation maps) in 

conjunction with the Working Navigation Map WNM’ may result in an action signal.  This signal goes to the Output 

Vector Association Module A and to the external embodiment, completing the cognitive cycle.  

    In some cognitive cycles there will be no output but intermediate results from the Navigation Module A are fed 

back and re-operated on in the next cognitive cycle. This will be discussed in the following section. In this section, 

the more straightforward case is considered where a learned or instinctive primitive is applied against a Working 

Navigation Map WNM’ and an action is produced. 

    From Figure 5 the Autonomic Module and the Goal/Emotion Module can be seen. These modules, which operate 

in the areas much as their names indicate, are essential for an agent such as the Causal Cognitive Architecture 6. 

However, these modules will not be formalized so as to focus on the Navigation Module A in this section. The 

autonomic variable (71) which reflects the energy levels and maintenance issues with embodiments of the architecture, 

will affect the value of the emotion variable (72) and the GOAL navigation map (73) as shown in equation (74). The 

GOAL variable reflects both intuitive and learned goals of the architecture acting as an agent and is represented as a 

full navigation map. The emotion variable will affect which features the architecture pays more attention to in their 

processing as well as in selecting the appropriate instinctive or learned primitive to act on the current Working 

Navigation Map WNM’. 



    As mentioned earlier, instinctive and learned primitives, which act as small rules or productions, are stored in 

modified navigation maps, called respectively instinctive primitive navigation maps IPM, and learned primitive 

navigation maps LPM. These primitive navigation maps have cells that contain procedures. However, the cells can 

also contain features and linkaddresses. 

    In the Navigation Module A, a learned or instinctive primitive navigation map is compared against the Working 

Navigation Map WNM’. By simple array operations and logical operations, the Navigation Module A may produce 

an action signal, i.e., a signal to move some actuator or send an electronic signal. The action signal goes to the Output 

Vector Association Module A and then to the external embodiment.  

    Instinctive primitives IPM’s are stored in the Instinctive Primitives Module and come preprogrammed with the 

architecture. Learned primitives LPM’s in the CCA6 are now distributed among the many Input Sensory Vectors 

Association Modules and the Causal Memory Module (Figure 5). Both instinctive and learned primitive navigation 

maps have cells that contain procedures. However, the cells can also contain features and linkaddresses. 

    The pseudocode indicating the algorithm Instinctive_Primitives_Mod.match_best_primitive 

(actualt, emotiont, GOALt )  (76) will choose the most appropriate instinctive primitive WIPt  (75) to apply against 

the Working Navigation Map WNM’ in the Navigation Module A. Similarly, the pseudocode indicating the algorithm 

Learned_Primitives_Mod.match_best_primitive (actualt, emotiont, GOALt )  (78) will choose the 

most appropriate learned primitive WLPt (77) to apply against the Working Navigation Map WNM’ in the Navigation 

Module A. 

    Then a decision is made to use either the best instinctive primitive WIPt  or the best learned primitive WLPt as the 

Working Primitive WPRt (79) which will actually be the primitive applied against the Working Navigation Map 

WNM’. At present a simple scheme is used to make this decision. If there is no learned primitive WLPt then the best 

instinctive primitive WIPt  is assigned to be the Working Primitive WPRt (80). Otherwise, if a best learned primitive 

exists, then it is assigned to be the Working Primitive WPRt (81). 

    At this point in the Navigation Module A there is a Working Primitive WPRt and a Working Navigation Map 

WNM’. By simple array operations and logical operations, the Navigation Module A compares and operates on the 

Working Primitive WPRt and the Working Navigation Map WNM’.  Equation (82) shows this is indicated by 

pseudocode Nav_ModA.apply_primitive(WPRt, WNM’t). As a result, an actiont value may be produced, 

which is a signal to move some actuator or send an electronic signal. The action signal goes to the Output Vector 

Association Module A and then to the external embodiment (Figure 5).  

The action signal from the Navigation Module A may be, for example, <move right>. This signal is processed by 

the Output Vector Association Module A (Figure 5). The pseudocode Output_Vector_Mod.action 

_to_output( actiont, WNM’t )  (84) results in output_vectort  which contains more detailed instructions for the 

actuators to cause the embodiment to move right. However, output_vectort  is first sent to the Sequential/Error 

Correcting Module where it will be corrected for motion and timing issues, resulting in a motion_correctiont  vector 

(86). The pseudocode Output_Vector_Mod.apply_motion_correction( output_vectort, 

motion_correctiont  )  (87) produces the final signal output_vector’t  which is sent to the Output Vector Shaping 

Module (Figure 5). In the Output Vector Shaping Module the final signal shaping and low-level transformations of 

the signal are performed (not indicated in the equations) to directly signal movement of the embodiment’s actuators 

or signal transmission of an electronic signal. 

These equations in the CCA6 architecture are somewhat changed from the prior CCA5 architecture to reflect the 

duplication of the Navigation Modules. 

 

 

 

autonomic ∈ R  (71) 

 

emotion ∈ R  (72)  

 

GOAL ∈ Rmxnxoxp   (73) 

 

[emotiont, GOALt] = Goal/Emotion_Mod.set_emotion_goal( autonomict, WNM’t-1 )  (74) 

 

WIP ∈ Rmxnxoxp  (75) 

 



WIPt = Instinctive_Primitives_Mod.match_best_primitive( actualt, emotiont, GOALt )  (76) 

 

WLP ∈ Rmxnxoxp (77) 

 

WLPt = Learned_Primitives_Mod.match_best_primitive( actualt, emotiont, GOALt ) (78) 

 

WPR ∈ Rmxnxoxp   (79) 

 

WLPt  = [ ],  ⇒ WPRt = WIPt (80) 

 

WLPt  ≠  [ ],  ⇒ WPRt = WLPt (81) 

 

actiont = Nav_ModA.apply_primitive(WPRt, WNM’t)  (82) 

 

output_vector  ∈ Rn’  (83) 

 

actiont  = [“move*”],  ⇒ output_vectort = Output_Vector_Mod. 

action_to_output( actiont, WNM’t )  (84) 

 

motion_correction ∈ R2   (85) 

 

actiont  = [“move*”],  ⇒ motion_correctiont  = Sequential_Mod. 

motion_correction( actiont, WNM’t, visual_seriest )  (86) 

 

output_vector’t = Output_Vector_Mod. 

apply_motion_correction( output_vectort, motion_correctiont  )  (87) 

 

 

 
autonomic variable which reflects the energy levels and maintenance issues with 

embodiments of the architecture 

emotion variable which affects which features the architecture pays more attention to 

GOAL reflects both intuitive and learned goals of the architecture acting as an agent, 

and is represented as a full navigation map 

Goal/Emotion_Mod.set_emotion_

goal( autonomict, WNM’t -1)   

→ [emotiont, GOALt] 

-pseudocode that calculates the values of the emotion and GOAL variables 

-Goal/Emotion_Mod refers to the Goal/Emotion Module (Figure 1) 

-the argument WNM’t -1 is the Working Navigation Map from the previous (i.e.,  

t-1) cognitive cycle 

Instinctive_Primitives_Mod. 

match_best_primitive 

( actualt, emotiont, GOALt ) 

→ WIPt 

-pseudocode that returns the most appropriate instinctive primitive navigation 

map IPM from the Instinctive Primitives Module (xxxxFigure 14) given the 

arguments of the processed sensory inputs actualt , the current emotiont  value, 

and the current GOALt navigation map 

-Instinctive_Primitives_Mod refers to the Instinctive Primitives 

Module (xxx  Figure14) 

-the most appropriate instinctive primitive IPM returned is considered to be the 

Working Instinctive Primitive WIPt 

Learned_Primitives_Mod.match_

best_primitive 

( actualt, emotiont, GOALt ) 

→ WLPt 

-pseudocode that returns the most appropriate learned primitive navigation map 

LPM from the Instinctive Primitives Module (xxxx Figure 14) given the 

arguments of the processed sensory inputs actualt , the current emotiont  value, 

and the current GOALt navigation map 

-Learned_Primitives_Mod refers to the Learned Primitives Module 

(xxxx Figure 14) 

-the most appropriate instinctive primitive LPM returned is considered to be the 

Working Learned Primitive WLPt 



WLPt  = [ ],  ⇒ WPRt = WIPt 

WLPt  ≠  [ ],  ⇒ WPRt = WLPt 

 

→ WPR 

-the Working Primitive WPR is the primitive that will be applied against the 

Working Navigation Map WNM’ in the Navigation Module A 

-it is composed of inputs from the Working Instinctive Primitive WIP and the 

Working Learned Primitive WLP  

-currently a simple scheme to calculate it is used since there is only a very small 

number of learned primitives LPM’s—if a Working Learned Primitive WLP 

exists then WLPt  will be used as WPRt, otherwise the Working Instinctive 

Primitive WIPt  will be used as WPRt 

procedure -a cell in a navigation map can hold values which are procedure variables (35), 

feature variables (34), and linkaddress χ’ variables (36) 

-a procedure value could be, for example, <move right> which would indicate 

that the embodiment of the architecture should move towards the right 

Nav_ModA.apply_primitive(WPRt, 

WNM’t) 

→   actiont 

-Nav_ModA refers to the Navigation Module A (Figure 5) 

-apply_primitive(WPRt, WNM’t) is pseudocode for an algorithm which 

applies the Working Primitive WPRt to the Working Navigation Map WNM’, 

often producing an actiont  value 

-note that in some cognitive cycles no actiont  value may result from the current 

WPRt and WNM’t 

-in other cognitive cycles instead of an actionable actiont  value there is the 

feeding back of intermediate results for re-processing in the next cognitive 

cycle (discussed in the next section) 

-the mechanism of producing an actiont value is via simple array operations 

(both WPRt and WNM’t are arrays) and very simple logical operations that 

could be biologically feasible as possible 

Output_Vector_Mod. 

action_to_output( actiont, WNM’t )   

→   output_vectort 

-Output_Vector_Mod refers to the Output Vector Association Module A 

(xxxx Figure 14) 

-pseudocode describing taking the actiont value and the current Working 

Navigation Map WNM’t  and creating output_vectort which would provide more 

detailed instructions for the actuators of the embodiment in order to carry out the 

actiont value 

-for example, the  action value could be, for example, <move right> which this 

pseudocode would transform into output_vectort which provides more detailed 

instructions for the embodiment’s actuators with regard to moving to the right 

Sequential_Mod. 

motion_correction( actiont, WNM’t, 

visual_seriest )   

→  motion_correctiont   

-Sequential_Mod refers to the Sequential/Error Correcting Module (Figure 

1) 

-pseudocode which produces a motion correction value based on the relative 

movement of the embodiment itself and the motion which is desired to achieve 

-the pseudocode considers what actiont is desired, the current Working 

Navigation Map WNM’t  and the current movement of the embodiment via the 

visual movement detected via visual_seriest (44, 45) 

-in the future additional sensory systems (e.g., a positioning system, an inertial 

system, and so on) could be used in addition to the information in the 

visual_seriest  

-the vector motion_correctiont  is computed and returned to the Output Vectors 

Association Module 

-for example, the current action value is <move right> so the pseudocode would 

compute if any motion correction was required based on the current actual 

movement of the embodiment of the architecture 

Output_Vector_Mod. 

apply_motion_correction( 

output_vectort, motion_correctiont  )   

→ output_vector’t 

-Output_Vector_Mod refers to the Output Vector Association Module A 

(xxx Figure 14) 

-pseudocode that applies the computed vector motion_correctiont  against the 

previously computed output_vectort 

-an updated output_vector’t  is produced 



→ output_vector’t  provides more detailed and motion corrected instructions for 

the actuators in this case, e.g, <move right>, to move the embodiment to the 

right 

Table A14. Explanation of Symbols and Pseudocode in Equations (71) – (87) 

 

 

 

Input:  WPRt : the Working Primitive WPR is the primitive that will be applied against the Working 

Navigation Map WNM’ in the Navigation Module A 

WNM’t : the current Working Navigation Map which is derived from the processed sensory inputs 

Output: actiont  : a signal to move some actuator or send an electronic signal 

e.g., <move right> 

it is sent to the Output Vector Association Module A (xxx Figure 14) where more detailed 

instructions are created to effect the required actuator outputs 

Description: -The Navigation Module A applies the Working Primitive WPRt  against the current Working 

Navigation Map WNM’ and may produce an actiont  signal (sometimes no signal is produced or 

sometimes there is a signal to feedback intermediate results, discussed in the next section). 

Table A15. Summary of the Operation of the Navigation Module A per Equations (71) – (87) 

 

 

 

 

 

Figure 3 REPRODUCED FOR APPENDIX. Overview of the Causal Cognitive Architecture 6 (CCA6)  



 

 

 

 

A.8 Feedback Signals and Intermediate Results 

 

The Causal Cognitive Architecture, including the CCA6, makes use of feedback pathways—states of a downstream 

module can influence the recognition and processing of more upstream sensory inputs. This is advantageous in order 

to better recognize noisy or incomplete input sensory information. In previous versions of the architecture and again 

in the CCA6, the feedback pathways between the Input Sensory Vectors Association Modules and the Navigation 

Module A remain enhanced so that they can allow not just a feedback signal, but the full intermediate results from the 

Navigation Module A to be stored in the Input Sensory Vectors Association Modules (Figure 3). 

In some cognitive cycles in the CCA6 there is no output signal.  In certain states (for example, no actionable output 

from the Navigation Module A) the information in the Navigation Module A can be fed back and stored in the Input 

Sensory Vectors Association Modules (Figure 3). When this happens then in the next cognitive cycle these 

intermediate results will automatically be considered as the input sensory information and propagated to the 

Navigation Module A (Figure 3) and operated on again. As noted above in the body of the paper, by feeding back and 

re-operating on the intermediate results, the Causal Cognitive Architecture can formulate and explore possible cause 

and effect of actions, i.e., generate causal behavior. 

The Working Primitive WPRt has been applied against the Working Navigation Map WNM’t) producing an actiont 

signal: actiont = Nav_ModA.apply_primitive(WPRt, WNM’t) (82). In the previous section the actiont signal 

was actionable, i.e., it contained the string “move*” and so via equations (84–87) it was propagated to the Output 

Vector Association Module A and to the Output Vector Shaping Module A where it then moved the actuators of the 

embodiment or sent an electronic signal in accordance with the action specified. However, what if the actiont signal 

produced is not actionable, i.e., it does not contain the string “move*”? There is no indication that any actuator should 

be moved, or any electronic signal should be sent. In this case actiont would be discarded. Another actiont  signal 

would be produced in the next cognitive cycle, and perhaps it would be actionable. 

However, given the enhancement in feedback pathways between the Navigation Module A and the Input Sensory 

Vectors Association Modules, the Causal Cognitive Architecture can in these cases feed back the intermediate results 

of the Navigation Module A and store them in the Input Sensory Vectors Association Modules (88). Note that equation 

(88) will feedback the intermediate results (i.e., the Working Navigation Map WNM’t if actiont  ≠ “move*”, i.e., the 

actiont signal is not actionable. However, if the Working Primitive WPRt explicitly specifies to discard the 

intermediate results they will not be fed back. Similarly, if the Working Primitive WPRt explicitly specifies to feed 

back the intermediate results they will be fed back even if they are actionable. In equation (88) the pseudocode 

Nav_ModA.feedback_to_assocn_mod(WNM’t)specifies to feed back and store WNM’t in the Input Sensory 

Vectors Association Modules. 

In the next cognitive cycle, in equation (89) the pseudocode Input_Sens_Vectors_Assoc_Moduleσ. 

extract_σ(WNM’t-1) specifies that the Working Navigation Map just fed back (i.e., WNM’t-1 which is WNM’t 

of the previous cognitive cycle) is to have its components extracted (i.e., effectively stored) into the best matching 

local navigation maps of the various Input Sensory Vectors Associations Modules. Thus, as the cognitive cycle 

progresses, the actual sensory inputs will be ignored, and instead these components of the previous Working 

Navigation Map WNM’t-1 (i.e., the intermediate results from the Navigation Module A in the last cognitive cycle) are 

propagated towards the Navigation Module A and operated on again, perhaps by new instinctive or learned primitives 

in this new cognitive cycle. Feeding back the Navigation Module A’s intermediate results back to the sensory stages 

and then processing the intermediate results in the next cycle by the Navigation Module A, over and over again as 

needed, will allow a robust application of rules to be applied onto the modeled world, and allow exploration and 

examination of what the effect of a cause will be. As described in the text of the paper above, previous Causal 

Cognitive Architectures have shown that by feeding back and re-operating on the intermediate results, the architecture 

can generate causal behavior. 

These equations in the CCA6 architecture are somewhat changed from the prior CCA5 architecture to reflect the 

duplication of the Navigation Modules. 

 



 

(actiont  ≠ “move*” and WPRt  ≠ [“discard*”])  or  WPRt = [“feedback*”], 

     ⇒ Nav_ModA.feedback_to_assocn_mod(WNM’t)  (88) 
     ⇒ ∀σ : LNM(σ, ϓ ,t) = Input_Sens_Vectors_Assoc_Moduleσ.extract_σ(WNM’t-1) (89) 

 

 

 

 

 

(actiont  ≠ “move*” and WPRt  ≠ 

[“discard*”])   

or  WPRt = [“feedback*”], 
                 ⇒ …. 

-if  actiont which the Navigation Module A produced (82) is not actionable 

(i.e., does not specify an activation of an actuator or the transmission of an 

electronic signal) and also there is no specification by the Working Primitive 

WPRt to discard actiont  (i.e., the Navigation Module A should not do anything 

this cognitive cycle) then operations after the ⇒ symbol will occur 

-if Working Primitive WPRt specifies that the intermediate results of the 

Navigation Module A should be fed back, then regardless of whether actiont 

is actionable or not, the operations after the ⇒ symbol will occur 

⇒Nav_ModA.feedback_to_assocn_m

od(WNM’t)   

-pseudocode to feed back and store the intermediate results of the Navigation 

Module A, i.e., the Working Navigation Map WNM’t to the Input Sensory 

Vectors Association Modules 

⇒∀σ : LNM(σ, ϓ ,t) = 
Input_Sens_Vectors_Assoc_Modul

eσ.extract_σ(WNM’t-1) 

-pseudocode that specifies that the Working Navigation Map just fed back (i.e., 

WNM’t-1 which is WNM’t of the previous cognitive cycle) is to have its 

components extracted (i.e., effectively stored) into the best matching local 

navigation maps of the various Input Sensory Vectors Associations Modules 

-thus, as the cognitive cycle progresses, the actual sensory inputs will be 

ignored, and instead these components of the previous Working Navigation 

Map WNM’t-1 (i.e., the intermediate results from the Navigation Module A in 

the last cognitive cycle) will be propagated towards the Navigation Module A 

and operated on again 

Table A16. Explanation of Symbols and Pseudocode in Equations (88) – (89) 

 

 

 

 

 

Initial Input:  not applicable as this is a continuation of Navigation Module A operations 

Initial Output: WNM’t : the current Working Navigation Map is fed back to the  Input Sensory Vectors Association 

Modules 

Second Input: in the next cognitive cycle LNM(σ, ϓ ,t)  for some or all of the sensory systems, derived from the fed 

back WNM’t-1 , are treated as inputs and processed again by the Navigation Module A complex (i.e., 

the Object Segmentation Gateway Module, the Causal Memory Module and the Navigation Module 

A) 

Second Output: -in the next cognitive cycle, the Navigation Module A will produce again an actiont signal as per 

equation (82) 

-if actiont is actionable (i.e., an activation of an actuator or the transmission of an electronic signal) 

then the actiont  signal will be sent to the Output Vector Association Module A, as in the previous 

section 

-if actiont is not actionable then intermediate results of the Navigation Module A (i.e., WNM’t) may 

be fed back again to the Input Sensory Vectors Association Modules (88, 89) 

Description: -In the previous section it was seen that the Navigation Module A applies the Working Primitive 

WPRt  against the current Working Navigation Map WNM’ and produced an actiont  signal which 

was sent to the Output Vector Association Module A and then to the external embodiment to activate 

an actuator or send an electronic signal. 



-In this section it is seen that if actiont is not actionable then intermediate results of the Navigation 

Module A (i.e., WNM’t) may be fed back again to the Input Sensory Vectors Association Modules 

and then in the next cognitive cycle return back to the Navigation Module A where it can be operated 

on again. 

-By feeding back and re-operating on the intermediate results, the architecture can generate causal 

behavior. 

Table A17. Summary of the Feedback Operations from the Navigation Module A per Equations (88) – (89) 

 

 

 

A.9 Analogical Problem Solving in the CCA6  

 

In the last section above, it was shown how with enhanced feedback pathways from the Navigation Module A to 

the Input Sensory Vectors Association Modules (Figure 3) and some small changes, if there is no actionable output 

from the Navigation Module A, then the Navigation Module A can feed back the Working Navigation Map WNM’. 

Without many changes to the architecture, when this happens then in the next cognitive cycle these intermediate results 

will automatically be considered as the input sensory information and propagated back to the Navigation Module A 

and operated on again. As discussed in the text of the paper above, it has previously been shown that in this type of 

Causal Cognitive Architecture that by feeding back and re-operating on the intermediate results, the architecture is 

sometimes able to formulate and explore possible cause and effect of actions, i.e., generate causal behavior. 

However, often the combinations of sensory inputs leading to WNM’ and the chosen instinctive or learned 

primitives leading to WPR’ which operates on the Working Navigation Map WNM’, does not give a causally related 

or even a useful output. 

This section describes a small, evolutionarily plausible modification of the feedback algorithm from the Navigation 

Module A to the Input Sensory Vectors Association Modules which readily emerges. The result is the ready generation 

of analogical results that may be more useful than simply feeding back and returning the intermediate results 

unchanged in the next cognitive cycle. 

In the last section above it was seen in (88) that if the actiont which is produced by the Navigation Module A (i.e., 

actiont = Nav_ModA.apply_primitive(WPRt, WNM’t)  (82)) is not actionable (i.e., there is no actuator to move 

or no electronic signal to send) then the Navigation Module A feeds back what will now be considered intermediate 

results of the Navigation Module A (i.e., WNM’t) for storage in the Input Sensory Vectors Association Modules. (A 

property which can easily emerge by simply enhancing feedback pathways in the architecture.) In the next cognitive 

cycle, WNM’t is treated as the input signal (89) and thus automatically propagated back to the Navigation Module A 

where it can be operated on. Perhaps different instinctive or learned primitives operating on WNM’t-1 (“t - 1” just 

means it is from the previous cognitive cycle) or the transformation of the data, will produce a useful, actionable 

output during this cognitive cycle. Equations (88) and (89) are reproduced again below. Note that the Working 

Primitive WPRt can specify to discard results (i.e., WPRt  = [“discard*”]) after a cognitive cycle (i.e., nothing will 

happen except wait for the next cognitive cycle) or it can specify to feed back the results of the Navigation Module A 

even if the action is actionable (i.e., WPRt = [“feedback*”]). 

 

(actiont  ≠ “move*” and WPRt  ≠ [“discard*”])  or  WPRt = [“feedback*”], 

     ⇒ Nav_ModA.feedback_to_assocn_mod(WNM’t)  (88) 

     ⇒ ∀σ : LNM(σ, ϓ ,t) = Input_Sens_Vectors_Assoc_Moduleσ.extract_σ(WNM’t-1) (89) 

 

These small changes in the architecture (which occurred in the CCA5 version of the architecture) are sufficient to 

easily allow the emergence of a different type of feedback by the Navigation Module A. The feedback shown in (88) 

and (89) will no longer occur by default. However, if the Working Primitive WPRt specifically signals “feedback” 

then the same feedback algorithm as before (i.e., described above (88, 89)) will occur. Equations (88, 89) are replaced 

by (88a, 89) to specify this condition where the previously described feedback algorithm will still occur: 

 

         WPRt = [“feedback*”], 

 ⇒ Nav_ModA.feedback_to_assocn_mod(WNM’t)  (88a) 

 ⇒ ∀σ : LNM(σ, ϓ ,t) = Input_Sens_Vectors_Assoc_Moduleσ.extract_σ(WNM’t-1) (89) 

 



 

The new default feedback algorithm which will occur is now specified as starting in (90). If the actiont  signal 

produced by the Navigation Module A (i.e., actiont = Nav_ModA.apply_primitive(WPRt, WNM’t)  (82)) is 

not actionable (actiont  ≠“ move*”—there is no actuator to move or no electronic signal to send) then fed back are 

what will now be considered intermediate results of the Navigation Module A (i.e., WNM’t) for storage in the Input 

Sensory Vectors Association Modules (90). This is the same effect as occurred before and still occurs in (88a). (Note 

also from (90) that if the Working Primitive WPRt  specifies “analogical” feedback then this will occur even if the 

actiont  signal is actionable. Similarly, if WPRt  specifies to “discard” the results, then nothing will happen except wait 

for the next cognitive cycle.) Thus, WNM’t  is sent (i.e., fed back) to the Input Sensory Vectors Association Modules 

as before (90).  

WNM’t  is also sent to the Causal Memory Module (91). Sending WNM’t to the Causal Memory Module (91) 

triggers Causal_Mem_Mod.match_best_map (WNM’t). This pseudocode matches WNM’t against the 

multisensory navigation maps stored in the Causal Memory Module, and assigns this best matching navigation map 

as the new WNM’t  value. This matching algorithm is similar to other matching algorithms for navigation maps used 

by the architecture. WNM’t  is also sent to the TempMap region of the Navigation Module A. This happens 

automatically. This was a change in the previous CCA5 version of the architecture. Results of almost all operations 

from the Navigation Module A and the Causal Memory Module are routinely copied to the TempMap region. Often 

the information in the TempMap region (i.e., “TempMapA”, the TempMap region in Navigation Module A) is not 

used and it is overwritten in the next cognitive cycle. This is the case now—the contents of the TempMap region will 

not be used. However, in later steps in equations (92, 93) the TempMap region is indeed used. Note that in the 

equations the TempMap region is defined as an array TempMap which acts like an ordinary navigation map (66). 

In (92) the pseudocode Nav_ModA.use_linkaddress1_map(WNM’t)activates in the Causal Memory 

Module the navigation map which the most recently used linkaddress used in the past by the current Working 

Navigation Map WNM’t points to. As shown in (92) this result of the Causal Memory Module is automatically copied 

to TempMapt. (As mentioned above results of the Navigation Module A and the Causal Memory Module are routinely 

and automatically copied to TempMap.)  

    (Note that other algorithms besides use_linkaddress1_map()are possible. For example, rather than the most 

recently used linkaddress, a number of the linkaddresses used by this navigation map in the past can be explored and 

one particular linkaddress chosen, and so on. Similarly, most recently produced action’s can also be explored.) 

In (93) the pseudocode Nav_ModA.subtract(TempMap, WNM’t) the navigation map WNM’t is subtracted 

from TempMap. (The navigation maps are arrays and can be treated as such via simple array operations.) The result 

becomes the new Working Navigation Map WNM’t (93). 

The next cognitive cycle then occurs. At this point, the contents of the WNM’t Working Navigation Map in the 

Navigation Module A contains the difference between the previous WNM’t and retrieved linkaddress χ’ Navigation 

Map stored in TempMap. At this point, the Input Sensory Vectors Association Modules contain the original Working 

Navigation Map WNM’t-1 (t-1 just means something from the previous cognitive cycle) which was fed back and stored 

here. Thus, during this cognitive cycle, the actual sensory inputs will be ignored, and the previous WNM’t-1 will be 

propagated towards the Navigation Module A. 

To indicate continuation of the operations on associated equations (90–93), in (94) it is specified “(actiont-1 ≠ 

“move*” or WPRt-1 = [“analogical*”]) and WPRt-1 ≠ [“discard*”] and WPRt-1≠ [“feedback*”] ),” and then specified 

to run this specific pseudocode:  WNM’t = Nav_ModA.retrieve_and_add_vector_assocn()(94). Rather 

than propagate WNM’t-1 towards the Navigation Module A and then it replace the existing WNM’t and is operated on 

by the current Working Primitive WPR’ , as occurred automatically with the previous feedback algorithm above, the 

pseudocode retrieve_and_add_vector_assocn()  specifies that WNM’t-1 should not replace but simply be 

added to the existing WNM’t . 

Now the original Working Navigation Map WNM’t in the Navigation Module A also contains the action that 

occurred in the past of a similar Working Navigation Map in a possible analogical situation.  

These equations in the CCA6 architecture are somewhat changed from the prior CCA5 architecture to reflect the 

duplication of the Navigation Modules. 

 

 

 

 

 



 

 

 

 

( (actiont  ≠“ move*” or  WPRt = [“analogical*”]) and  WPRt  ≠ [“discard*”]  and  WPRt ≠ [“feedback*”] ), 

              ⇒Nav_ModA.feedback_to_assocn_mod(WNM’t)   (90) 

        ⇒ WNM’t = Causal_Mem_Mod.match_best_map(WNM’t)  (91) 

      ⇒ TempMapt = Nav_ModA.use_linkaddress1_map(WNM’t)   (92)  

      ⇒ WNM’t =  Nav_ModA.subtract(WNM’t , TempMap)   (93) 

 

( (actiont-1 ≠ “move*” or WPRt-1 = [“analogical*”]) and WPRt-1 ≠ [“discard*”] and WPRt-1≠ [“feedback*”] ),   

    ⇒ WNM’t = Nav_ModA.retrieve_and_add_vector_assocn()  (94) 

 

 

WPRt = [“feedback*”], 
                 ⇒ …. 

-replaces equation (88) (see Table A17) 

-previously described feedback algorithm now only occurs if the  Working 

Primitive WPRt specifies it (i.e., WPRt = [“feedback*”],). 

⇒Nav_ModA.feedback_to_assoc

n_mod(WNM’t)   

-previously described in Table A17 

-applied to equations (88)/(88a) or (90) 

-pseudocode to feed back and store the intermediate results of the Navigation 

Module A, i.e., the Working Navigation Map WNM’t in the Input Sensory Vectors 

Association Modules 

⇒∀σ : LNM(σ, ϓ ,t) = 
Input_Sens_Vectors_Assoc_Mod

uleσ.extract_σ(WNM’t-1) 

-previously described in Table A17 

-applies to equation (89) 

-pseudocode that specifies that the Working Navigation Map just fed back (i.e., 

WNM’t-1 which is WNM’t of the previous cognitive cycle) is to have its 

components extracted (i.e., effectively stored) into the best matching local 

navigation maps of the various Input Sensory Vectors Associations Modules 

-thus, as the cognitive cycle progresses, the actual sensory inputs will be ignored, 

and instead these components of the previous Working Navigation Map WNM’t-1 

(i.e., the intermediate results from the Navigation Module A in the last cognitive 

cycle) will be propagated towards the Navigation Module A and operated on again 

( (actiont  ≠“ move*” or  WPRt = 

[“analogical*”]) and  WPRt  ≠ 

[“discard*”]  and  WPRt ≠ [“feedback*”] 

), 

⇒ 

-if the actiont  signal produced by the Navigation Module A (i.e., actiont = 

Nav_ModA.apply_primitive(WPRt, WNM’t)  (82)) is not actionable 

(actiont  ≠“ move*”—there is no actuator to move or no electronic signal to send)  

-or if the Working Primitive WPRt  specifies “analogical” feedback (regardless if 

the actiont  signal is actionable) 

-and the Working Primitive WPRt  does not specify to “discard” the results 

(regardless  if the actiont  signal is actionable, if “discard” is specified then nothing 

happens except to wait for the next cognitive cycle) 

-and the Working Primitive WPRt  does not specify to use the previous “feedback” 

pseudocode (i.e., equations (88, 89))  (regardless  if the actiont  signal is actionable) 

-then equations/pseudocode which follows—which are equations (90,91,92, 

93)—will be run 

⇒Nav_ModA.feedback_to_assoc

n_mod(WNM’t)    

-equation (90) is the same pseudocode as equations (88)/ (88a)  

-pseudocode to feed back and store the intermediate results of the Navigation 

Module A, i.e., the Working Navigation Map WNM’t in the Input Sensory Vectors 

Association Modules 

⇒Causal_Mem_Mod.match_best_

map(WNM’t) 

 

→ WNM’t  

-WNM’t  is also sent to the Causal Memory Module (91) 

-sending WNM’t to the Causal Memory Module (91) triggers 

Causal_Mem_Mod. match_best_map (WNM’t) 



-this pseudocode matches WNM’t  against the multisensory navigation maps 

stored in the Causal Memory Module, and assigns this best matching navigation 

map as the new WNM’t value 

⇒Nav_ModA.use_linkaddress1_

map(WNM’t) 

→ TempMapt 

-the pseudocode Nav_ModA.use_linkaddress1_map(WNM’t) activates 

in the Causal Memory Module the navigation map which the most recently used 

linkaddress used in the past by the current Working Navigation Map WNM’t 

points to (92) 

-the result of the Causal Memory Module is automatically copied to TempMapt.  

-as noted earlier, in the CCA6 version of the architecture, results of the Navigation 

Module A and the Causal Memory Module are routinely and automatically copied 

to TempMap 

⇒Nav_ModA.subtract(WNM’t, 

TempMap)   (93) 

→ WNM’t 

-the pseudocode Nav_ModA.subtract(TempMap, WNM’t)subtracts the 

navigation map WNM’t  from the navigation map in TempMap (93) 

-the result becomes the new Working Navigation Map WNM’t  

( (actiont-1 ≠ “move*” or WPRt-1 = 

[“analogical*”]) and WPRt-1 ≠ 

[“discard*”] and WPRt-1≠ [“feedback*”] 

),   

⇒ 

-“t-1” simply refers to the cognitive cycle before this one, i.e., to the values from 

the previous cognitive cycle 

-if true then the pseudocode of equation (94) is run 

-if equation (90)’s conditions are true and its pseudocode is run, then this will also 

be true (exact same conditions except referring to the previous cognitive cycle), 

thus equations (90) to (94) are run one after another 

⇒Nav_ModA.retrieve_and_add_

vector_assocn()  (94) 

 

 

→ WNM’t 

-rather than propagate WNM’t-1 (which is in the Sensory Input Vectors 

Associations Modules, and will utilized in the new cognitive cycle, rather than the 

actual sensory inputs) towards the Navigation Module A and then automatically 

replace the existing WNM’t , the pseudocode specifies that WNM’t-1 should not 

replace but simply be added to the existing WNM’t  

-thus, now the original Working Navigation Map WNM’t in the Navigation 

Module A will contain the action or navigation map that occurred in the past of a 

similar Working Navigation Map in a possible analogical situation 

Table A18. Explanation of Symbols and Pseudocode in Equations (88a) – (94) 

 

 

Input:  not applicable as this is a continuation of Navigation Module A operations 

Temporary 

Inputs/Outputs 

occurring: 

note: to distinguish between the several different navigation maps which are considered the current  

Working Navigation Map WNM’ at some point, descriptive suffixes are added to WNM’ 

(however, note that there is only one navigation map in the Navigation Module A at one time 

designated as WNM’; the descriptive suffixes are for the reader, they do not exist in the architecture) 

-WNM’t-original:   the original current Working Navigation Map is fed back to the  Input Sensory 

Vectors Association Modules (90) 

- WNM’t-original: the original current Working Navigation Map is propagated to the Causal 

Memory Module and the resultant best matching navigation map is sent back to the Navigation 

Module A and replaces WNM’t-original with WNM’t-best_match   (91) 

- WNM’t-best_match-linkaddress1: its most recently used linkaddress (i.e., pointing and accessing 

another navigation map) is sent to the Causal Memory Module and puts the retrieved (actually just 

activated) navigation map into TempMap (92) 

-TempMap: holding the retrieved navigation map WNM’t-best_match-linkaddress1 (92), which 

will then subtract the current Working Navigation Map WNM’t-best_match  and the result will be 

the new Working Navigation Map WNM’t-difference (93) 

-in the next cognitive cycle LNM(σ, ϓ ,t)  for some or all of the sensory systems, derived from the fed 

back WNM’t-1-original, are treated as inputs and added to the existing Working Navigation Map 

WNM’t-difference  resulting in WNM’t-analogical  (94) 

Output: not applicable as this is a continuation of Navigation Module A operations 

Description: -Earlier it was seen that the Navigation Module A applies the Working Primitive WPRt  against the 

current Working Navigation Map WNM’ and produced an actiont  signal which was sent to the 



Output Vector Association Module A and then to the external embodiment to activate an actuator or 

send an electronic signal. 

-In the previous section it was seen that if actiont is not actionable then intermediate results of the 

Navigation Module A (i.e., WNM’t) may be fed back again to the Input Sensory Vectors Association 

Modules and then in the next cognitive cycle return back to the Navigation Module A where it can 

be operated on again. By feeding back and re-operating on the intermediate results, the architecture 

can generate causal behavior. 

-In this section shown is a different “analogical” feedback algorithm to use if actiont is not 

actionable. 

-The analogical feedback algorithm in this section starts off similarly to the previous feedback 

algorithm, but rather than simply feeding back the Working Navigation Map WNM’t unchanged to 

be processed further in the next cognitive cycle, it feeds back and constructs a navigation map that 

occurred in the past of a similar Working Navigation Map WNM’t  (which can call “WNM’t-

analogical” to distinguish it from the other navigation maps that are set as WNM’t at different 

points). 

-WNM’t-analogical may be more likely in a possible analogical situation. This navigation map can 

then be processed further in the next cognitive cycle. 

-By using a possibly analogical navigation map it makes it more likely the navigation map which 

becomes the Working Navigation Map WNMt in the next cognitive cycle, and upon which possibly 

another (or possibly the same) WPRt will be applied, that an actionable actiont will result since it is 

using a navigation map that was tried in the past. 

-At the present, the algorithm underlying the pseudocode Nav_ModA.use_linkaddress1 

_map(WNM’t)(92) is simple and straightforward. However, in future versions more sophisticated 

algorithms for this pseudocode could choose better among matching navigation maps that were more 

successful in the past in producing an actionable action. 

-The next section will show that induction by analogy is actually occurring in this process. 

Table A19. Summary of the Analogical Feedback Operations from the Navigation Module A per Equations (88a) – (94) 

 

 

A.10 Induction by Analogy 

 

Below it is shown that the movement and comparison of navigation maps in equations (90 – 94)  allows induction 

by analogy to occur. These equations are re-written using the more descriptive terms for the Working Navigation 

Maps used in Table A19—to distinguish between the several different navigation maps which are considered the 

current Working Navigation Map WNM’ at some point, descriptive suffixes are added to WNM’. These descriptive 

suffixes are for the reader, they do not exist in the architecture. 

 

( (actiont  ≠“ move*” or  WPRt = [“analogical*”]) and  WPRt  ≠ [“discard*”]  and  WPRt ≠ [“feedback*”] ), 

         ⇒Nav_ModA.feedback_to_assocn_mod(WNM’t-original)   (95) (from 90) 

        ⇒ WNM’t-best_match    = Causal_Mem_Mod.match_best_map(WNM’t-original)  (96) (from 91) 

      ⇒ TempMapt = Nav_ModA.use_linkaddress1_map(WNM’t-best_match)   (97) (from 92) 

      ⇒ WNM’t-difference   =  Nav_ModA.subtract(WNM’t-best_match , TempMapt)   (98) (from 93) 

 

( (actiont-1 ≠ “move*” or WPRt-1 = [“analogical*”]) and WPRt-1 ≠ [“discard*”] and WPRt-1≠ [“feedback*”] ),   

     ⇒ WNM’t-analogical  = Nav_ModA.retrieve_and_add_vector_assocn()  (99) (from 94) 

 

    Consider a definition of induction by analogy. There are two variables x and y. Variable x has properties P1, P2, P3, 

P4, … Pn  (100). Variable y also has properties P1, P2, P3, P4, … Pn  (101). It happens that variable y has another property 

N (102). Therefore in (103) it can be concluded by induction by analogy that variable x also has property N. 

    In (95) consider WNM’t-original as variable x, or perhaps as navigation map x. It is desired to know what this 

navigation map x will do  next, i.e., which navigation map will it call. Consider variable y, or perhaps named as 

navigation map y, as referring to  (96) WNM’t-best_match. It is the best matching navigation map to navigation map 

x and thus assumed it will share many properties. Next there is exploration of what navigation map y does next (i.e., 

what navigation map does the linkaddress chosen link to). Navigation map y calls the navigation map in TempMap 



(97) and that the difference between navigation map y and TempMap is WNM’t-difference  (98). Thus,  consider this 

difference, i.e., WNM’t-difference to be property N. Since navigation map y has property N, therefore by induction 

by analogy, it can be said that navigation map x also has property N  (103). Thus, add property N, which is actually 

WNM’t-difference, to navigation map x, which is actually WNM’t-original, producing the result of navigation map x 

with property N as being WNM’t-analogical  (99). 

 

 

P1x & P2x & … Pnx   (100) 

P1y & P2y & … Pny   (101) 

Ny    (102) 

∴  Nx   □     (103) 

 

    It is important to note that analogical problem solving is not a separate module in the architecture (for example, 

to be used when solving intelligence tests or difficult problems) but rather part of the core mechanism of day-to-day 

functioning of the architecture. These equations remain largely unchanged in the CCA6 architecture from the prior 

CCA5 architecture although there are small modifications to account for the duplicate Navigation Module. Note that 

equations (i) to (ix) in the text of paper above are easy-to-read versions of equations (95) to (103). 

 

 

( (actiont  ≠“ move*” or  WPRt = 

[“analogical*”]) and  WPRt  ≠ [“discard*”]  and  

WPRt ≠ [“feedback*”] ), 

⇒ 

-see Table A18 

 

⇒Nav_ModA.feedback_to_assocn_mo

d(WNM’t-original)   (95) 

 

-see Table A18 

- WNM’t-original – the current Working Navigation Map  WNM’t which is 

given the label ‘original’ for better understanding of what is happening 

⇒Causal_Mem_Mod.match_best_map(

WNM’t-original)  (96) 

 

→  WNM’t-best_match     

-see Table A18 

WNM’t-original – the current Working Navigation Map  WNM’t  which is 

given the label ‘original’ for better understanding of what is happening 

⇒Nav_ModA.use_linkaddress1_map(

WNM’t-best_match)   (97) 

 

→ TempMapt 

-see Table A18 

-WNM’t-best_match – the current Working Navigation Map  WNM’t which  

is given the label ‘best-match’ for better understanding of what is happening 

⇒Nav_ModA.subtract(WNM’t-

best_match , TempMapt)   (98) 

 

→  WNM’t-difference    

-see Table A18 

- WNM’t-difference   – the current Working Navigation Map  WNM’t which  

is given the label ‘difference’ for better understanding of what is happening 

( (actiont-1 ≠ “move*” or WPRt-1 = 

[“analogical*”]) and WPRt-1 ≠ [“discard*”] and 

WPRt-1≠ [“feedback*”] ),  ⇒ 

-see Table A18 

 

⇒ WNM’t-analogical  = 

Nav_ModA.retrieve_and_add_vector

_assocn()  (99) 

 

→  WNM’t-analogical   

-see Table A18 

- WNM’t-analogical  – the current Working Navigation Map  WNM’t which  

is given the label ‘analogical’ for better understanding of what is happening 

P1x & P2x & … Pnx   (100) 

 

-explanation of definition of induction by analogy 

- variable (or navigation map) x has properties P1, P2, P3, P4, … Pn  

P1y & P2y & … Pny   (101) 

 

-explanation of definition of induction by analogy 

-variable (or navigation map) y also has properties P1, P2, P3, P4, … Pn 

Ny    (102) 

 

-explanation of definition of induction by analogy 

- variable (or navigation map) y also has property N 



Table A20. Explanation of Symbols and Pseudocode in Equations (95) – (103) 

 

 

 

Input:  not applicable as this is a continuation of Navigation Module A operations 

Output: - WNM’t-analogical  (99) 

Description: -See Table A18. Equations (95 – 99) are re-write of equations (90 – 94) using the more 

descriptive terms for the Working Navigation Maps. These descriptive suffixes are for the 

reader, they do not exist in the architecture. 

-To distinguish between the several different navigation maps which are considered the 

current Working Navigation Map WNM’ at some point, descriptive suffixes are added to 

WNM’ listed above. 

- Equations (100 – 103) consider a definition of induction by analogy applied to the 

operations performed on the Working Navigation Maps. 

Table A21. Summary of the Analogical Feedback Operations from the Navigation Module A per Equations (95) – (103) 

 

 

 

A.11 Grounding 

 

    Like the prior CCA5 architecture, the CCA6 architecture provides a solution to the grounding problem—

information enters the system through experiential sensory systems. Information will automatically be mapped to real-

world sensations and actions. No information is kept as an isolated symbol—everything in the CCA6 is within a 

navigation map linked to other navigation maps.  

    A feature was defined initially in (34). Cells in navigation maps can contain features, procedures, or linkaddresses. 

Below equation (104) defines a grounded_feature as being any feature such that the feature is in some sensory system 

Local Navigation Map all_LNMsχ and that the feature also was present in some sensory system array Sσ,t (1–7) 

represented by s(t) (9). This implies that the CCA6 experientially acquired this feature, and it is in its navigation maps 

associated with other sensory inputs and possibly associated with previous or upcoming features. The symbol 

grounding problem is largely resolved by grounding symbols with their real-world sensations, interactions, and 

linkages. 

    However, the second part of equation (104) deals with the case where information has been acquired by electronic 

transfer or by the equivalent of human memorization, or possibly an experiential acquisition of the feature was poor, 

and grounding is poor. A feature is considered as a grounded_feature if the feature is present in a Working Navigation 

Map WNM’t and in the previous cognitive cycle the analogical feedback mechanism was used. Note that if in the 

previous cognitive cycle (t-1) the action was not actionable, i.e., actiont-1 ≠ “move*”, then the analogical feedback 

mechanism will occur, or if the previous Working Primitive WPRt-1 specified an analogical feedback loop, then the 

analogical feedback mechanism will occur. 

    Equation (105) essentially states that any cell in any of the addressable navigation maps (e.g., it will not include, 

for example, the specialized navigation maps in the Sequential/Error Correcting Module) will either contain a 

grounded_feature or contain a linkaddress pointing to another cell which most likely will be in another navigation 

map, or else the cell has no features. 

    With regard to accepting as grounded a linkaddress pointing to another cell/navigation map, it is assumed that there 

are so many links pointing to so many other navigation maps in a chain of linkaddresses that if a cell points to another 

cell most likely in another navigation map, it will be grounded there by association with some valid grounding 

condition (e.g., sensations, actions, etc.) or else point to another navigation map where it will be ground there, and so 

on. There may be differences in the quality of the grounding as such, but it will always be grounded to some extent.  

    These equations remain largely unchanged in the CCA6 architecture from the prior CCA5 architecture. 

 

 

grounded_feature  =  ∀feature :  ( feature ∈ all_LNMsχ AND feature ∈ s(t) ) 

∴  Nx   □     (103) 

 

-explanation of definition of induction by analogy 

- thus, can conclude by induction by analogy that variable (navigation map) 

x also has property N 



 OR  

∀feature : ( ( feature ∈ WNM’t  AND actiont-1 ≠ “move*” AND WPRt-1 ≠ [“feedback*”]) OR  

WPRt-1 = [“analogical*”]  )            (104) 

 

 

∀χ,t : all_navmapsχ,t = grounded_feature OR link(all_navmaps χ,t) ≠ [ ] OR cellfeaturesχ,t = [ ]  (105) 

 

     

 

 
feature  - feature ∈ R (34) 

- some arbitrary real number representing a feature modality and value 

- for example, feature13,(χmodcode=*Causal_Memory_Mod*, mapno=3456,2,3,4) would be feature 

number 13 in the cell x=2,y=3,z=4 in map number 3456 in the Causal Memory 

Module; its value, for example, could represent a visual line 

grounded_feature   - any feature such that the feature is in some sensory system Local Navigation 

Map all_LNMsχ  and that the feature also was present in some sensory system 

array Sσ,t (1–7) represented by s(t) (9) 

- or if the feature has been acquired by electronic transfer or by the equivalent of 

human memorization then consider a feature as a grounded_feature if the feature 

is present in a Working Navigation Map WNM’t  and in the previous cognitive 

cycle the analogical feedback mechanism was used 

∀feature :  ( feature ∈ all_LNMsχ AND 

feature ∈ s(t) ) 

 

→ grounded_feature   

- any feature such that the feature is in some sensory system Local Navigation 

Map all_LNMsχ  and that the feature also was present in some sensory system 

array Sσ,t (1–7) represented by s(t) (9) 

∀feature : ( ( feature ∈ WNM’t  AND 

actiont-1 ≠ “move*” AND WPRt-1 ≠ 

[“feedback*”]) OR  

WPRt-1 = [“analogical*”]  )             

  

→ grounded_feature   

- for example, a feature that has been acquired by electronic transfer or by the 

equivalent of human memorization, then the analogical feedback mechanism will 

occur (when the feature is considered), and consider that feature as a 

grounded_feature  

- although the older feedback mechanism may result in grounding the feature 

adequately, often it won’t, thus requiring utilization of the analogical feedback 

mechanism to ensure grounding 

cellfeaturesχ,t = [ ] -cellfeaturesχ,t are all the features within a given cell χ  (38) 

-thus, cellfeaturesχ,t = [ ] means there are no features in that cell at address χ 

∀χ,t : all_navmapsχ,t = grounded_feature 

OR link(all_navmaps χ,t) ≠ [ ] OR  

cellfeaturesχ,t = [ ] 

 

- any cell in any of the addressable navigation maps will either contain a 

grounded_feature, or contain a linkaddress pointing to another cell which most 

likely will be in another navigation map, or else the cell has no features 

Table A22. Explanation of Symbols and Pseudocode in Equations (104) – (105)  

 

 

Input:  not applicable as this is a continuation of Navigation Module A operations 

 

Output: not applicable as this is a continuation of Navigation Module A operations 

 

Description: -These equations specify that for every addressable navigation map in the Causal Cognitive 

Architecture 6 (CCA6), features can be considered to be grounded or to be used in a grounded 

fashion. 

Table A23. Summary of the Grounding Requirements with the Architecture per Equations (104) – (105) 

 

 

 

A.12 Simple Language Generation 

 



The generation of simple language (i.e., as opposed to full compositional language) was discussed in the previous 

Causal Cognitive Architectures, including the previous CCA5 one. To a large extent, some way of communicating 

what is in a navigation map(s) from one CCA6 embodiment to another CCA6 embodiment is required. In the CCA5 

architecture this was accomplished with a straightforward instinctive primitive named 

apply_primitive_nav_to_protolang() . 

In the CCA6 while compositional language comprehension and behavior makes use of Navigation Module B, as 

was illustrated in the text and figures of the main body of the paper, language expression remains simple (i.e., 

essentially a simple read-back of what is on the navigation maps is being communicated) and still remains generated 

by Navigation Module A. In future versions of the architecture, full compositional generation of language is expected. 

In (106) Nav_ModA.apply_primitive_nav_to_protolang (WPRt, WNM’t)  produces an output action 

actiont . As before, per equations (83 – 87), actiont  is propagated from the Navigation Module A to the Output Vector 

Association Module A (xxx Figure 14). As before, there is motion correction of the output signal with interactions 

with the Sequential/Error Correcting Module, and then the output signal is sent to the Output Vector Association 

Module A and then on to the actual output actuators (Figure 3). 

The equation below remains largely unchanged in the CCA6 architecture from the prior CCA5 architecture, 

although it now specifies the Navigation Module being used. 

     

actiont= Nav_ModA.apply_primitive_nav_to_protolang (WPRt, WNM’t)  (106) 

 

 
Nav_ModA.apply_primitive_nav

_to_protolang(WPRt, WNM’t) 

 

→   actiont
 

-Nav_Mod refers to the Navigation Module A (xxx Figure 14) 

-apply_primitive_nav_to_protolang (WPRt, WNM’t) is pseudocode 

for an algorithm which applies the Working Primitive WPRt to the Working 

Navigation Map WNM’, such that the current WNM’ and sequence of WNM’ 

Working Navigation Maps preceding it (i.e., what happened? why did it 

happen?) are converted into a simple proto-language which is represented in the  

actiont  value 

-this is a simple read-back (limited verbs used) of the navigation maps 

- the  actiont  value will be transformed into an output signal that activates the 

appropriate actuators to communicate this simple proto-language communication 

to another CCA6 embodiment or a human 

- see Table A14 for more details of converting WPRt and WNM’t into an 

actionable output, which in this case represents a communication 

Table A24. Explanation of Symbols and Pseudocode in Equation (106) 

 

 

 

 

Input:  WPRt : the Working Primitive WPR is the primitive that will be applied against the Working 

Navigation Map WNM’ in the Navigation Module A, and with regard to (106) will involve 

transforming the recently stored (in the Causal Memory Module) Working Navigation Maps 

WNM’s into an explanation and communication of what happened and why it happened, as well as 

possibly communication of actions, requests, or concepts 

WNM’t : the current Working Navigation Map which is derived from the processed sensory inputs 

or analogic feedback results 

Output: actiont  : a signal to move some actuator or send an electronic signal 

e.g., <move right>   e.g., <sound 2000Hz> 

it is sent to the Output Vector Association Module A (xxxx Figure 14) where more detailed 

instructions are created to effect the required actuator outputs 

Description: -The Navigation Module A applies the Working Primitive WPRt  against the current Working 

Navigation Map WNM’ in the Navigation Module A, and with regard to (106) will involve 

transforming the recently stored (in the Causal Memory Module) Working Navigation Maps 



WNM’s into an explanation and communication of what happened and why it happened, as well as 

possibly communication of actions, requests, or concepts. 

Table A25. Summary of the Operation of Simple (Non-Compositional) Language Generation per Equation (106) 

 

 

 

A.13 Navigation Module B 
 

    As seen in Figure 3 there are now in the CCA6 two Navigation Modules—Navigation Module A and Navigation 

Module B (as opposed to the single Navigation Module in the prior CCA5 architecture, as seen in Figure 2). Similar 

to Navigation Module A, in Navigation Module B an instinctive primitive or a learned primitive (which themselves 

are navigation maps) in conjunction with the Working Navigation MapB WNMB’ (similar to the Working Navigation 

Map WNM’ that Navigation Module A operates on) may result in an action signal.  This signal goes to the Output 

Vector Association Module B and to the external embodiment (Figure 3). 

    Working Navigation Map B WNMB’ (107) is defined similarly to Working Navigation Map A WNM’–both are 

navigation maps, i.e., treated as arrays. Similarly, as equation (108) shows, any operation that in theory Navigation 

Module A can perform on a Working Navigation Map, Navigation Module B can also perform a similar operation on 

a similar Working Navigation Map. This implies that equations (1) to (106) above all also apply to the operations 

Navigation Module B on Working Navigation Map B WNMB’. Indeed, Navigation Module B originates from the 

duplication of Navigation Module A. However, the duplication is assumed to be somewhat of a partial duplication 

(not all pathways would have duplicated similarly necessarily) and in the architecture described in the main body of 

the text above, Navigation Module B is used mainly for compositional processing. Hence, in (108) there are what are 

called navA_only_operation’s—operations which are only performed by Navigation Module A. 

    While in the architecture described in the main body of the text above, Navigation Module B is used mainly for 

compositional language comprehension and resultant compositional behavior, in fact, Navigation Module B can be 

used for much more abstract compositional comparisons of two sets of data in the two Navigation Modules. This is 

beyond the scope of the present paper. The set of navA_only_operation’s can readily be adjusted in different versions 

of the architecture. 

    Consider the demonstration example shown in Figure 1. There are a number of shape objects in the sensory scene 

plus the instruction “place the white triangle on top of the black block which is not near a white cylinder.” As described 

by equations (1) to (106) above, the objects in the sensory scene of Figure 1 will become mapped/matched/updated 

onto the WNM’ navigation map in Navigation Module A. This is depicted in Figure 7. The instruction, however, will 

trigger the instinctive primitive parse_sentence()(which is broken down in sub-parts in equations (109) to 

(111)). 

    Equation (109) shows that if a sensory input is recognized as an instruction sentence instruction_sentence then the 

instinctive primitive Nav_ModB.parse_sentence.copy()maps the instruction sentence onto Working 

Navigation Map B WNMB’ in Navigation Module B. This can be seen in Figure 7. 

    The instinctive primitive Nav_ModB.parse_sentence.parse()then parses through the instruction 

sentence, i.e., Navigation Map B WNMB’ in Navigation Module B (110). For each word in the instruction sentence 

Nav_ModB.parse_sentence.parse.match() matches the word against the Causal Memory Module (Figure 

7)  (111). If an action word is found (e.g., “place” in the example shown in Figure 7) then it is mapped to cells in 

Navigation Map A WNM’ in Navigation Module A which contain matching features to the cells in the instruction 

sentence (i.e., Navigation Map B WNMB’ in Navigation Module B) associated with the action word. In the example 

in the text of the paper in Figure 7, the subsequent Figures 8 and 9 illustrate this matching. 

    Equation (112) shows that if a near_trigger occurs in parsing, then the instinctive primitive Nav_ModB. 

physics_near_object() is triggered. A near_trigger is a word (or other sensory input that does the same thing) 

related to the geometric concepts of near and not near. Continuing the compositional example of Figure 1, the word 

“near” acts as a near_trigger (Navigation Module B in Figure 7). Since there was a “not” beside it, and then “white, 

cylinder” this instinctive primitive flags the cell in Navigation Module A (i.e., Navigation Map A WNM’) with 

“cylinder, white” with the flag “not”. This is shown in Figure 10. Also, the physics_near_object() instinctive 

primitive will mark “not” in the matched cell and all the adjoining non-null cells. This is shown in Figure 10. 

    Equation (113) shows that once the instinctive primitive Nav_ModB.parse_sentence()has reached the end 

of the instruction or communication sentence, i.e., there is nothing left to parse, then it looks for cells which have been 

tagged or marked with tags. Possible associated tags depend on the collection of instinctive primitives, which at present 



only has the single option of place_object() (but thousands of instinctive and learned primitives are possible 

here). 

    Given a <place> tag in cell (0,0,0) of Navigation Module A in Figure 11 in the example in the text, the instinctive 

primitive Nav_ModA.place_object() will be triggered (113). Note that this instinctive primitive will operate 

on Navigation Module A (i.e., Navigation Map A WNM’ which is the representation of the sensory scene. 

    The Nav_ModA.place_object()instinctive primitive will attempt to move and place an object somewhere. 

Continuing the example above, the tag <“place”> is most closely associated with “triangle, white”—that is the object 

that will be placed somewhere. The primitive now looks for other tagged notations such as <“top”> in the navigation 

map (Figure 11). It will see a <“not”> in the cell with the features of a black block at (2,0,0) and not consider the  

<“top”> tag in that cell . However, the cell with the features of black block at (4,0,0) has a valid tag such as <“top”>. 

Thus, this primitive will in turn trigger the instinctive primitive Nav_ModA.move()to perform the movement of the 

white triangle to cell (4,0,0) (on top of it if three dimensions were being used)  (114). 

Nav_ModA.move() can be used for many actions of the CCA6. In this example, actions from Navigation Module 

A cause an action signal to go to the Output Vector Association Module A (Figure 11). The Output Vector Association 

Module A performs motion planning and motion corrections via feedback from the Sequential/Error Correcting 

Module. The corrected motion action signal from the Output Vector Association Module A is shown as Arrow J in 

Figure 11. This signal goes to the Output Vector Shaping Module which produces the actual signals (arrow K, Figure 

11) for actuators to move the white triangle to the cell with the black block on the right. Thus, the white triangle is 

then moved to (and on top of it in 3 dimensions) the black block on the right side. 

Then a new cognitive cycle repeats again, finally processing again the actual sensory inputs streaming into the 

architecture. 

 

WNMB’ =  ∈ Rmxnxoxp    (107) 

 

∀ operationNavModA(),    

( ~navA_only_operation  ⟹ operationNavModB(WNMm) = operationNavModA(WNMm) )  (108) 

 

              ( instruction_sentence ), 

             ⇒WNMB’t  = Nav_ModB.parse_sentence.copy() (109) 

           ⇒ Nav_ModB.parse_sentence.parse(WNMB’t),   (110) 

                 ⇒ Nav_ModB.parse_sentence.parse.match()   (111)  

   ⇒ near_trigger, 

    ⇒Nav_ModB.physics_near_object()   (112) 

           ⇒ end_of_communication, 

        <place>, 

                                 ⇒ Nav_ModA.place_object()   (113) 

    ⇒ Nav_ModA.move()     (114) 

 

 

 

 

 
WNMB’ -Working Navigation Map B 

-the current Working Navigation Map B WNMB’t  is the navigation map which 

the Navigation Module B focuses its attention on, i.e., applies operations on to 

make a decision to take some sort or no action 

∀ operationNavModA(WNMm),    

( ~navA_only_operation  ⟹ 

operationNavModB(WNMm) = 

operationNavModA(WNMm) )   

-any operation that in theory Navigation Module A can perform on some Working 

Navigation Map m in Navigation Module A WNMm (operationNavModA(WNMm)), 

Navigation Module B can also perform a similar operation on a similar Working 

Navigation Map m WNMm  in Navigation Module B  

-implies that equations (1) to (106) above all also apply to the operations of 

Navigation Module B on Working Navigation Map B WNMB’ 



-navA_only_operation’s—operations which are only performed by Navigation 

Module A; set of these nav_modA-only operations can be adjusted for different 

versions of the architecture 

-in CCA6 Navigation Module B largely used for compositional language 

comprehension and behavior 

instruction_sentence -a sensory input which triggers recognition as an input instruction sentence by the 

Input Sensory Vectors Association Module and/or Instinctive Primitives and/or 

Learned Primitives 

WNMB’t  = Nav_ModB. 

parse_sentence.copy() 

-instinctive primitive parse_sentence.copy()maps the 

instruction_sentence instruction sentence onto Working Navigation Map B 

WNMB’ in Navigation Module B 

Nav_ModB.parse_sentence. 

parse(WNMB’t) 

-instinctive primitive parse_sentence.parses()parses through the 

instruction sentence, i.e., Navigation Map B WNMB’ in Navigation Module B 

Nav_ModB.parse_sentence. 

parse.match()    
-for each word in the instruction sentence Nav_ModB. 

parse_sentence.parse.match() matches the word against the Causal 

Memory Module 

- if an action word is found (e.g., “place” in the example shown in Figure 7) then 

it is mapped to the Navigation Map A WNM’ in Navigation Module A.  

 

near_trigger -word related to positional relationships of near and not near 

-triggers instinctive primitive physics_near_object() 

near_trigger, 

 ⇒Nav_ModB. 

    physics_near_object() 

 

-if a near_trigger occurs in parsing, then the instinctive primitive 

Nav_ModB.physics_near_object() is triggered 

-the Nav_ModB.physics_near_object()will mark “near” (or “not” if 

“not” is specified in the instruction) the cell, in Navigation Map A WNM’ in 

Navigation Module A,  which matches to this instinctive primitive, as well as all 

the adjoining non-null cells. 

end_of_communication -end of a language sentence, i.e., nothing left to parse 

<place> -existence of a <”place”> tag 

end_of_communication, 

    <place>, 

           ⇒ Nav_ModA. 

      place_object()   

 

-once the instinctive primitive Nav_ModB.parse_sentence()has reached 

the end of the instruction or communication sentence, i.e., there is nothing left to 

parse, then it will trigger associated tags 

-possible associated tags depend on the collection of instinctive primitives, which 

at present only has the single option of place_object() (but thousands of 

instinctive and learned primitives are possible here) 

-given a <place> tag in cell (0,0,0) of Navigation Module A in Figure 11 in the 

example in the text, the instinctive primitive Nav_ModA.place_object() is 

triggered 

- Note that this instinctive primitive will operate on Navigation Module A (i.e., 

Navigation Map A WNM’) 

- The Nav_ModA.place_object()instinctive primitive will attempt to 

move and place an object somewhere depending on what tags the other 

instinctive primitives Nav_ModB.parse_sentence. 

parse.match()and Nav_ModB.physics_near_object()have written 

to Navigation Map A WNM’ 

 

Nav_ModA.move()      -once Nav_ModA.place_object()has a location to move the object to, 

Nav_ModA.move()is triggered and actually sends an action signal to the Output 

Vector Association Module A which then outputs a more processed action signal 

to other modules resulting in the architecture’s output actuators being instructed to 

move the object 

Table A26. Explanation of Symbols and Pseudocode in Equations (107) – (114) 

 

 

 



Input: WNM’t : the current Working Navigation Map A in Navigation Module A which is derived from 

the processed sensory inputs representing the sensory scene (e.g., Figure 7) 

WNMB’t : the current Working Navigation Map B in Navigation Module B which is derived from 

a communication sentence (e.g., Figure 7) 

WPRt : various Working Primitives WPR’s are the primitives that will be applied against the 

Working Navigation Map A WNM’ in the Navigation Module A and/or Working Navigation Map 

B WNMB’ in the Navigation Module B; these include: 

- Nav_ModB.parse_sentence() 

- Nav_ModB.physics_near_object() 

- Nav_ModA.place_object()   

- Nav_ModA.move()      

  

Output: actiont  : a signal to move some actuator or send an electronic signal 

-it is sent from Navigation Module A to the Output Vector Association Module A (Figure 11) where 

more detailed instructions are created to effect the required actuator outputs to the Output Vector 

Shaping Module (Figure 11) to the actual real-world actuators 

Description: -A communication or instruction sentence is parsed in Navigation Module B and applied against a 

relevant represented sensory scene in Navigation Module A. As such, the beginnings of 

compositional language comprehension and behavior emerge. 

Table A27. Summary of the Operation of Compositional Language Comprehension per Equations (107) – (114) 


