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Abstract. This study performed a rationality analysis of the delay time and embedding dimension value 

during phase space reconstruction in hydrological series and the effect on their chaotic characteristics. Using 

a monthly average runoff time series from the Ayanqian station (upstream) and the Jiangqiao station 

(midstream) in the Nen River Basin, we reached the following regularity conclusions. ① Based on the flood 

season (4 months) in the Nen River Basin, we can deduce that the correlation sequence length for the runoff 

is 4~5 months, i.e., the delay time =3 or 4 is a reasonable choice. ② Learn from the predictability experiment 

results for the monthly rainfall time series, we know that the calculation results of the G-P algorithm for the 

dimension   of runoff series for the Nen River Basin are reasonable, i.e., the embedding dimension is no 

more than seven. ③  the most suitable parameters for the phase space reconstruction and its chaotic 

characteristic index in the Nen River Basin are as follows: delay time = 3~4, embedding dimension = 6~7, 

correlation dimension = 2.90~3.00, maximum Lyapunov index   = 0.24~0.32, and the forecast time   is 3~4 
months. 

 Keywords: Chaos Theory ；Delay Time ； Embedding Dimension ； Phase Space Reconstruction 

1. Introduction 

The classical theory of hydrology considers that hydrological phenomena have deterministic and 

random properties: as the astronomical and macroscopic geographical factors are stable, the 

hydrological phenomena have yearly periodicity and obvious seasonality; while hydrological 

phenomena are affected by many secondary and indirect factors, such as changes in atmospheric 

circulation, the temporal and spatial distribution of precipitation, and the evapotranspiration 

process, the mechanisms of which are varied and complex. However, no factor plays the leading 

role, which eventually leads to the randomness of hydrological phenomenon [1]. This randomness is 

essentially external, i.e., deterministic systems introduce random initial conditions, random 

parameters, random external forces (noise), etc., which makes the system output is no longer 

deterministic [2]. In 1963, however, the American meteorologist Lorenz detected the extreme 

instability of numerical equations to the initial value in a numerical experiment, i.e., the intrinsic 

randomness of deterministic equations [3]. In order to explain this “chaotic phenomenon” known as 

“The Butterfly Effect,” scientists have formulated the mathematical results as Chaos Theory. 

The application of Chaos Theory in hydrology can be divided roughly into two categories, i.e., 
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estimating the predictability scale of hydrological series [4-6] and combining a variety of 

mathematical models, such as similar point methods [7], regression analysis [8], wavelet analysis [8], 

fuzzy mathematics [9], neural nets [10-12], radial basis function [13], and support vector machines [14] to 

construct medium- and long-term hydrologic forecasting model. In addition, studies have also used 

the chaotic characteristics of hydrological series to reduce the hydrologic data noise [15] and perform 

hydrologic data interpolation [16]. These studies are all based on the reconstruction of phase space in 

hydrological series and the analysis of their chaotic characteristics. The application and existing 

problems in Chaos Theory have been systematically and fully discussed previously [17], so they 

won't be covered again here.  

This article discusses the determination of the delay time and embedding dimension when 

applying Chaos Theory to the reconstruction of phase space for a hydrological series and its chaotic 

characteristics, where we highlight the physical cause analysis of hydrology. We reconstruct the 

phase space Y  after determining the delay time   and the embedding dimension m  of nonlinear 

system X  and identify Y  based on its chaotic characteristics, i.e., we calculate the maximum 

Lyapunov index and judge whether this system has chaotic characteristics, before further analysis of 

its predictability and predictable time scale. 

2. Phase space reconstruction for a time series 

In mathematics and physics, the phase space is a representation system used to describe the 

system status and evolution process, where any status of the system has a corresponding phase 

space point. If a dynamic system is expressed as a group of ordinary differential equations, we can 

establish a clear link between the space coordinates and the state variables, before deducing the 

property of attractors directly to evaluate the chaotic characteristics of the dynamic system. 

However, if the movement differential equation of a reality system is unknown, it is very difficult to 

get the attractor characteristics of the system, so we have to reconstruct a phase space by observing 

the sequence ),,2,1)(( Nttx  . The phase space reconstruction theory of Packard [18] introduces 

Chaos Theory into time series analysis, which considers that the time series themselves include the 

relevant information for all of the dynamic system variables. By analyzing the observational data, 

we can change the observations of some fixed time delay points into new coordinates that jointly 

determine a point in multi-dimensional state space, so the phase space of the system can be 

reconstructed from a variable time series. Takens’ embedding theorem [19] developed the Packard’ 

thoughts and proposed a lower bound for the embedding dimension in phase space as 

12  Dm  

where D  is the strange attractor dimension of the chaotic system, known as the correlation 

dimension. The m -dimensional vector sequence is reconstructed using ),,2,1)(( Nttx   

               )1((,),(),()( mtxtxtxtX  （ Mt ,,2,1  ）               （1） 

where )1(  mNM  and   is the delay time. The m -dimensional state space that is produced by 

the observed value )(tx  and its delay value   is the phase space reconstruction. Based on Takens’ 

embedding theorem, we know that provided we choose a suitable “delay time  ” and “embedding 

dimension m ”, the trajectories of the phase space reconstruction in the embedding space and the 

original system are dynamically equivalent in a diffeomorphic sense. The phase space 

reconstruction maintains the original topology structure and it possesses the same dynamic 

characteristics. And then we can analyze the chaotic characteristics of the original dynamic system 

in the phase space reconstruction. 

3. The effect of the delay time on the phase space reconstruction and its chaotic characteristics 

For the high sensitivity of phase space reconstruction to the delay time  , data experiments have 

been conducted in the Lorenz system (Lorenz Equation) and the Luo Sile system (Rössler 
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Equation), where the results showed that [20-22]: if   is too small, the constructed attractor is 

extruded into the vicinity of the diagonal line of the coordinates system; whereas if   is too large, 

the trajectory of data points wrinkles and folds, so it is difficult to obtain clear projection 

relationships. The choice of the delay time is essential for the reconstruction of phase space and its 

chaotic characteristics. 

3.1 General method for deriving the delay time and the existence problem 

The influential conclusions about delay time selection for the phase space reconstruction in the 

above text are obtained using differential equations where their sample size is infinite and the 

sample lacks noise, which should be treated with extreme caution during the direct popularization 

of actual systems. During the chaotic analysis of hydrological series, the derivation of the delay 

time   has been discussed systematically in the literature [23] but confusion still exists, i.e., first, the 

samples are limited in the runoff sequence; second, the samples are rich in noise (the permissible 

relative testing error for flow is 5%) [24]. In hydrology, we also need to determine whether the 

correlation coefficient r  is greater than 0.8 to judge the correlation of the two indicators, instead of 

0 in the mathematical sense. Previous studies [25-26] have used r 0.1 and 0.5 as the criterion for 

deducing the delay time   depending on the characteristics of problems in their respective areas. 

Therefore, when deducing the delay time, we should start from the physical significance of the 

delay time required for the phase space reconstruction, i.e., “keeping independent or reaching 

minimum correlation among the embedding coordinates” [10] where the “minimum correlation” 

should be based on the actual problem. Jumping from the simple mathematical concept and 

applying the physical interpretation of chaos theory to a real problem are the ways of exploring the 

deduction of the delay time. 

3.2 The effect of the delay time on the phase space reconstruction and its chaotic 

characteristics 

We adopt the commonly used experimental methods of Chaos Theory [27] to study the effect of 

different delay time to a hydrological time series and its chaos characteristics. It is difficult to 

estimate a suitable delay time   and the embedding dimension m  for a sequence, but we may list 

the possible values of  , before deducing the corresponding m  and the maximum Lyapunov index 

1 . We can use the methods for deriving m  and 1  that have been proposed in the literature [27-28]. 

We used the monthly averages of the runoff sequences in the upper reaches of Ayanqian station and 

the midstream Jiangqiao station in the Nen River Basin during 1952 to 2005, as well as the monthly 

averages in the upper reaches of Tangnaihe station and the midstream Longmen station in the 

Yellow River during 1953 to 2003, and selected the delay time  =1~24 to calculate the phase space 

reconstruction and the chaotic characteristic index. When drawing m  and 1  in the same graph, a 

normalization process should be applied to eliminate the effect of dimension, i.e., the respective 

volume indicators divided by their respective maximum value, which is known as the “coefficient 

of chaos index model ratio.” The results are compared in Figures 1 and 2. 
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Figure 1 The effect of the delay time on the Nen River runoff sequence during the phase space 
reconstruction and its chaotic characteristics. 

 

 

 

 

 

 

Figure 2 The effect of the delay time on the Yellow River runoff sequence during the phase space 

reconstruction and its chaotic characteristics 

For the Nen River Basin, with the change of  , m  has a sudden change at the points of  = 12 

( m = 40) and 24 ( m = 20), while at any other time it fluctuates lightly. This situation for the Yellow 

River runoff is not so obvious, although its calculated value reaches the maximum at the points of 

 = 12 ( m = 40) and 24 ( m = 20) with slightly change. For the two basins, the change of   has little 

effect on the upstream sections (Ayanqian and Tangnaihe), whereas it is large in the downstream 

sections (Jiangqiao and Longmen). 

For the Nen River Basin, 1  exists obvious periodicity with   has a peak at integer multiples of 

three and a valley at integer multiples of four. The value of 1  is significantly higher in the 

upstream section than the downstream section. For the Yellow River Basin, 1  exists obvious 

periodicity in the upstream of Tang Naihe station. It is slightly different from the Nen River Basin, 

although it has a peak at integer multiples of three, when  = 6, 12, and 18, the value of 1  is much 

higher than the value at  = 9, 15, and 21. The change of 1  in the downstream of Longmen station 

does not exhibit significant regularity and the changing trends are also inconsistent in the upstream 

and downstream. 

Based on an intuitive overview of the two watersheds, a further analysis combined with the 

expert knowledge of hydrology is as follows. 

1. From a randomness perspective, there are significant differences between the upstream and 
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downstream regions, where the former is less affected by human activity than the latter. There are 

significant differences between the Yellow River Basin and Nen River Basin, where the former is 

more affected by human activity than the latter. The construction of large water projects in the upper 

reaches of the Yellow River began in the 1950s, such as Liujiaxia, Yanguoxia and Qingtongxia 

which were started in 1958. By contrast, the Tang Naihe station, which is located in the river head, 

is less affected by human activity. The upstream of Nen River Basin has few water projects, except 

for the Nierji hydraulic key project, which began to store water in 2005. Because the data used in 

this article predate 2005, it can be considered the natural runoff condition. Thus, it is clear that 

runoff series with less influence of human activity have obvious chaotic characteristics. Whereas, it 

is unfit for chaotic analysis. 

2. The value of   (above) has a sudden change at 12 and 24, which corresponds to the explicit 

hydrological cycle (12 mouths). Based on this, we can deduce that the value of   should be less 

than 12. In order to determine a reasonable value of  , we need to perform a further analysis of the 

various indicators of   in the range of 1~12 segments. The main recharge of the Nen River Basin is 

precipitation, so the inflow is concentrated in the flood season, i.e., June 15 to September 15. The 

main recharge is precipitation during the flood season, whereas groundwater recharge is more 

important after the flood season. The autocorrelation of the runoff process does not have a causal 

relationship essentially, while the rainfall recharge capacity and the groundwater so have such a 

correlation with the runoff. Therefore, flood runoff and non-flood runoff certainly do not have a 

close correlation, which manifests as two correlated processes. In the Nen River Basin, the flood 

season lasts for 4 months so we can deduce that the correlation sequence of runoff is 4~5 months, 

i.e.,  = 3 or 4 is a reasonable choice. The flood season in the above area of the Tangnaihe station 

on the Yellow River is from July to October. The runoff changes are mainly affected by rainfall and 

temperature, i.e., the rainfall affects runoff production directly while the temperature may affect the 

snowmelt runoff, and there is almost no influence of human activity. There is little precipitation 

from November to April in the next year, so the runoff is mainly composed of basin water supplies 

and melting snow. Generally, the runoff process presents a stable extinction rule from late October 

to November [29]. Therefore, the Yellow River Basin runoff has a more complex composition and 

variation. The middle and lower reaches of the Yellow River are seriously affected by human 

activities, so the runoff randomness of the natural environment is overshadowed by human factors. 

In natural conditions, the natural factors are relatively stable over long (or very long) time scales 

whereas the stability of human factors is relatively poor, so the operating program of the key control 

project may need to be adjusted quickly depending on the production requirements. 

3. The effect of   on m  is not significant, whereas there is a significant effect on the chaotic 

characteristics of the phase space constructed using different   and m  values, i.e., the chaotic 

characteristics of phase space constructed using different combinations of   and m  have 

significantly differences. 

4. Effect of the embedding dimension on the phase space reconstruction and its chaotic 

characteristics 

In order to analyze the effect of m  on the phase space reconstruction and its chaotic 

characteristics, Nen River Basin was selected as the study area, which has slightly human activity 

and simple watershed composition. The chaotic characteristic indexes were calculated by using  = 

3 and 4 which are corresponding to different m  values. 
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Figure 3 (a) The effect of different embedding dimensions on the phase space reconstruction and its 

chaotic characteristics. (Ayanqian) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 (b) The effect of different embedding dimensions on the phase space reconstruction and its 

chaotic characteristics. (Jianqiao) 

Figure 3 shows that with the increasing of m , the trend of the curve 1  for the two stations is 

consistent at 3  and 4, where they all converge to the vicinity of 0.05. The identifiers “•” and 

“” indicate the embedding dimensions which are calculated by G-P algorithm and their position on 

the curve is not special. Take’s’ embedding theorem showed that in order to reconstruct the single 

variable time series into a multidimensional phase space, m  should be large enough. 

12  Dm  

The dimension of strange attractors reflects the complexity of the attractor structure, while it also 

reflects the amount of information in the attractor, so it can also be used to characterize the 
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geometric structure of attractors. Correlation dimension D  is a common definition of the 

dimension, where the physical concept is clear and it has a strict mathematical definition. As a 

purely mathematical definition, however, there may be many difficulties if it is used to analyze the 

experimental data [30]. 

With respect to the experimental method of the value of m , based on the phase space modeling 

theory, literature [31] performed a prediction experiment that is using the monthly rainfall time series 

and studied the forecast precision of the monthly rainfall along with the change of the embedding 

dimension m . It found that the phase space gave the best prediction results when 7m , so the 

maximum number of independent variables in the description of the chaotic system was no more 

than seven. 

The runoff changes mainly depend on the combined influence of astronomy, meteorology, ocean, 

and the underlying surface. The conditions of the underlying surface are relatively stable for a 

certain basin, which may be considered to be a time-invariant system [32]. Thus, the runoff impact 

factors we should consider are the basin precipitation and atmospheric circulation features. Based 

on the above predictability experiments related to the monthly rainfall time series, the calculation 

results of the G-P algorithm for the dimension m  are reasonable when using the monthly runoff time 

series of the Nen River Basin, i.e., Ayanqian station: 3 ， 6m ； 4 ， 6m ; Jiangqiao 

station: 3 ， 7m ； 4 ， 6m . 

5. The forecasting time scale for the runoff process 

Predictability refers to the forecasting accuracy of the system in the near future or the long-term 

future and the feasibility of long-term forecasting is a highly controversial subject. Newtonian 

mechanics determinism considers that long-term forecasting is not only feasible but also does not 

limit the time, whereas others who hold the “Butterfly Effect” view believe that long-term 

prediction is impossible. However, Lin [33] suggested that the chaotic behavior of chaotic systems is 

not a fully parametric domain and that the dynamic behavior of nonlinear chaotic systems is non-

chaotic in most of the parameter domain, and that chaos can be used to make numerical predictions. 

The dynamic behavior of chaotic systems is rarely chaotic in part of the parameter domain and the 

chaos could not be used to make numerical predictions. Based on a large amount of model testing, 

the author reached the following conclusions. 

(1) Theoretically, statistical methods are more rigorous than dynamic methods for the forecast of 

chaotic dynamic systems, whereas the opposite is true for the forecast of non-chaotic dynamic 

systems. 

(2) It is difficult to determine the chaotic region parameters accurately for an objective system or 

to estimate whether a chaotic region exists, so it is more convenient and rigorous for statistical 

forecasting methods than dynamic systems. 

(3) During numerical prediction, the methods used to make the average monthly forecast based 

on the average monthly data are more rigorous than when calculating the average monthly forecast 

based on instantaneous values or after calculating the average instantaneous value. 

A previous study [Lin, 1999a] suggested that nonlinear dynamical systems are extremely 

sensitive to the initial conditions and the evolution of error manifests as indexed divergence, so the 

evolution behavior can be forecast objectively for a non-chaotic system or a chaotic system during a 

non-chaotic region. The reciprocal of the maximum Lyapunov index is used to define a system’s 

maximum possible forecasting time scale fT  in previous studies, as follows: 

                        1/1 fT                                   （2） 

where 1  is the largest Lyapunov index. 

The initial value sensitivity of chaotic system is such that if two trajectories are very close at first, 

they can diverge at an exponential rate in the phase space. The Lyapunov index is based on whether 

the phase trajectories have diffused movement characteristics to distinguish the chaotic 
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characteristics of the system. 

According to the calculational results in the above text, the most suitable parameters for phase 

space reconstruction and its chaotic characteristic index of the Nen River Basin should be as 

follows: delay time 4~3 , embedding dimension 7~6m , and the maximum Lyapunov index 

32.0~24.01  . These values can be used to estimate the forecast time fT  for the Nen River 

Basin as 3~4 months. 

6. Conclusions and outlook 

This study proposed a general method from Chaos theory to study time series problems. We used 

the basin theorem for phase space reconstruction and its explanation in hydrology as the entry 

points, before we focused on the effects of the embedding dimension and delay time on the phase 

space reconstruction and its chaotic characteristics. We reached the following conclusions based on 

a monthly runoff time series for the control section of the upper and middle reaches of the Nen 

River Basin and the Yellow River Basin. From a randomness perspective, there are significant 

differences between the upstream and downstream sections, where the former is less affected by 

human’s activity than the latter. It is clear that the chaotic properties of runoff processes are affected 

slightly by human activity are obvious. The flood season lasts 4 months in the Nen River Basin and 

based on this we can deduce that correlation sequence length for the runoff is 4~5 months, i.e.,  =3 

or 4 is a reasonable choice. Based on the predictability experiment results for the monthly rainfall 

time series, the calculation results of the G-P algorithm for the dimension m  of runoff sequence in 

the Nen River Basin are reasonable, i.e., the embedding dimension is no more than seven. The most 

suitable parameters for the phase space reconstruction and its chaotic characteristic index in the Nen 

River Basin are as follows: delay time  = 3~4, embedding dimension m = 6~7, correlation 

dimension D = 2.90~3.00, maximum Lyapunov index 1 = 0.24~0.32, and the forecast time fT  is 

3~4 months. 
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