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Abstract Dual energy computed tomography (DECT) can provide both 

structural and material information of the scanned object, and has been 

widely used in the medical field. However, patients may suffer from 

genetic damage and cancer under long-term high radiation dose of x-ray 

exposure. To reduce radiation dose and ensure optimal hardware cost. 

This work studies the switching technology based on the x-ray tube 

voltage (kVp). However, the kVp switching technology faces the 

problems of low sampling rate of each energy spectrum and the spatial 

misalignment of projection data of different energy spectrum. Thus, this 

study introduces an adversarial learning mechanism and proposes a Prior 

Information enhanced Projection data Inpainting Network (PINet). The 

experimental results show that the PINet framework is a promising 

approach for sparse-view angle DECT imaging. 

1 Introduction 

Different from traditional computed tomography (CT), dual 

energy computed tomography (DECT) can simultaneously 

provide the structural information and material information 

of the scanned object by obtaining the attenuation 

measurement of two different x-ray energy spectrum [1]. At 

present, DECT has been widely used in clinical diagnosis, 

such as virtual monoenergetic imaging [2],perfused blood 

volume imaging [3], and aortic disease diagnosis [4]. 

Increasing the radiation dose of x-ray is known to improve 

the quality of medical images. However, patients are likely 

to suffer from genetic damage and cancer under long-term 

high radiation dose of x-ray exposure. Therefore, lowering 

the radiation dose is also the focus of the medical imaging 

community. In order to reduce radiation dose and ensure 

optimal hardware cost. This paper study the switching 

technology based on x-ray tube voltage (kVp) as shown in 

Fig. 1. This technology only requires traditional energy 

integration detector and ray source, and the dose is about 

half of that of traditional DECT.  

However, technology based on kVp switching not only 

faces the problem of low sampling rate of each energy 

spectrum, but also a common problem is that the projection 

of different energy spectrum is not aligned in space. 

Recently, deep learning has shown great potential in the 

field of medical image processing. Lee et al. proposed an 

interpolation method based on convolutional neural 

networks (CNN) to inpainting missing projection [5]. In 

2022, Cao et al. developed a CNN framework for sparse-

view projection completion and material decomposition [6]. 

Generative Adversarial Networks (GAN) also have great 

potential in the application of DECT. Kawahara et al. 

proposed an image synthesis framework based on GAN to 

material decomposition images of bone and fat scanned by 

DECT [7]. In 2022, Wang et al. designed a dual-way 

mapping GAN to mine the relationship between two 

different energy projection data, aiming at recovering the 

missing data[8]. 

 
Figure 1: An illustration of the kVp switching technology. 

 

There is a certain correlation between low-energy and high-

energy projection data of the same object for DECT. When 

DECT imaging is faced with a serious shortage of 

projection data, researchers usually use the correlation 

between energy spectrum data to achieve DECT imaging 

[9]. Therefore, this study fuses dual energy projection data 

as prior information, and proposes a Prior Information 

enhanced Projection data Inpainting Network (PINet) for 

sparse-view angle DECT. In the PINet framework, this 

work introduces an adversarial learning mechanism to 

generate results close to the real projection data. In order to 

make full use of the prior information and original 

information, the prior information and sparse-view dual 

energy projection data are sent to two separate encoders to 

extract and fuse useful features. Then, the two decoders 

perform differential learning on the projection data in 

different energy channels. 

 

2 Methods 

The PINet framework is shown in Fig. 2. First, the kVp 

switching technology is used to obtain two sparse-view 

projection data with different energy spectrum. Then, the 

generator G  takes prior information and sparse-view 

projection data as input, extracts and uses various features 

to generate low-energy and high-energy full angle (360°) 

projection data. The prior information is the data after 

fusing the sparse-view projection data of two kinds of 

energy. Due to the different scanning angles of different 

energies, the data of prior information is twice as large as 

that of single energy sparse-view data. At the same time, the 
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discriminator D  encourages the generator G  to generate 

realistic results as much as possible. Once the PINet training 

is completed, the trained generator G  can be used to 

generate the completed projection data. 
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projection data output by generator G . During training, the 

objective of PINet can be expressed as: 
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where   is the weight parameter. 
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 is the label 

projection data of full angle. In the objective function, the 

mean absolute error (MAE) between the generated 

projection data and the label projection data is introduced to 

generate more realistic projection data. During network 

training, G  tries to minimize the objective function, while 

D  tries to maximize the objective function, i.e.,  

 
* *

PINet, arg min max
G D

G D       (3) 

 
Figure 2: Schematic of the PINet framework. 

 

The PINet consists of a generator G  and a discriminator D . 

The generator G  is improved from the classic U-Net [10] 

as shown in Fig.3. To make full use of prior information and 

match two energy channels, the structure of G  is extended 

to a dual input and dual output network structure. The 

network structure consists of three parts: encoding module, 

fusion module and decoding module. The encoding module 

contains two encoding channels, which process prior 

information and sparse-view projection data respectively. 

The sparse-view projection data channel is used as the main 

channel, and the initial number of channels is set to 32. The 

prior information channel is used as an auxiliary component, 

and the initial channel number is set to 8. Then, the fusion 

module aims to achieve the fusion of the features extracted 

from the two encoding channels. Considering that the 

difference between different energy projection data is the 

key to material identification, the decoding module uses two 

decoding channels to process the fused feature information 

to generate DECT data. During decoding, the shallow 

extracted features of the encoding module will be copied 

and connected to the low-energy and high-energy decoding 

channels. 

The structure of the discriminator D  is a CNN, and its input 

is paired sparse-view angle projection data and full angle 

projection data (generated or label). The discriminator D  

has five layers. The first layers contain convolution,  batch 

norm (BN) and Rectified Linear Unit (ReLU) operations. 

The size of the convolution kernel is 3×3, the stride is 2, and 

the number of channels is 32. The second and third layers 

contain 3×3 convolution with stride 2, 3×3 convolution with 

stride 1, BN and ReLU operations, and the number of 

channels is 64 and 128 respectively. The last layer includes 

global average pooling, full connection and sigmoid 

operations The output of the discriminator D  is true or 

false to match the projection data pair, which is equivalent 

to 0-1 classification. 

 

3 Experimental Results 

The experimental dataset was established from real clinical 

dataset, and the DECT images were obtained using the 

SOMATOM Definition Flash DECT scanner (Siemens 

Healthcare, Germany). 80 kVp and 140 kVp spectra are 

used for low-energy and high-energy scanning, respectively. 

The dataset includes 1491 cranial cavity images of 6 

patients. The size of the image is 512 × 512. The projection 

dataset used to train PINet is generated using 1000 images 

of 5 patients, while 100 images of another patient are used 

as the test dataset of the network. 

In this paper, Sidden’s ray tracing algorithm [11] is used to 

simulate the geometry of the fan beam. The distances from 

the x-ray source to the object and the detector are set to 1000 

mm and 1500 mm respectively. Both low-energy and high-

energy projections collect 360 frames of projection data 

within the 360 degree scanning range. The projection data 
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Figure 3: Network structure for the generator G . 

of each frame is collected by a linear detector, which 

consists of 512 bins. The size of the generated full angle 

projection data is 360 × 512, and then two 76 × 512 size all 

zero matrices are added to the generated data. Finally, the 

size of full angle projection data is 512 × 512 obtained as 

the label of PINet training. In this work, low-energy and 

high-energy sparse-view projection data are obtained by 

kVp switching in every 3° rotation range. The size of each 

energy projection data is 60 × 512. The size of prior 

projection data is 120 × 512. Then, using operations similar 

to label data generation, the size of sparse projection data 

and prior projection data are 512 × 512 input into PINet. 

Peak Signal to Noise Ratio (PSNR), Root Mean Square 

Error (RMSE) and Structure Similarity Index (SSIM) are 

used to evaluate the reconstructed images. In order to 

evaluate the performance of the proposed method, it is 

compared with SC-CNN [6]. 

Fig. 4 shows the results of projection data inpainting and 

images reconstruction by the PINet method and comparison 

method under sparse-view angle scanning. Then, we use the 

full angle projection data generated by the network to 

reconstruct the CT image. It can be observed that the image 

reconstructed by SC-CNN still has obvious artifacts, and 

the proposed method can effectively reduce the serious 

artifacts caused by the missing projection data. Furthermore, 

this study also compares PSNR, RMSE and SSIM of 

different methods as shown in Tabel 1. Compared with SC-

CNN method, the PSNR of high-energy and low-energy 

images obtained by the proposed method is improved by 

1.5413 dB and 1.2953 dB, and SSIM of proposed methods 

also has significant advantages. The RMSE of SC-CNN is 

higher than 0.0183, while the RMSE of proposed methods 

is lower than 0.0173. Numerical results show that the 

proposed method has some advantages in noise suppression 

and structure preservation. 

 
Figure 4: Results of inpainting projection data and reconstructed 

images from sparse-view angle scanning. (a) and (d) represent 

label projection data and reconstructed images. (b) and (e) 

represent projection data generated by PINet and reconstructed 

images. (c) and (f) represent projection data generated by SC-

CNN and reconstructed images. (1) and (2) represent high-energy 

and low-energy, (3) and (4) represent corresponding error maps. 

Display windows of projection data, reconstructed images, error 

maps of projection data and error maps of reconstructed images 

are [0, 2.5], [0, 0.04], [-0.1, 0.1] and [-0.02, 0.02], respectively. 
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avg. 

PSNR 

avg. 

RMSE 

avg. 

SSIM 

PINet(H) 36.2473 0.0154 0.9030 

PINet(L) 35.2881 0.0172 0.8890 

SC-CNN(H) 34.7060 0.0184 0.8629 

SC-CNN(L) 33.9928 0.0200 0.8535 

Tabel 1: Quantitative results (PSNR: Peak Signal to Noise Ratio; 
RMSE: Root Mean Square Error; SSIM: Structure Similarity 

Index). Averaged over 100 test samples. 

 

In order to verify the performance of the proposed method, 

the reconstructed images of PINet and SC-CNN are further 

decomposed to obtain the decomposition results of tissues 

and bone materials, as shown in Fig. 5. It can be seen that 

the basis material decomposed by PINet from the 

reconstructed image is closer to the ground truth, and the 

decomposition accuracy is higher. 

 
Figure 5: Decomposition results of different methods. (a), (b), (c) 

and (d) represent ground truth, raw sparse data, PINet and SC-

CNN decomposition results, respectively. (1) and (2) represent 

tissue and bone materials. All display windows are [0, 1]. 

 

4 Discussion and Conclusion 

DECT has great potential in medical field. To reduce the 

radiation dose and ensure the best hardware cost, this paper 

studies the kVp switching technology. In addition, aiming 

at the problem of missing projection data faced by this 

technology, this study uses the correlation between the 

projection data to fuse the sparse-view projection data under 

two different energies, and introduces the adversarial 

learning mechanism to propose a PINet framework with 

prior information. In the clinical data experiment, the 

feasibility of the proposed method is demonstrated. In the 

future work, we will extend this work to the application of 

spectral CT, and design corresponding image post-

processing module and material decomposition module 

based on deep learning to achieve high-resolution spectral 

CT imaging. 
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