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Abstract. Neural networks have shown promising results in many ap-
plications including computer aided diagnosis systems. However, insuf-
ficient effort has been expended on model knowledge transfer combined
with ensemble architecture structures. Here, our use case focuses on de-
tecting Parkinson’s Disease (PD) by automatic pattern recognition in
brain magnetic resonance (MR) images. In order to train a robust neu-
ral network, sufficiently large amount of labeled MR image data is es-
sential. However, this is challenging because ground truth data needs
to be labeled by clinical experts, who often have busy daily schedules.
Furthermore, brain MR images are not often captured for PD patients.
Therefore, we explore the effectiveness of pre-training neural networks
using natural images instead of brain MR images of PD patients. We
also propose different ensemble architecture structures, and demonstrate
that they outperform existing models on PD detection. Experimental
results show that our detection performance is significantly better com-
pared to models without prior training using natural images. This finding
suggests a promising direction when no or insufficient MR image train-
ing data is available. Furthermore, we performed occlusion analysis to
identify the brain regions that the models focused on to deliver higher
performance on PD detection during the decision making process.

Keywords: Parkinson’s Disease Detection · Model Knowledge Transfer
· Ensemble Learning · Deep Learning · Magnetic Resonance Imaging.

1 Introduction

Computer aided diagnosis systems based on brain imaging have shown merits in
the diagnosis of Parkinson’s Disease (PD) by automatic recognition of patterns
that characterize symptoms. PD is the second most common neurodegenerative
disorder and the most common movement disorder affecting the elderly next to
the Alzheimer’s disease [23]. PD is caused by the loss of neurons in the Sub-
stantia Nigra region of the brain, responsible for the production of Dopamine.
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It facilitates the communication between neurons for body movement coordina-
tion, and a shortage of dopamine will lead to PD. PD has been associated with
neurological symptoms like speech impediments, olfactory dysfunctions, sleep
disorders, autonomic dysfunctions, fatigue and motor symptoms like tremors,
Bradykinesia, postural instability, rigidity of the limbs, impaired gait etc. It has
been clinically studied for a long time, but the exact causes leading to PD are
still not properly identified [24]. PD is usually diagnosed with motor symptoms,
which might not become apparent until 50%-70% of the neurons have been dam-
aged [25], when it is too late for any effective preventive measures. A guaranteed
cure for PD has not been discovered, but early detection might offer an op-
portunity for slowing or stopping the progression of the disease. New forms of
treatment like Exenatide [26], show promising results with cases where PD was
detected in the initial stages. One of the techniques that has been found to be
successful in detecting neurodegenerative diseases with cognitive impairments is
the analysis of the structural changes in the brain using Medical Imaging tech-
niques, such as MR images, which provide high contrast and resolution within
soft tissue. Inspired by the promising performance of machine learning in recent
years, researchers attempted to apply neural networks in analyzing brain MR
images to diagnose neurodegenerative diseases, including PD. The challenge lies
in the lack of a sufficiently large amount of labeled data, which is critical in
order to train a robust neural network. Note that MR images are seldom taken
from PD patients, and even if they are available, they are not properly labeled.
In this work, (1) we explore the feasibility of detecting PD by first pre-training
neural networks using a large quantity of more widely available natural images,
before training with a limited set of brain MR images of PD patients, (2) we
propose different ensemble architecture structures and analyze which structures
can deliver higher PD detection accuracy, (3) we compare the performances be-
tween models with and without being pre-trained on natural images and (4) we
identify the key regions of the brain in the decision making process using occlu-
sion analysis. In this context, the natural images are taken from the Imagenet [7]
dataset. Experimental results show that we achieve over 90% detection accuracy
for all our proposed architectures with the highest being 96.3%, which is signifi-
cantly better than existing models. We also found that using models pre-trained
on the Imagenet [7] dataset yields much better performance than just training
the model with the limited set of PD MR images.

2 Background and Related Works

Many Machine Learning (ML) and Deep Learning (DL) based approaches have
been introduced for the detection of Parkinson’s Disease (PD). Babu et al. [2]
achieved a 87.21% accuracy in classifying PD using Gray Matter (GM) with a
Computer Aided Diagnosis (CAD) system. Rana et al. [3] used a Support Vector
Machine (SVM) for classification with t-test feature selection on White Matter
(WM) and GM, and also on Cerebrospinal Fluid (CSF). They achieved 86.67%
accuracy for GM and WM, and 83.33% accuracy for CSF. In another work [4],
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Table 1: Demographic Data
PD HC Average

Age(Years) 62.0± 9.54 49.2± 16.9 55.6± 15.1

Sex (Male / Female) 189 / 110 172 / 127 361 / 237

the authors used the relation between tissues instead of considering the tissues
separately and achieved an accuracy of 89.67%. Radial Basis Function Neural
Network (RBFNN) was used by Pazhanirajan et al. [27] for PD classification.
Tahjid et al [22], demonstrated that an ensemble architecture trained on only
WM and GM data performed better than using the whole brain MR scan for de-
tecting PD. In this work, we explore the feasibility of supplementing the training
set with natural images (non-PD related) before using a limited set of PD MR
images. We also explore 3 ensemble architectures with two model blocks to pro-
cess WM and GM separately. The proposed architectures were first pre-trained
using non-PD related ImageNet [7] (natural) images. We then further trained
the architectures with MR images. We separated WM and GM from the MR
scans of the brain, and passed them through our architectures separately.

3 Proposed Method

3.1 Dataset

For MR images, We used Parkinson Progression Markers Initiative (PPMI)
dataset [5], which consists of T1-weighted sMRI scans for 568 PD and Healthy
Control (HC) subjects. We only chose 445 subjects and discarded the rest due
to structural anomalies during preprocessing steps. There was a class imbalance
in the resulting data with 299 PD and 146 HC subjects. To balance the data,
we collected 153 HC T1-weighted sMRI scans from the publicly available IXI
dataset [6]. The final dataset was class balanced with 598 subjects. The demo-
graphic for the dataset is presented in Table 1. Note that the total of 598 subjects
is still regarded as insufficient for learning-based model training. Thus, our strat-
egy is to start from models pre-trained with natural images. The dataset was
generated following the works of West et al [28].

3.2 Preprocessing

The preprocessing pipeline from Tahjid et al. [22] was used for preprocessing
the data, which gave us WM (with and without smoothing) and GM (with and
without smoothing); 4 categories in total.

3.3 Models

We selected six existing models of the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [8] implemented in Pytorch [10], to form various model
block combinations.
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– ResNet 101 [16], SqueezeNet 1.1 [17], DenseNet 201 [18], VGG 19 [19], Mo-
bileNet V2 [20], ShuffleNet V2 [21]

The six ILSVRC models are available from Torchvision [11] in two versions: with-
out any training (untrained) and trained on the ImageNet dataset. We trained
and tested each model on the MRI data. We then chose the top performing model
combinations to create ensemble architectures. The same model block design was
used to process the WM, and GM input. We used both untrained and pre-trained
models to construct our ensemble model blocks and compared the performances
of the resultant architectures to examine if training on the non-PD related Im-
ageNet dataset makes the architectures perform better in PD detection. Since
the six models were originally designed to process the ImageNet dataset, we had
to modify the input layers of all models to accommodate the format of our MRI
input and the output layers were changed to predict between 2 classes (PD and
HC) instead of the 1000 ImageNet classes. Based on the top performing model
combinations, we propose different architectures described below.

3.4 Ensemble Architecture 1

For this architecture, all six models were stacked as shown in Figure 1. This
design was created with only one data modality in mind. Two versions (untrained
and pre-trained) of this model was trained with GM and WM scans separately.
The output from all six models was passed through a ReLU layer followed by a
linear layer to predict the output.

Fig. 1: Ensemble Architecture 1

3.5 Ensemble Architecture 2

The extracted GM and WM scan dimension was 121×145×121. We passed them
in parallel through two model blocks, each of which was comprised of multiple
ILSVRC models. We then concatenated the output from both blocks and passed
them through a ReLU activation layer followed by a final linear layer, which
predicted between the two output classes (PD and HC). Fig. 2 shows a visual
representation of this architecture. We used 3 different model block designs.
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Fig. 2: Ensemble Architecture 2

Design 1 - TriNet1 The model block was comprised of DenseNet, ShuffleNet
and SqueezeNet in parallel. The input was passed through all three models si-
multaneously, as shown in Fig. 3a.

(a) Design 1 : TriNet1 (b) Design 2 : QuadNet (c) Design 3 : TriNet2

Design 2 - QuadNet The model block was created by adding MobileNet to
Model Block 1, so it was comprised of DenseNet, ShuffleNet, SqueezeNet and
MobileNet in parallel. The input was passed through all four models simultane-
ously, as shown in Fig. 3b.

Design 3 - TriNet2 The model block was created with ShuffleNet, VGG and
MobileNet in parallel. The input was passed through all three models simulta-
neously, as shown in Fig. 3c

4 Experimental Results

We had two separate versions for each of our ensemble architectures: constituent
models untrained and pre-trained with ImageNet data. The brain MR dataset
was randomly split and 80% was selected for training and 20% for testing. At
each epoch, the training set was further split randomly and 20% was selected for
validation. The models were trained with various learning rates including 0.01,
.001 and .0001 and the process was repeated 5 times. For reference purpose,
Table 2 presents the results of some existing approaches using similar data.
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Table 2: Accuracy results of some related works analyzing WM and GM

Source Accuracy

Focke et al.[1] [GM] 0.3953

Focke et al.[1] [WM] 0.4186

Babu et al.[2] [GM] 0.8721

Rana et al.[3] [GM & WM] 0.8667

Rana et al.[4] 0.8967

Table 3: Results for Resnet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Gray Matter
True 0.948 0.895 0.948 0.948 0.948
False 0.522 0.064 0.751 0.522 0.363

White Matter
True 0.963 0.925 0.955 0.955 0.955
False 0.526 0.052 0.639 0.524 0.444

Table 4: Results for VGG with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Gray Matter
True 0.925 0.848 0.926 0.925 0.926
False 0.545 0.139 0.584 0.545 0.535

White Matter
True 0.940 0.880 0.933 0.933 0.933
False 0.541 0.098 0.569 0.543 0.498

Table 5: Results for DenseNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Gray Matter
True 0.918 0.838 0.921 0.918 0.918
False 0.854 0.716 0.862 0.854 0.855

White Matter
True 0.955 0.909 0.938 0.937 0.937
False 0.877 0.756 0.871 0.866 0.866

Table 6: Results for MobileNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Gray Matter
True 0.925 0.852 0.927 0.925 0.925
False 0.534 0.041 0.526 0.534 0.496

White Matter
True 0.925 0.849 0.926 0.925 0.925
False 0.604 0.203 0.565 0.569 0.550
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Table 7: Results for ShuffleNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Gray Matter
True 0.918 0.836 0.920 0.918 0.918
False 0.534 0.042 0.533 0.534 0.453

White Matter
True 0.937 0.874 0.929 0.927 0.927
False 0.494 0.111 0.531 0.485 0.420

Table 8: Results for SqueezeNet with Learning Rate of 0.0001

Data Type Pre Trained Accuracy MCC Precision Recall F1 Score

Gray Matter
True 0.873 0.747 0.874 0.873 0.873
False 0.757 0.542 0.790 0.757 0.748

White Matter
True 0.948 0.898 0.912 0.910 0.910
False 0.765 0.530 0.779 0.761 0.755

Table 9: Results for Ensemble Architecture 2 with Pre trained constituent models
for Gray Matter and White Matter

Model Block LR Accuracy MCC Precision Recall F1 Score

TriNet1 0.0001 0.903 0.811 0.926 0.923 0.923

QuadNet 0.0001 0.963 0.927 0.951 0.950 0.950

TriNet2 0.0001 0.955 0.910 0.947 0.947 0.947

Table 10: Results for Ensemble Architecture 1 with Pre trained constituent mod-
els for Gray Matter and White Matter

Datatype LR Accuracy MCC Precision Recall F1 Score

WM 0.0001 0.963 0.928 0.944 0.943 0.943

GM 0.0001 0.948 0.896 0.936 0.935 0.935
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The tables report multiple evaluation metric scores including Accuracy, Pre-
cision, Recall, F1 score and MCC score. All scores are reported in the range of
(0, 1), except MCC score, which is in the range of (-1, 1). The scores are reported
in Mean ± Standard Deviation format. The best scores for each model using
the same modality of data but with different window sizes were reported in bold
font. Tables 3, 4, 5, 6, 7 and 8 present the performance of Resnet [16], VGG [19],
Densenet [18], MobileNet [20], ShuffleNet [21] and SqueezeNet [17], but we mod-
ified the input and output layers to handle GM and WM scans. The learning
rate was 0.0001. Comparing the overall performance, we can conclude that WM
achieved the best performance across all metrics for PD detection. GM also has
high performance across all metrics, although the scores were lower than that of
WM. Modified Resnet with WM achieved one of the best scores across all met-
rics among all of the tested models. Using smoothed scans did not improve the
performance than using the original scans, probably due to losing fine details.
But we notice that no matter testing with the original or smoothed scans, mod-
els pretrained with Imagenet data showed significantly better performances than
models only trained with MRI data. Table 9 presents different results for Ensem-
ble Architecture 2 using three different model block designs with a learning rate
of 0.0001. We only included results using original WM and GM scans, as using
smoothed scans gave inferior performance. We can see that QuadNet achieved
the highest metric scores. Table 10 shows the results of Ensemble Architecture 1.
This architecture was different in the sense that it was only trained for one data
modality at a time. Two instances of the model were trained, with one for GM
and one for WM. The learning rate was 0.0001. By using the same parameter
setting, WM produced the superior scores. Based on our findings, we can say
that our methods performed better than related work (Table 2) for analyzing
WM and GM. WM provided better information for detecting PD, with the un-
derstanding that the smoothed scans might have lost details compared with the
orignal scans. It is obvious that our proposed ensemble architectures generated
better results than the individual models. Also, architectures pre-trained with
the ImageNet database performed better than only trained with a limited set of
MRI scans.

5 Occlusion Analysis to Locate Relevant Regions

To understand which regions of the brain are important for the models’ decision
making process, we performed a slightly modified version of occlusion analysis
proposed by Rieke et al. [9]. In this analysis, usually a part of the scan is occluded
with a gray or white patch. The occluded region is considered to be important if
the probability of detecting the target class decreases compared to the original
image. The heatmap of relevance is calculated by sliding the patch across the
image and plotting the difference in the probability in red. The brightness of the
red-shaded region indicates the importance of the region. In our experiment, the
relevance was calculated such that the sum of relevance of all areas was 1. Our
heatmaps contain slices taken from the original MRI scan at specific x, y and
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z coordinates and the difference in probability at that point. Occlusion analysis
was performed on multiple models, but due to page limit, the results of two
models that produced the best performance are presented in this section. The
models were modified Resnet [16] and Ensemble Architecture 1 [3.4]. All models
were pre-trained with the ImageNet [7] dataset, and they were trained with a
learning rate of 0.0001. We found that analyzing the GM and WM regions sep-
arately produced better results than analyzing the whole brain scan Tahjid et
al [22]. Therefore, only models trained on GM or WM were selected for occlu-
sion analysis. The relevance area was calculated from the generated occlusion
heatmaps using methods provided by Rieke et al [9].

5.1 Occlusion Analysis for Modified ResNet

Modified Resnet [16] produced the best results out of the 6 individual models as
shown in Table 3. Two versions of the model were trained, with one on WM and
the other on GM. Figure 4a shows that the Middle Temporal Gyrus and Superior
Temporal Gyrus were significant in the decision making process when using WM,
followed by the Postcentral Gyrus region. Figure 4b shows that when using GM,
the relevance were more evenly distributed, but Middle Temporal Gyrus was once
again vital in the decision making process, followed by Middle Frontal Gyrus,
Frontal Superior Medial Gyrus, and Thalamus and Superior Temporal Gyrus.

(a) Relevance per brain area for White
Matter analysis based on Pretrained
ResNet [16]

(b) Relevance per brain area for Gray
Matter analysis based on Pretrained
ResNet [16]

Fig. 4: Relevance per brain area for PD detection based on Pretrained ResNet

5.2 Occlusion Analysis for Ensemble Architecture - Model 1

Ensemble Architecture 1 [3.4] performed very well when trained on GM and WM
as presented in Table 10. The relevance area was computed on 2 versions of the
model: WM and GM separately. Figure 5a illustrates the relevance area while
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using only WM, showing the Middle Frontal, Middle Occipital and Middle Tem-
poral Gyrus to be the three most relevant areas for decision making. However,
the Thalamus, Superior Temporal and Middle Temporal Gyrus appear to be
the most relevant when using GM as shown in Figure 5b. Since analyzing WM
delivers better detection performance, we believe that, based on our occlusion
analysis, the Middle Temporal Gyrus and Middle Frontal should be focused on
in future work.

(a) Relevance per brain area for White
Matter using Ensemble Architecture 1 with
pretrained constituent models

(b) Relevance per brain area for Gray Mat-
ter using Ensemble Architecture 1 with
pretrained constituent models

Fig. 5: Relevance area based on Ensemble Architecture 1.

6 Conclusion and Future Works

We introduce 2 ensemble architecture structures and demonstrate that their
performances outperform individual models for PD detection. By enhancing the
concept of ensemble architectures [22], we also explored the performance of de-
tecting PD symptoms in MR images by pre-training with a sufficiently larger
number of non-PD related images before training the models with a limited set
of PD related WM and GM scans. The learnt image prior significantly enhanced
the performance compared to models only trained with the limited MRI scans.
In addition, we propose new model block designs with new data modalities for
PD Detection. Our results outperform related works in terms of accuracy using
similar dataset. This finding suggests that training data unrelated to PD can be
used to supplement insufficient PD training data. We also performed occlusion
analysis to identify brain regions of high relevance in the decision making process
for PD detection.

In future work, we plan to further analyze and understand the decision mak-
ing process of a model, and focus on the relevant brain regions discovered using
occlusion analysis in this paper. We were not able to consult experts and val-
idate our findings regarding relevant areas from occlusion analysis in light of



Image Prior Transfer and Ensemble Architectures for PD Detection 11

medical literature due to ongoing Covid-19 situation, however that is also in
our future plans. Furthermore, we want to understand which features are bet-
ter explained by which specific model, based on which we can structure a more
efficient ensemble architecture.
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