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Abstract—Wearable sensor for human activity recognition
(HAR) is vital in activity sensing research. We addressed dataset
imbalance in WISDM using three class balancing techniques:
SMOTE, LoRAS, and ProWRA, applied to five machine learning
models. LoRAS consistently achieved the highest accuracy, recall,
precision, and F1-scores, outperforming SMOTE and ProWRA.
Our results demonstrate LoRAS as the most effective technique
for enhancing model performance in human activity recognition.

Index Terms—Human Activity Recognition (HAR), LoRAS,
Smote, ProWRA.

I. INTRODUCTION

Human Activity Recognition (HAR) analyzes motion data
to monitor human movements, driving advancements in health-
care, smart homes, and gait analysis over the past decade
[1], [2]. HAR methodologies primarily include video-based
and sensor-based approaches. Human activity can be captured
as temporal signals using sensors like accelerometers, gyro-
scopes, and magnetometers, offering privacy and freedom from
environmental constraints [3].

With the rise of smartphones and smartwatches, wearable
sensor-based health monitoring systems are rapidly developing
due to their convenience, cost-effectiveness, and practicality
compared to image-based methods [4]–[6]. This technology
is also applicable in human-computer interaction, gaming,
robotics, and sports. Numerous studies have utilized activity
recognition for applications in authentication, medical checks,
elderly care, and security using wearable and smartphone
systems. HAR research is extensive and varies by sensing
modality, with a focus on smartphone sensor data due to its ac-
cessibility, cost-effectiveness, and lack of need for specialized
setups.

As the world population grows, so do health risks. HAR
effectively detects various physical conditions using tradi-
tional machine learning methods like K-nearest neighbors and
support vector machines [7], [8]. While these methods can
automatically recognize simple activities and gestures, their
reliance on manual feature extraction limits their performance
in capturing comprehensive information about all possible
human movements.

II. PROPOSED METHODOLOGY

This section presents our methodology for human activity
recognition, using the WISDM dataset as shown in Fig 1.

Initial data exploration revealed challenges including class
imbalance, datatype inconsistencies, and missing values. These
issues were addressed through preprocessing techniques. Sub-
sequently, machine learning algorithms was applied to accu-
rately classify diverse human activities.

A. Dataset

This dataset [9] comprises accelerometer data collected
from 29 volunteers who carried Android phones in their front
pants pockets. Activities include stationary (sitting, standing)
and dynamic (walking, jogging, upstairs, downstairs), with tri-
axial accelerometer readings taken every 50 ms, capturing
movement along x, y, and z axes. With over one million
activity records, it includes user numbers, activity labels, time
periods, and corresponding acceleration values. Details of our
dataset are as follows:

TABLE I
DESCRIPTION OF WISDM DATASET

Total Samples 1,098,207
Total Attributes 6

Label 0 (Walking) 424400
Label 1 (Jogging) 342177
Label 2 (Sitting) 59939

Label 3 (Standing) 48395
Label 4 (Upstairs) 122869

Label 5 (Downstairs) 100427

B. Data Preprocessing

Preprocessing involves cleaning data for compatibility with
ML models, addressing null values through removal or im-
putation, ensuring suitable data types, and optimizing com-
putational complexity. Our approach on the WISDM dataset
focused on resolving these issues to ensure consistency and
computational efficiency for subsequent analyses.

1) Imputation of Missing Values: The dataset exhibited
missing values, primarily in features such as user, time, and
spatial coordinates (x, y, z), as illustrated in Fig 2. Imputation
was chosen over removal to preserve dataset integrity and
solution accuracy. Median imputation was employed, replacing
missing values with the median of available samples, main-
taining dataset size while reducing unevenness in the data.
Additionally, Fig. 3 illustrates the outcomes following the
median model to address missing values.



Fig. 1. Proposed Architecture

Fig. 2. Missing Value Matrix

Fig. 3. Results after Median Imputation

2) Imbalanced Dataset: Imbalance in a dataset, as seen
in WISDM, results in unequal class distribution, leading
to biased classification. In this dataset, class distribution
percentages reveal a significant imbalance across classes. To
address this issue, we employed three techniques: SMOTE,
LoRAS, and ProWRA. The class distribution percentages
highlight this disparity: Class 5 comprises the largest portion
at 38.793%, followed by Class 1 with 31.087%. Conversely,

Class 3 represents only 4.248% of the dataset, while Class
2 accounts for 5.233%. To address this imbalance, we
employed three techniques to rebalance the dataset by
generating synthetic samples for minority classes, thereby
reducing the dominance of majority classes and improving
classification accuracy. We have applied three class balancing
techniques:

• Synthetic Minority Over-sampling Technique (SMOTE)
SMOTE is a method used to address class imbalances
in datasets. It works by generating synthetic samples
from the minority class by interpolating between exist-
ing minority class instances and their neighbors [10].
By introducing synthetic samples based on a sampling
magnification factor, N SMOTE balances class distribu-
tion and enhances classifier robustness and generalization
on imbalanced datasets using the interpolation formula
shown in Equation (1) and illustrated in Fig 4.

Si = X + rand(0, 1)× (yi −X) (1)

X refers to a data sample within the minority class
samples, rand(0, 1) denotes a random number chosen
uniformly from the interval (0,1), yi represents the ith
neighboring class, Si signifies the interpolated sample.
Algorithm 1 shows SMOTE steps:

• Localized Randomized Affine Shadow sampling (LoRAS)
LoRAS, an oversampling technique, synthesizes minor-
ity class samples by introducing Gaussian noise within
small regions surrounding these instances, followed by
constructing final synthetic data points through convex
combinations of multiple noisy data points [11]. We
applied LoRAS, illustrated in Fig 5, to mitigate class
imbalance in our dataset. Algorithm 2 shows steps of
LoRAS:

• Proximity Weighted Random Affine Shadowsampling
(ProWRAS)
ProWRAS utilizes synthetic sampling as a key compo-



Fig. 4. Class Balancing using SMOTE

Algorithm 1 Synthetic Minority Oversampling Technique
(SMOTE)

1: Input: Training data
2: Training set: Tr
3: Nearest neighbor: p
4: Nearest neighbors for data cleaning: k
5: Output: Augmented training set New Tr after applying

SMOTE
6: Start
7: for i = 1 to N do
8: Generate new samples from the minority class and add

them to New Tr
9: end for

10: End =0

Fig. 5. Class Balancing using LoRAS

nent of its oversampling approach. It begins by partition-
ing the minority class and forming clusters comprising
its members [12]. ProWRAS assigns weights to clusters

Fig. 6. Class Balancing using ProWRA

based on proximity to the majority class, normalizes
them, and determines sample generation, effectively syn-

Algorithm 2 Localized Randomized Affine Shadow Sampling
1: Inputs:
2: Majority class: Cmaj
3: Minority class: Cmin
4: Start
5: Initialize an empty list named loras set
6: for each data point p in Cmin do
7: Find k nearest neighbors of p
8: Initialize neighborhood shadow sample as empty
9: Generate shadow samples Sp from Cmin

10: repeat
11: until desired number of points is reached
12: end for
13: Return loras set
14: End =0

thesizing new samples from the largest minority class
cluster, as depicted in Fig 6.

Algorithm 3 Proximity Weighted Random Affine Shadow
Sampling (ProWRAS)

1: Input: Training data
2: ProWRAS-Oversampling: (Dataset)
3: Start
4: Cluster the dataset
5: Initialize an empty set for synthetic samples
6: for each (Cluster, Weight) in Clusters do
7: Calculate the number of samples to generate:

Num samples← num samples generate×Weight
8: Add generated samples to synthetic samples set:

Synth samples← Synth samples ∪ synth
9: end for

10: Result =0

C. Machine Learning Models

1) Extreme Gradient Boosting (XG-Boost): XGBoost, an
enhanced gradient boosting algorithm, sequentially builds de-
cision trees, refining predictions by iteratively correcting errors
[13]. It utilizes parallelization between leaf nodes and features
to optimize model training. Equation (2) in XGBoost expresses
quadratic functions of one variable, facilitating complex pat-
tern recognition and prediction refinement.

L(t) =

N∑
i=1

[
gift (xi) = 1/2hif

2
t (xi)

]
+Ω(ft) (2)

Ω define optimization, g is gradient and L define the loss
function. In Algorithm 1, f(x) represents the ensemble model
comprising a sum of weak learners for k iterations. The base
classifiers, denoted by bk, are combined to form the ensemble
model, and the weight of each tree is indicated by wk.

2) Cat Boost: CatBoost is a gradient-boosting decision tree
(GBDT) framework utilizing oblivious trees with fewer pa-
rameters. It uniquely supports categorical variables, enhancing
accuracy. By sequentially training learners and aggregating



Algorithm 4 Extreme Gradient Boosting Classifier
Require: Input Data N , Training samples X , Gain G
Ensure: Final ensemble model

1: Dataset N = (xi, yi), . . . , (xn, yn), where xi ∈ X and
yi ∈ Y {0, 1}

2: Initialize the initial prediction function f(x) = Pbk(x)
k = 1, 2, . . . ,M where M is the number of base learners

3: Calculate the first-order gradient gk = ∂L(y,f)
∂f

4: Determine the optimal split with highest gain
5: Calculate loss reduction for split
6: Update the leaf weights w∗ based on loss reduction
7: Define base learner b(x) of weighted trees
8: Incorporate newly trained tree to ensemble model
9: return The final ensemble model =0

their outputs, it iteratively improves accuracy. Given a training
set D

{
(Xi, Yi)i=1,2,...,n

}
, where Xi =

(
x1
i , x

2
i . . . , x

m
i

)
denotes input features and Yi ∈ R epresents labeled values, the
algorithm aims to minimize the loss function L expectation by
iteratively updating the strong learner Fk−1 with a new tree
tk is explained in equation(3) from a CART decision tree set
T .

tk = argminEL (y, Fk−1(x) + t(x)) (3)

Here, (x, y) are training samples. Following is the pseudocode
of CatBoost:

Algorithm 5 CatBoost Algorithm
Require: Input Data N , Training samples X , Loss function

L, Number of iterations M , Learning rate η, Regulariza-
tion parameters λ, Feature indices I , Categorical feature
indices C

Ensure: Final prediction function f(x)
1: Initialize f(x) as 0
2: for k = 1 to M do
3: Calculate gradient gk using L
4: for each feature index i in I do
5: Calculate second-order gradient hik

6: Update tree node weights based on gk and hik

7: end for
8: for each categorical feature index j in C do
9: Apply ordered boosting for categorical features

10: end for
11: Apply regularization to prevent overfitting
12: Update f(x) using the new weights
13: end for
14: return The final prediction function f(x) =0

3) Decision Tree: DT recursively partition the input space
based on features to optimize splits at each node for informa-
tion gain or impurity minimization. Mathematically, it finds
optimal splits θt at each node t, typically using entropy or Gini
impurity, resulting in a tree structure with leaves representing
final decisions or predictions.

Algorithm 6 Decision Tree Construction
Require: Original dataset S

1: Begin
2: Function Predict(tree, S)
3: if tree is a leaf node then
4: return Prediction of tree
5: end if
6: for each instance n in S do
7: Choose attribute with lowest entropy and highest gain
8: Consider attribute with highest gain as root node A
9: while A is not a leaf node do

10: Calculate output on A using n
11: Identify correct output A from n
12: Make prediction on n based on labeling of A
13: end while
14: end for=0

4) Random Forest: RF, a supervised ML method, lever-
ages the combined predictive power of numerous independent
Decision Trees (DTs) within a bagging ensemble framework
to enhance performance and robustness. The mathematical
formulation and algorithm for Random Forest are outlined in
references [15] and [16]. In Equation (4), the index i represents
the number of important features calculated for each tree j,
while T denotes the total number of trees in the Random
Forest.

RFfi =
∑
J

normfiij/sumT (4)

Algorithm 7 Random Forest
Require: Training set Xtrain with n instances, F number of

features, A number of classes in target class, B number
of trees

Ensure: Trained classifier
1: for i = 1 to B do
2: Generate bootstrap samples Xtrain[i] from the training

set Xtrain
3: Create a decision tree using a random sample from

Xtrain[i]
4: for each selected node t do
5: Randomly select m ≈

√
F features

6: Find the best splitting point from the subset
7: Pass down the data using the best splitting point
8: Repeat these steps until termination conditions are

met
9: end for

10: Construct the trained classifier
11: end for=0

5) K-Nearest Neighbour: KNN, a versatile non-parametric
and supervised technique, serves for both classification and
regression tasks by identifying the k-nearest data points and
determining their group or mean value.

d(X,Y) =

√
(X1 − Y1)

2
+ · · ·+ (Xn − Yn)

2 (5)



In Equation (5), where X and Y denote the number of features

Fig. 7. Accuracy

and data points, respectively, the similarity between two data
points is computed.

Algorithm 8 K-Nearest Neighbor Construction
Require: Training dataset Xi, Testing dataset Xj , Number of

neighbors to consider K
1: Begin
2: Function Predict(Xi, Xj , K)
3: for each data point xj in Xj do
4: Determine distance D(xj , xi) for each data point xi in

Xi

5: end for
6: Indices for the K smallest distances D(xi, xj) are con-

tained in the computed set
7: for each data point xj in Xj do
8: Return majority label or average value based on the K

nearest neighbors of xj

9: end for=0

III. RESULTS & DISCUSSION

To evaluate the activity categories of the model’s final
output, we use the following identification metrics:

1) Accuracy: Accuracy measures the percentage of in-
stances that are correctly classified out of the total number
of instances as expressed in equation (6).

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

LoRAS class balancing technique results in the highest accu-
racy for machine learning models, with Decision Tree and
Random Forest achieving better accuracy than other mod-
els. SMOTE and ProWRA exhibit similar performance, but
ProWRA generally provides slightly better accuracy for Deci-
sion Tree and Random Forest compared to SMOTE. XGBoost
and K-NN maintain consistent accuracy around 90-95% across
all techniques as shown in Fig 7, while CatBoost shows
slightly lower accuracy overall, particularly with ProWRA.
These results highlight LoRAS as the most effective technique
for enhancing model accuracy.

2) Recall: Recall measures the proportion of true positive
instances out of all actual positive instances in the dataset.

Recall =
TP

TP + FN
(7)

Fig. 8 shows that LoRAS consistently achieves the highest

Fig. 8. Recall

recall scores compared to SMOTE and ProWRA across all
models. Specifically, LoRAS achieves recall scores of 0.93
(CatBoost), 0.97 (DT), 0.97 (KNN), 0.99 (RF), and 0.93
(XGBoost), outperforming both SMOTE and ProWRA in each
case.

3) Precision: Precision measures the proportion of true
positive instances out of all instances that were predicted to
be positive.

Precision =
TP

TP + FP
(8)

Fig. 9 shows precision scores of five machine learning models
using SMOTE, LoRAS, and ProWRA. LoRAS consistently
achieves the highest precision, often near 1.0, while SMOTE
and ProWRA score around 0.85 to 0.9. This highlights Lo-
RAS’s superiority in enhancing both model accuracy and
precision.

4) F1-Score: The F1-Score is the harmonic mean of pre-
cision and recall.

F1− score = 2 ∗ Precision ∗ Recall
Precision + Recall

(9)

Fig. 10 shows the F1-scores of SMOTE, LoRAS, and ProWRA
across different ML models. LoRAS consistently achieves the
highest F1-scores: 0.93 (CatBoost), 0.97 (DT), 0.97 (KNN),
0.99 (RF), and 0.93 (XGBoost). In comparison, SMOTE and
ProWRA both achieve similar and slightly lower F1-scores
around 0.91 to 0.97, indicating LoRAS’s superior performance
in balancing precision and recall.

IV. CONCLUSION

Our study employed three class balancing techniques —
SMOTE, LoRAS, and ProWRA. We effectively mitigated
the dataset’s class imbalance, enhancing the performance



TABLE II
ACCURACY USING SMOTE, LORAS, PROWRA FOR ML MODELS

Accuracy
Techniques Decision Tree Random Forest K-NN CatBoost XGBoost

Smote 95.37% 97.25% 87.83% 91% 91.27%
LoRAS 97.53% 99% 97.27% 94% 94%

ProWRA 95.38% 97.31% 87.27% 91% 91.31%
Related Work: Essa E et al. (2023) (92.51%) [19], Y Wang et al. (2023) (96.90%) [20]

Fig. 9. Precision

Fig. 10. F1-Score

of machine learning models for human activity recognition.
Evaluation metrics such as accuracy, recall, precision, and F1-
score consistently underscored the superior performance of the
LoRAS technique across various machine learning models.
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