
EasyChair Preprint
№ 3097

Incorporating the Concept of Priority into Lamport
Timestamps to Prevent Starvation in Systems
That Use Timestamps for Concurrency Control

Gianluca Rombolà and Loredana Vigliano

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 1, 2020



	

	

Incorporating the concept of priority into Lamport timestamps 
to prevent starvation in systems that use timestamps for concurrency control 

Gianluca	Rombolà	
	University	of	Rome	Tor	Vergata	

	rombola.gianluca@gmail.com	

Loredana	Vigliano	
	University	of	Rome	Tor	Vergata	
	vigliano@mat.uniroma2.it	

 

ABSTRACT	
Lamport	timestamps	are	an	elementary	tool	that	can	be	used	
to	 maintain	 system-wide	 temporal	 consistency	 in	 a	
distributed	 system.	By	making	all	 processes	 involved	able	 to	
agree	on	 the	order	of	 any	 two	or	more	events	 (although	not	
necessarily	 on	 their	 causal	 relation)	 they	 can	 be	 used	 as	
building	 block	 for	 many	 more	 complex	 algorithms	 intended	
for	distributed	systems.	

Without	excluding	other	applications	of	such	timestamps,	we	
are	 interested	 in	 how	 these	 can	 be	 used	 for	 concurrency	
control	 in	 transactional	 databases	 through	 timestamp	
ordering	 algorithms,	 especially	 with	 less	 conservative	
algorithms	 that	 while	 being	 usually	 more	 efficient,	 are	 also	
prone	to	starvation.	

In	this	paper	we	propose	an	extension	to	Lamport	timestamps	
that	 can	 work	 with	 any	 existing	 algorithm,	 by	 taking	 into	
account	priority	 in	order	 to	prevent	starvation:	with	priority	
we	intend	a	dynamic	property	of	a	process	that	depends	by	its	
transaction	failure	rate,	so	that	higher	priority	is	symptom	of	
more	transaction	rejections.	

KEYWORDS	
Lamport	 timestamps,	 concurrency	 control,	 timestamp	
ordering,	starvation,	priority	
	

1	 Introduction	to	Lamport	timestamps	
Lamport	timestamps	are	logical	sequence	numbers	used	to	

determine	event	order	in	a	distributed	system.	Lamport	builds	
on	concept	of	“happens	before”,	such	that	when	writing	A→B	
we	can	tell	that	A	has	happened	before	B.	

Each	 process	 involved	 has	 its	 own	 logical	 clock	 which	 will	
increase	 at	 least	 when	 sending	 and	 receiving	 messages	 to	
other	 processes,	 but	 at	 the	 same	 time	 when	 receiving	
timestamped	 messages	 it	 will	 compare	 its	 local	 timestamp	
with	 the	 one	 received:	 should	 the	 received	 one	 be	 higher	 in	
value,	adapt	itself	to	use	this	new	timestamp.	

Regardless	it	will	then	increase	its	timestamp	as	it’s	supposed	
to	do	when	receiving	messages:	doing	so	will	ensure	that	 for	
each	message	exchanged	in	the	system,	it’s	sending	timestamp	
will	 always	 be	 lower	 than	 the	 receiving	 one,	 which	 means	
SEND→RECEIVE	(after	all	a	message	can’t	be	received	before	
it’s	sent).	

In	addition	to	the	above,	in	order	to	avoid	ambiguities,	to	each	
process	 is	 also	 given	 a	 unique	 identifier	 which	 belongs	 to	 a	
totally	 ordered	 set	 of	 values.	 This	 identifier,	 when	
incorporated	 in	 a	 timestamp,	 will	 then	 make	 it	 possible	 to	
order	events	even	when	their	sequence	numbers	are	the	same	
and	would	not	yield	a	distinct	answer.	Let’s	then	formalize	the	
above	concept	to	set	a	basis	for	this	paper.	

Let’s	consider	a	distributed	system	with	N	processes,	let	Pᵢ	be	
a	process	in	such	system,	and	let’s	denote	with	Mᵢj	a	message	
from	 process	 Pᵢ	 to	 process	 Pj.	 When	 discussing	 timestamps,	
TS(Pᵢ)	 will	 be	 Pᵢ	 local	 timestamp	 and	 TS(Mᵢj)	 will	 be	 Pᵢ’s	
timestamp	when	it	sent	Mᵢj	(which	is	the	timestamp	carried	by	
Mᵢj).	

	

Figure	1:	We	can	see	for	each	process	its	timestamp	when	
sending	 or	 receiving	 a	 message,	 and	 how	 they	 make	 a	
total	ordering	of	events.	

	

Timestamps	issued	by	Pᵢ	will	be	pairs	(tᵢ,	 id(Pᵢ))	where	tᵢ	 is	a	
sequence	 number	 and	 id(Pᵢ)	 is	 Pᵢ’s	 unique	 identifier.	 We	



Incorporating the concept of priority into Lamport timestamps G. Rombolà and L. Vigliano G. Rombolà and L. Vigliano 

	

 

 

define	 comparison	 between	 timestamps	 Ta,i	 =	 (ta,id(Pᵢ))	 and	
Tb,j	=	(tb,id(Pj))	as	follows:	

	

We	 also	 define	 a	 +	 operator	 for	 timestamps,	 so	 that	 given	 a	
timestamp	Ti	=	(t,	id(Pi))	and	an	integer	n,	(Ti+n)=	(t+n,	id(Pi)).	

So	whenever	Pᵢ	wants	 to	 send	a	message	Mᵢj,	 it	will	 increase	
it’s	 timestamp	 by	 one	 TS(Pᵢ)=TS(Pᵢ)+1,	 then	 send	 it	 with	
TS(Mᵢj)	=	TS(Pᵢ).	

Whenever	Pᵢ	receives	a	message	Mjᵢ,	 it	will	compare	and	pick	
the	maximum	between	TS(Mjᵢ)	and	TS(Pᵢ)	as	new	timestamp.	
It	 will	 then	 increase	 its	 timestamp	 by	 one	 as	 it	 did	 when	
sending:	TS(Pᵢ)	=	max(TS(Pᵢ),	TS(Mjᵢ))	+	1.	

2	 Possibility	of	starvation	when	using	
timestamps	for	concurrency	control	
Lamport	 timestamps	 as	 defined	 above	 bring	 an	 inherent	

bias,	 which	 is	 unique	 identifiers	 and	 their	 static	 nature.	
Timestamps	 issued	 with	 lower	 unique	 identifiers	 will	 more	
often	 result	 to	 be	 lower	 than	 others	 as	 a	 result	 of	 this:	
although	this	will	be	a	rare	issue	in	most	systems	(due	to	the	
rapid	increase	nature	of	sequence	numbers	in	such	systems),	
it	 can’t	be	 totally	excluded:	 rather,	 as	we	will	 see,	 increasing	
the	 odds	 of	 such	 occurrence	 can	be	 beneficial	with	 the	 right	
approach.	

If	 we	 then	 consider	 using	 timestamps	 as	 main	 source	 of	
concurrency	 control	 in	 a	 transactional	 environment,	 other	
problems	might	 arise	which	 can	 lead	 to	 a	 process	having	 its	
transactions	 failing	 (of	 course	 assuming	 our	 systems	 allows	
for	 a	 transaction	 to	 fail),	 such	 as	 delayed	 messages	 due	 to	
external	 problems	 (which	might	 as	 well	 be	 expected	 due	 to	
network	conditions).	

We	are	going	to	consider	only	systems	were	transactions	are	
allowed	 to	 fail:	 in	 such	 systems,	 it	 is	 reasonable	 to	 take	 into	
account	 starvation	 due	 to	 a	 process	 timestamps	 being	
constantly	discarded	for	being	late.	

3	 Introducing	priority	to	timestamps	
While	 there	 are	 timestamp	 ordering	 algorithms	 more	

conservative	 that	 would	 prevent	 this	 problem	 (by	 simply	
removing	the	possibility	 for	transactions	to	 fail	 for	example),	
we	 want	 to	 expand	 the	 concept	 of	 timestamp	 to	 include	
information	about	 its	 issuers	 situation,	 to	prevent	 starvation	
without	resorting	to	conservative	algorithms.	

We	do	this	by	introducing	the	concept	of	priority	to	Lamport	
timestamps,	so	that	each	timestamp	issued	by	Pᵢ	will	be	in	the	
form	Ta,i(Pᵢ)	(ta,pᵢ,id(Pᵢ))	where	pᵢ	is	a	priority	value	(integer)	
that	 is	 integrated	 into	 the	 timestamp.	We	 then	 redefine	 our	
comparison	operator	as	follows:	

	

This	 way	 priority	 is	 used	 preferentially	 instead	 of	 unique	
identifiers	 when	 ambiguity	 occurs	 between	 sequence	
numbers	 in	 timestamps.	 Each	 process	 is	 then	 allowed	 to	
increase	 its	 priority	 value	 whenever	 it	 sees	 its	 transaction	
rejected.	Also,	each	process	will	 retain	 its	priority	value	as	 it	
does	for	 its	unique	identifier:	as	 in	the	standard	definition	of	
Lamport	 timestamp,	 when	 receiving	 a	 message	 only	 the	 t	
component	(sequence	number)	will	be	adopted	if	higher.	

First	of	all	we	observe	the	set	of	all	timestamps	allowed	in	this	
system	is	still	totally	ordered,	as	it	still	 inherits	this	property	
from	the	set	of	unique	identifiers	and	nothing	has	changed	in	
this	 regard.	 Also	 it	 has	 to	 be	 noted	 that	 this	 variant	 of	
timestamp	behaves	differently	only	when	both	ta	=	tb	and	pᵢ	!=	
pj:	 in	 all	 other	 situations	 it	 behaves	 exactly	 the	 same.	What	
this	means	is	that	the	effectiveness	of	introducing	priority	this	
way	 is	 dependant	 by	 how	 often	 timestamp	 collisions	 of	 this	
kind	 happen:	 if	 having	 two	 timestamps	 with	 the	 same	
sequence	 number	 for	 different	 events	 is	 common	 (in	 which	
case	Lamport	 timestamps	would	more	often	 show	 their	 bias	
towards	higher	ordered	unique	identifiers),	then	priority	will	
be	meaningful.	

Let’s	 assume	 collisions	do	happen	often	 enough	 to	make	 the	
priority	 value	 we	 introduced	 to	 timestamps	 significant.	 For	
each	 process	 Pᵢ,	 the	 value	 of	 pᵢ	 can	 increase	 but	 never	
decrease.	Eventually	each	process’	priority	value,	compared	to	
others,	will	 reflect	 that	 process	 tendency	 to	 failure,	 and	will	
directly	counteract	to	that	by	increasing	its	odds	of	success	on	
each	 interaction	 that	 results	 in	 a	 collision.	 If	 collisions	never	
happen,	priority	won’t	matter	and	the	whole	system	will	keep	
working	as	it	would	if	priority	wasn’t	introduced,	which	while	
not	 optimal	 for	 our	 purposes,	 doesn’t	 bring	 any	 quantifiable	
performance	deterioration	.	

3.2	 Increasing	timestamp	collisions	

In	our	introduction	when	describing	Lamport	timestamps	we	
were	using	them	to	order	messages	exchanged	in	a	distributed	
system,	which	is	the	way	they	are	usually	defined.	We	are	not	
forced	to	follow	this	kind	of	usage	though:	for	our	purpose,	we	
can	reduce	our	timestamps	granularity	 in	order	to	have	each	



Incorporating the concept of priority into Lamport timestamps                                                                              G. Rombolà and L. Vigliano 

	

 

new	 timestamp	 issued	 be	 more	 closely	 related	 to	 a	
transaction.		

By	definition,	Lamport	timestamps	allow	us	to	order	messages	
exchanged	 in	 a	 distributed	 system	 by	 identifying	 for	 each	
message	 a	 start	 event	 (being	 sent)	 and	 an	 end	 event	 (being	
received)	which	are	also	causally	related.	Instead	we	want	to	
shift	our	focus	on	transactions(4)		rather	than	single	messages,	
therefore	 we	 identify	 a	 start	 event	 and	 an	 end	 event	 in	 a	
transaction’s own	beginning	and	end	(whether	being	executed	
or	 rejected):	 both	 these	 events	 are	 verified	 locally	 by	 the	
process	issuing	the	transaction,	as	is	their	causal	relationship,	
differently	 for	 what	 happens	 with	 sending/receiving	
messages. 

We	 want	 then	 to	 issue	 a	 new	 timestamp	 whenever	 a	 new	
transaction	is	started,	rather	than	whenever	a	message	is	sent.	
This	means	we	 lose	our	ability	 to	order	single	messages,	but	
we	 are	 still	 able	 to	 look	 at	 two	 transactions	 and	 pick	which	
one	happened	before	 the	other:	 in	most	 timestamp	ordering	
algorithms,	transaction	timestamps	are	the	only	ones	used	in	
actual	decision	making	after	all.	

To	formalize,	we	say	that	a	new	timestamp	is	issued	whenever	
a	process	increases	its	local	timestamp’s	sequence	number,	so	
that	 if	a	process	receives	a	message	with	a	higher	timestamp	
and	adopts	it	without	increasing	it,	we	say	no	new	timestamp	
has	 been	 issued.	 In	 other	 words	 issuing	 a	 new	 timestamp	
could	 eventually	 (but	will	 not	 necessarily)	 contribute	 to	 the	
systemic	 growth	 of	 timestamps	 across	 all	 processes.	 Since	
some	 timestamps	 might	 be	 discarded	 by	 the	 system	 (they	
could	 be	 lagging	 behind	 compared	 to	 other	 processes	 and	
discarded	on	reception	for	example),	we	can	safely	say	that	at	
any	 time	 the	highest	 timestamp	will	 be	 at	most	 equal	 to	 the	
amount	of	 timestamps	 issued	 system-wide.	To	 further	prove	
this,	we	can	consider	a	system	with	only	one	process:	 in	this	
scenario	we	 have	 that	 no	 timestamps	will	 be	 discarded,	 and	
each	 timestamp	 issued	 will	 increase	 our	 process’ local	
timestamp’s	sequence	number	by	one,	 so	 that	after	n	 issues,	
our	 timestamp’s	sequence	number	will	be	n.	 if	we	add	more	
processes	and	across	those	we	issue	again	m	timestamps,	we	
can	 expect	 at	 best	 to	 have	 none	 discarded	 and	 achieve	 the	
same	results,	but	we	can’t expect	to	have	a	timestamp	with	its	
sequence	number	>n	anywhere	in	the	system.	 

Since	 the	 amount	 of	 timestamps	 issued	 across	 the	 whole	
system	 is	 an	 upper	 bound	 for	 sequence	 number,	 if	 you	 can	
reduce	 that	 quantity	 per	 amount	 of	 transactions	 attempted,	
we	 can	 expect	 to	 have	 an	 increase	 in	 the	 frequency	 of	
collisions.	 In	 our	 general	 definition	 we	 issued	 a	 new	
timestamp	whenever	we	sent	or	received	a	message,	therefore	
our	 upper	 bound	 was	 twice	 the	 amount	 of	 messages	 sent	
across	 the	 system.	 Assuming	 that	 each	 transaction	 involves	
and	 exchange	 of	 multiple	 messages,	 we	 can	 change	 our	
definition	to	issue	a	new	timestamp	only	when	a	transaction	is	

started:	having	the	amount	of	transactions	attempted	system-
wide	as	upper	bound	for	highest	timestamp	will	contribute	to	
increasing	the	amount	of	collisions.	

The	question	now	 is:	 can	we	do	 this	while	 still	being	able	 to	
order	 events	 and	 allow	 every	 process	 to	 do	 so	 and	 make	
decisions	autonomously	 in	 a	 consistent	way?	Well,	 assuming	
we	don’t	care	about	being	able	to	order	 individual	messages,	
we	 can	 safely	 apply	 this	 approach	 and	 retain	 our	 ability	 to	
execute	transactions	correctly.	

As	 we	 briefly	 noted	 earlier,	 most	 timestamp	 ordering	
algorithms	 only	 care	 about	 transaction	 timestamps,	 while	
making	 no	 use	 of	 any	 timestamp	 that	 isn’t	 related	 to	 a	
transaction:	 as	 long	 as	 each	 transaction	 has	 got	 its	 unique	
timestamp	and	those	can	be	correctly	ordered,	it	has	no	effect	
on	the	execution	of	timestamp	ordering	algorithms.	

3.3	 Priority	flagging	

As	 we	 have	 seen,	 having	 a	 priority	 value	 built	 into	
timestamps	will	 reduce	 starvation	 and	will	 help	 balance	 out	
performance	across	the	system.	

We	wonder	if	we	can	introduce	a	stronger	concept	of	priority,	
akin	 to	 a	 priority	 flag,	 to	 allow	 a	 process	 to	 “make	 a	
reservation”	 to	 guarantee	 itself	 success,	 rather	 than	 simply	
increasing	 its	 chances.	 Is	 it	 possible	 to	 implement	 such	
solution?	Is	it	practical?	

First	of	all	we	consider	a	simple	priority	flag.	Considering	our	
definition	of	timestamp	with	priority	value	from	before	TS(Pᵢ)	
=	(tᵢ,pᵢ,id(Pᵢ)),	 could	we	make	 it	 so	 that	pᵢ	 is	 just	a	 true/false	
flag	 that	 takes	 precedence	 over	 sequence	 number?	 For	 all	
practical	purposes	we	would	then	have:	

	

Therefore	 having	 pᵢ	 =	 true	 would	 give	 precedence	 over	 all	
timestamps,	 bar	 those	 that	 have	 their	 priority	 set	 to	 true	 as	
well.	 This	 solution	won’t	work	 as	 it	 breaks	 the	 requirement	
that	 timestamps	can	only	 increase	and	not	decrease.	We	can	
show	this	by	considering	two	timestamps	issued	by	Pᵢ,	T₁=(t₁,	
true,	 id(Pᵢ))	 and	 T₂=(t₂,	 false,	 id(Pᵢ)),	 such	 that	 T₂	 is	 issued	
after	 T₁	 and	 as	 such	 t₂>t₁.	 It’s	 easy	 to	 see	 that	 with	 the	
comparison	 operator	 we	 just	 defined,	 we	 have	 T₁>T₂,	 even	
though	 they	 were	 issued	 by	 the	 same	 process	 in	 different	
order.	

To	 solve	 this	 problem	we	 can	 extend	 pᵢ	 to	 use	 integers	 that	
can	never	decrease.	We	end	up	with	something	very	similar	to	



Incorporating the concept of priority into Lamport timestamps G. Rombolà and L. Vigliano G. Rombolà and L. Vigliano 

	

 

 

(2),	 but	 with	 priority	 having	 precedence	 over	 sequence	
numbers:	

This	can	correctly	work	as	a	priority	flagging	implementation.	
We	 assume	 that	 all	 process	 have	 the	 same	 starting	 priority	
value,	 and	 in	 a	 balance	 situations	 end	 up	 having	 the	 same	
priority	value	as	well.	Whenever	a	process	increase	its	priority	
value,	exactly	as	it	would	happen	were	it	simply	a	flag,	it	will	
gain	priority	above	all	other	processes	causing	its	next	request	
(or	 transaction	 assuming	 multiple	 requests	 will	 share	 that	
transaction	timestamp)	to	succeed.	

While	 this	can	help	a	starving	process,	 it	has	 its	 fair	share	of	
cons.	Increasing	priority	for	a	process	will	mean	for	all	other	
processes	 to	 fail	 their	 current/next	 request	 (and	 this	 is	 by	
design,	 since	 it’s	 to	 be	 expected	 with	 a	 priority	 flagging	
approach),	 which	 in	 response	 will	 increase	 their	 priority	
values,	leading	to	a	self	stabilizing	outcome:	in	the	end	it’s	an	
expensive	price	to	pay	to	reduce	starvation.	

An	 approach	 like	 this	 might	 be	 seen	 as	 viable	 in	 particular	
circumstances,	 but	 we	 feel	 it	 damages	 the	 overall	 systemic	
performance	to	be	seriously	taken	in	consideration,	especially	
considering	 we	 proposed	 an	 alternative	 that	 brings	 no	 side	
effects	while	directly	reducing	starvation.	

4	Conclusion	

We	 have	 seen	 how	 introducing	 priority	 to	 timestamps	 can	
provide	a	layer	to	help	reduce	starvation	without	adding	any	
real	overhead,	and	without	having	to	adapt	any	algorithm	to	it.	
Although	its	real	efficiency	in	the	way	we	proposed	it	is	reliant	
on	 collision	 rate,	 we	 think	 that	 having	 no	 side	 effects	
compared	 to	priority-less	 timestamps	and	 requiring	minimal	
additional	processing,	such	approach	can	only	be	beneficial	in	
distributed	systems.	

Some	 preliminary	 tests	 on	 a	 stripped	 down	 implementation	
seem	 to	 confirm	what	 we	 proposed	 in	 theory	 in	 this	 paper,	
showing	 statistically	 better	 results	 in	 scenarios	 where	
transactions	 failed	 more	 often.	 Although	 trying	 to	 prevent	
failure	 is	 generally	 better	 than	 fix	 it	 once	 happened,	we	 feel	
that	 having	 a	 lightweight	 system	 in	 place	 to	 take	 care	 of	 it	
should	 it	 happen	 can’t	 do	 harm	 and	 should	 be	 taken	 in	
consideration.	

We	 focused	 our	 discussion	 on	 transactional	 distributed	
environments,	but	there’s	no	reason	to	infer	it	wouldn’t	bring	
benefits	in	a	more	generic	scope,	as	long	as	request	failure	is	
an	option.	

REFERENCES	

(1)	Leslie	Lamport	(1978),	“Time,	Clocks,	and	the	Ordering	of	Events	
in	a	Distributed	System”,	Communications	of	the	ACM	21,7	558-565	

(2)	 Philip	 A.	 Bernstein	 and	 Nathan	 Goodman	 (1981),	 “Concurrency	
Control	 in	 Distributed	 Database	 Systems”,	 Computing	 Surveys	 13,2	
185-221	

(3)	R.	H.	Thomas,	"A	solution	to	the	concurrency	control	problem	for	
multiple	 copy	 databases",	 Proc.	 1978	COMP-	 CON	Conf.	 (IEEE),	New	
York.	

(4)	 Daniel	 J.	 Rosenkrantz,	 Richard	 E.	 Stearns	 and	 Philip	 M.	 Lewis	
(1978),	 System	 level	 concurrency	 control	 for	 distributed	 database	
systems,	 ACM	 Transactions	 on	 Database	 Systems	 (TODS),	 v.3	 n.2,	
p.178-198	


