
EasyChair Preprint
№ 6931

Code quality measurement: case study

Dmitrii Savchenko, Timo Hynninen and Ossi Taipale

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 26, 2021

Code quality measurement: case study

D. Savchenko*, T. Hynninen* and O. Taipale*
* Lappeenranta University of Technology, Lappeenranta, Finland

dmitrii.savchenko@lut.fi, timo.hynninen@lut.fi, ossi.taipale@lut.fi

Abstract - As it stands, the maintenance phase in the

software lifecycle is one of the biggest overall expenses.

Analyzing the source code characteristics and identifying

high-maintenance modules is therefore necessary. In this

paper, we design the architecture for a maintenance metrics

collection and analysis system. As a result, we present a tool

for analyzing and visualizing the maintainability of a

software project.

Keywords - maintenance, code quality

I. INTRODUCTION

Maintenance and upkeep is a costly phase of software
life cycle. It has been estimated that maintenance can
reach up to 92% of total software cost [1]. Code quality
can be analyzed using various existing metrics, which can
give an estimate on the maintainability of software. There
are several tools and frameworks for assessing the
maintainability characteristics of a project. Many tools are
included in integrated development environments (IDEs),
such as Eclipse metrics [2], JHawk [3] or NDepend [4].
As such the existing tools are specific to platform and
programming language, providing quality analysis during
development. Considering maintenance also includes
activities post-release of a software product, it would be
beneficial to perform quality measurement also in the
maintenance and upkeep phase of life cycle.

One solution to the post-release monitoring are online
data gathering probes, which can be inserted into
production code to gather runtime performance data. In
order to establish and sustain a commitment for
maintenance measurement this work introduces a design
for data collection and storage. In this paper we present an
architecture for systematically collecting code metrics for
maintenance. Additionally, the visualization and analysis
of the metrics are explored.

In this study we will focus on the analysis of web-
applications. This delimitation is due to the collection of
runtime metrics as well as static metrics. The focus on
web-applications provides a reasonably standardized
measurement interface for runtime performance through
the browser's web API. In this paper we also propose the
design and implementation of the system called Maintain.
The probes for gathering metrics in the system are
implemented in both JavaScript and Ruby programming
languages.

Rest of the paper is structured as follows. In Section 2,
related work in analyzing software maintainability is

introduced. Sections 3 and 4 presents the architecture and
our implementation for a metrics collection and analysis
system, which is main contribution of this work.
Evaluation of the system’s performance and utility is
presented in Section 5. Finally, discussion and conclusions
are given in Section 4.

II. RELATED RESEARCH

Software maintenance, as defined by ISO 14764
standard, is the “the totality of activities required to
provide cost-effective support to a software system”,
consisting of activities both during development and post-
release [5]. The analysis of software maintainability is by
no means a novel concept. Motogna et al. [6] presented an
approach for assessing the change in maintainability. In
[6], metrics were developed based on the maintainability
characteristics in the ISO 25010 software quality model
[7]. The study presents how different object oriented
metrics affect the quality characteristics.

A study by Kozlov et al. [8] distinguished that
particular code metrics (data variables declared, McClure
Decisional Complexity) have strong correlations with the
maintainability of a project. In the work, the authors
analysed the correlation between maintainability and the
quality attributes of a Java-project.

In the study by Heitlager et al. [9] a practical model
for maintainability is discussed. The study discusses the
problems of measuring maintainability, particularly with
expressing maintainability as a single metric
(Maintainability index).

Studies where different evaluation methods are
combined in order to get a more thorough view on the
maintainability of a project have been conducted during
the past decade. For example, Yamashita [10] combined
benchmark-based measures, software visualization and
expert assessment. In a similar vein, Anda [11] assessed
the maintainability of a software system using structural
measures and expert assessment. In general, these studies
suggest that visualization systems providing developers
and project managers with an analysis of the health of a
software project can help distinguish problematic program
components, and thus help in the maintenance efforts of
software.

III. ARCHITECTURE

Maintain system architecture is presented at the figure
1. System consists of the following components:

This study was funded by the Technology Development center of

Finland (TEKES), as part of the .Maintain project (project number
1204/31/2016).

• Probe is a program that gathers some valuable data
from the software (static or dynamic). Each probe
should have an associated analyzer;

• Data Storage – data storage that stores the raw data
from the probes. It also has REST interface that
receives the data from the probes;

• Analyzer is a program that gets the raw data from
the associated probe and creates a report, based on
this data;

• Report Storage – data storage that stores reports
from analyzers;

• Report Visualizer is a component that creates a
visual representation of the report.

Figure 1. System architecture

Workflow of the system is centered around the Data

Storage. Generally, it looks like this:

• Probes gather the information from the source
code, it might be some static analysis results or
dynamic performance data;

• Gathered and normalized data is sent to the Data
Storage. Probe can have different data types, data
structure is defined by analyzer;

• When new data is received by Data Storage, the
associated analyzer is called. It requests the data
from the Data Storage, produces report (object, that
contains current status of the analyzed application
aspect and a set of time series for the end user);

When end user requests the report, Reports Visualizer
generates a visual representation of the time series, that
were created by analyzers.

IV. IMPLEMENTATION

Maintain system was implemented using Ruby on
Rails framework and hosted on Heroku cloud platform.
Project details page is shown on Figure 3. This page
provides the information about the current state of the

project, that is described as a set of 8 scores, based on
quality characteristics, described in ISO/IEC 25010 [7].
Those scores are visualized as a polar chart with 8 axis for
each quality characteristic respectively. Score calculation
is based on the report statuses – each report has an
associated probe, and each probe has a set of associated
quality characteristics. Quality characteristics are set by
the project administrator.

System class structure is organized as pictured in
figure 2. As system gathers the data using REST API, it is
generally impossible to predefine all possible probes and
probe types and set their quality characteristics in
advance. That’s why we decided to let user define the
quality characteristics for probe when it is created or
modified. Result score is based on statuses of last reports
for each probe respectively.

Figure 2. System entity-relationship diagram

A. Probes

As a case study, we have implemented four probes:
HAML, JavaScript and Ruby code quality probes, and
browser performance probe. JavaScript and Ruby code
quality probes are based on maintainability index, which
is calculated using the following formula:

maintainability = 171 –

 (3.42*Math.log(effort))-

 (0.23*Math.log(cyclomatic))-

 (16.2*Math.log(loc))

HAML maintainability index uses recursive formula,
based on linter report:

Maintainability = a*maintainability

where a is 0.9 for linter error and 0.99 for linter
warning

Code quality probes produce the following data for
Data Storage:

{

 maintainability: M,

 revision: R,

 datetime: D,

 modules: Ms

}

where M is average maintainability index for the
whole project, R is current Git revision, D is current date
and time, and Ms is a list of maintainability index for
project files and their names. Browser performance probe
generates report in different format:

{

 page: P,

 timing: T,

 datetime: D

}

Where P is an URL of the current page (without
query), T is the time between page load start time and
DOM ready event time in milliseconds, and D is current
date and time.

B. Analyzers

Currently we have implemented two different
analyzers - maintainability analyzers for Ruby, JavaScript
and HAML probes, and performance analyzer for browser
performance probe. Workflow for maintainability
analyzer works is described below:

• Data from Data Storage is grouped by days,
maintainability index for each day calculated as a
median of indices for day. If no data presented for
day, analyzer sets the value for the previous day
(fallback for weekends);

• List of maintainability indices are smoothed using
exponential moving average method, those values
are used as a time series for visualizer;

• Linear regression for last five days is used as a
status of the project source code quality: if it is less
than zero, then code quality is bad.

Workflow for browser performance analyzer is different:

• Performance data is grouped by five minutes, value
for each section is calculated as a 95th percentile of
all values for section;

• If values for all sections are less than 2 seconds,
then browser performance is good.

V. MAINTAIN SYSTEM USAGE EXAMPLE

Maintain system was evaluated using a proprietary
web application, that was implemented using Ruby on
Rails as a backend, and CoffeeScript on top of React.JS as
a frontend. This project is on maintenance phase, so we
decided to analyze historical data and compare
Maintenance system results with the feedback from the
project manager, who managed the analyzed project.
Application was used by 5 administrators and about 10000
users. Maintenance system was deployed in Heroku cloud,
while probes were running on local PC, that had 1.8 GHz
2-core CPU and 4 Gb RAM. We gathered the code quality
information for all the previous commits to make picture
more consistent.

Figure 3. Project page example

Figure 3 illustrates the general ‘health’ of the analyzed
application at the last Git revision at Master branch.
Figure 4 shows the JavaScript (CoffeeScript) and HAML
code quality. The project was started as a pure backend
solution, while frontend development started at the
beginning of September 2016. As shown in the graph,
HAML code quality was decreasing from September
2016, until December 2016, then it was stable. This
behavior can be explained by a deadline of the project,
that was at the end of the year 2016. After the deadline,
the project active development stopped. Project manager
evaluated the results and stated, that such an ‘early
warning’ system could notify the team and save some
development resources.

VI. DISCUSSION AND CONLUSION

The objective of this study was to facilitate the
systematic collection and analysis of maintenance metrics,
in order to reduce the effort required in the maintenance
phase of software already during development. To realize
the goal we designed and implemented an architecture for
a system which can be used to collect both static and
runtime metrics of a software project. We then
implemented analysis tools to visualize these metrics, and
display the most high-maintenance modules in a project
repository.

The novelty of the presented work is the extendibility
and modularity of the architecture. The architecture is not
platform specific. New probes and corresponding
analyzers can be added at any stage, using the REST API
with any programming language or platform. The data
storage and reporting system provide a common interface
for the systematic collection of quality metrics, allowing
the developers of a project to establish and sustain a
commitment for quality measurement.

Providing a platform to establish the measurement
commitment is important, because previous research

shows that the quality assurance and testing practices of
developers do not necessarily line up with measurement
possibilities distinguished in academic research. For
example, the recent study by Garousi and Felderer
distinguishes that the industry and academia have different
focus areas on software testing [12]. Likewise, Antinyan
et al. show in [13] that existing code complexity measures
are poorly used in industry. In this work, we used the
maintainability index as an indicator for code quality, as it
has been used in both academia and industry. In future, we
should work on evaluating whether quality metrics
presented in academic publications could be implemented
into our system as probes providing reliable
measurements.

Additionally, in future work we aim to develop more
measurement probes in the system. We should evaluate
the different metrics to distinguish which measurements
provide the most useful information about software
maintainability.

REFERENCES

[1] “The Four Laws of Application, Total Cost of Ownership.”
Gartner, Inc., 2012.

[2] Eclipse Metrics Plug-in, http://sourceforge.net/projects/metrics.
(accessed 5th Feb 2018).

[3] JHawk, http://www.virtualmachinery.com/jhawkprod.htm.
(accessed 5th Feb 2018).

[4] NDepend ”http://www.ndepend.com”, (accessed 5th Feb 2018).

[5] ISO/IEC, “ISO/IEC 14764: Software Engineering - Software Life
Cycle Processes - Maintenance.” 2006.

[6] S. Motogna, A. Vescan, C. Serban, and P. Tirban, “An approach to
assess maintainability change,” in 2016 IEEE International
Conference on Automation, Quality and Testing, Robotics
(AQTR), 2016, pp. 1–6.

[7] ISO/IEC, “ISO/IEC 25010: Systems and software Quality
Requirements and Evaluation (SQuaRE) - System and software
quality models.” 2011.

[8] D. Kozlov, J. Koskinen, J. Markkula, and M. Sakkinen,
“Evaluating the Impact of Adaptive Maintenance Process on Open
Source Software Quality,” in First International Symposium on

Figure 4. Project code quality measurements

Empirical Software Engineering and Measurement (ESEM 2007),
2007, pp. 186–195.

[9] I. Heitlager, T. Kuipers, and J. Visser, “A practical model for
measuring maintainability,” in Quality of Information and
Communications Technology, 2007. QUATIC 2007. 6th
International Conference on the, 2007, pp. 30–39.

[10] A. Yamashita, “Experiences from performing software quality
evaluations via combining benchmark-based metrics analysis,
software visualization, and expert assessment,” in 2015 IEEE
International Conference on Software Maintenance and Evolution
(ICSME), 2015, pp. 421–428.

[11] B. Anda, “Assessing software system maintainability using
structural measures and expert assessments,” in Software
Maintenance, 2007. ICSM 2007. IEEE International Conference
on, 2007, pp. 204–213.

[12] V. Garousi and M. Felderer, “Worlds Apart: Industrial and
Academic Focus Areas in Software Testing,” IEEE Software, vol.
34, no. 5, pp. 38–45, 2017.

[13] V. Antinyan, M. Staron, and A. Sandberg, “Evaluating code
complexity triggers, use of complexity measures and the influence
of code complexity on maintenance time,” Empirical Software
Engineering, pp. 1–31, 2017.

