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ABSTRACT: - This paper proposes a de-noising 

method for vibration signal based on compressed 

sensing. Compressed sensing technology is a new 

method for de-noising a vibration signal, in the field 

of signal processing. It can achieve data acquisition 

as well as data compression at the same time. In this 

paper first, the original signal express into a low 

dimensional space. According to the compressed 

sensing theory the uncontaminated vibration signal 

can be represented sparsely by some transform 

domain while noise can’t be represent, therefore the 

noise information in original signal can be banished 

by compressed sensing. Then the original signal can 

be recovered by reconstruction algorithm. The 

orthogonal matching pursuit algorithm used in this 

paper and finally de-noising is achieved. This method 

is verified by induction motor vibration signal which 

polluted by white Gaussian noise. The simulation 

results show that the SNR could be improved and 

signal reconstruction error is minimum when we set 

appropriate value of sparsity and linear 

measurement in OMP algorithm.  
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1. INTRODUCTION  

  
The study of condition monitoring of machine and fault 

diagnosis is a challenging task. It is always necessary to 

collect the vibration signal or data to achieve the 

vibration analysis. Vibration analysis is used to 

condition monitoring of machine. Bearing faults in 

machine appear transient periodically in the vibration 

data. There are many types of faults can appear in the 

machine. The bearing is an essential component of the 

machine. The bearing failure mostly occurs due to 

temperature, lubricant problem, corrosion etc [10]. The 

bearing faults in machine increased, so this is not good 
for the health of the machine. For this reason detection, 

de-noising and analysis of such type of irregular 

vibration signal are necessary. In the process of data, 

acquisition noise might be brought in inevitably for the 

influence of the environment, temperature and sensors 
installation state and so on. Due to this interference 

information in fault detection or analysis of vibration 

signal. Therefore, it is essentially important to carry out 

de-noising the vibration signal before its analysis. There 

are many types of general de-noising methods for 

vibration signal are mathematics morphology filtering, 

singular value decomposition, empirical mode 

decomposition and wavelet de-noising and so on. In the 

wavelet de-noising, there is a problem of threshold 

setting, it can affect the noise reduction performance 

significantly, which should be a great problem solved. 

 
      Compressed sensing (CS) is a new sampling theory 

which can overthrow the traditional Nyquist Shannon 

sampling theory and was proposed by Donoho and 

Candes et al in 2006 [1,2]. The process of CS may be 

divided into two steps. First combining the sampling 

with compressing, we can obtain the non-adaptive linear 

projection (or measurement) of the original signal. Then 

we can use suitable recovery algorithm for recovering 

the original signal with the help of these measurements 

[4, 9]. The application of compressive sensing on image 

de-noising [5] and speech enhancement [7] etc.  Had 
been studied since the compressed sensing theory 

appears. These previous work help us to present a de-

noising method for vibration signal based on 

compressed sensing theory. The compressed sensing de-

noising method is similar with the wavelet de-noising, 

while it can avoid the threshold setting and achieve de-

noising by compressed sensing and reconstruct the 

vibration signal. The work is divided into five sections 

in this paper. Section second describes compressed 

sensing and sparse representation; Section third 

describes compressed sensing de-noising method and 
experimental tests described in section four. Work is 

concluded in section Five.  

2. COMPESSED SENSING AND SPARSE 

REPRESENTATION 

 
Sparse signal: - As we know that most nature signal in                                                       

time domain are not absolutely sparse,  

 but they can be represent approximate sparely by some 

transform domains such as Fourier domain, Wavelet 



domain, Qubo domain and DCT domain. Now consider 

the signal 𝑺 ∈ 𝑹𝑃  and the vector  {𝝍𝑖}𝑖=1
𝑃  as a column 

vector to form 𝑃 ∗ 𝑃  basis matrix  𝜳 = [𝝍𝟏, 𝝍𝟐 … . . . 𝝍𝑷],  

 Then any signal  𝑺 can be expressed as  
         

𝑺 = ∑ 𝒙𝑖
𝑃
𝑖=1 𝝍𝑖   (1) 

 
Where the coefficient 𝒙𝒊 = ⟨𝑺, 𝝍𝒊⟩ = 𝝍𝒊

′𝑺 and Eq. (1) 

can be represented in the matrix form as 

 

𝑺 = 𝜳𝑿                                    (2) 

 

Where 𝑿 = [ 𝒙𝒊] = [𝒙𝟏, 𝒙𝟐, … . 𝒙𝒑] is the projection 

coefficient or sparse signal and obviously 𝑺 and 𝑿 is the 

equivalent representation and 𝑿 is the 𝜳 domain 

representation. The 𝜳 is taken as a dictionary matrix 

(discrete cosines transform, DCT matrix). The signal 𝑺 

is called compressible signal if 𝑿 has only few non-zero 

element, also if 𝑿 is called 𝒌 sparse signal if  𝑿 has only 

𝑘 non-zero coefficient.  

 

Compressed sensing principle: - Consider a signal  

    𝑺 ∈ 𝑹𝑃, First we 

want to obtain the linear projection of original high 

dimension signal 𝑺 into a low dimension signal Y, by 

using a measurement matrix 𝟇 ∈ 𝑹𝑝∗𝑝(M<<P). And 

each row of matrix 𝟇 can be taken as a sensor which 

multiply with the signal 𝑺 and obtain the part of the 

signal information. Now we get compressive 

measurement of signal 𝑺 as shows in bellow  

 

𝒀 = 𝟇 𝑺          (3) 

 

Now we get the linear measurement 𝑌 ∈ 𝑅𝑀. But if we 

want to recover the signal 𝑺 from 𝒀. These fewer linear 
measurement should contain the enough information to 

recover the signal  𝑺 from 𝒀. According to linear algebra 

the Eq. (3) has so many solutions, there for we can’t 

reconstruct the original signal 𝑺 from 𝒀 when (M<<P) 

however, if 𝑺 is sparse some transform domain 𝜳, then 

number of unknown will reduce and it will be possible 

to reconstruct the signal 𝑺 from 𝒀. Now combine the Eq. 

(2) and (3) then we will get  

 

𝒀 = 𝟇𝜳𝑿                           (4)  

 

Where 𝑿 is sparse signal and denoting 𝑩 = 𝟇𝜳 then 

Eq. (4) can be written as  
 

𝒀 = 𝑩𝑿                                  (5) 
 

Now it is possible to recover the signal 𝑺 from 𝒀.   
Model structure of compressed sensing shows in Fig. 
(1). 

 
 

 

 

 

 

 

 

Fig.1. Model structure of compressed sensing 

Selection of measurement matrix: - For reconstructing                                   

the original signal. Candés and Tao presented also 

proved that the CS matrix 𝑩, must be satisfy the limited  

isometric nature (Restricted Isometry Property) [9,13] 

that means for any 𝒌 sparse signal 𝑿, should meet Eq. 

(6) 

(𝟏 − 𝜹𝒌) ⩽
‖𝑩𝑿‖ 2

2

‖𝑿‖2 
2 ⩽ ((𝟏 + 𝜹𝒌)             (6) 

Where 𝜹𝒌 ∈ (0,1), to meet the RIP condition is 

comparatively difficult. There for Baraniuk proposed the 

irrelevance between observation matrix 𝟇 and the 

dictionary matrix 𝜳 all most equal to the RIP [11], the 

relation between 𝟇 and 𝜳 shows in Eq. (7)[15] 

𝜇(𝟇, 𝜳) = √𝑃 ∙ max ⎸𝟇𝑖
𝑇 𝜳

𝑗
⎸1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑃 (7) 

Where 𝟇 𝑖
𝑇is the 𝑖𝑡ℎ row of  𝟇 and 𝜳𝒋 is the 𝒋𝒕𝒉 column 

of 𝜳. If these conditions are satisfy then the original 

signal can be definitely recovered according to Eq. (2) 

and Eq. (4).The matrix form of compressive sensing 

shown in bellow. 

 

  

  Fig.2. Matrix form of compressive measurement  
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Now, we select the orthogonal matching pursuit (OMP) 

algorithm and thus achieve the reconstruction of the 

original signal [3, 12]. 

 

Algorithm:-OMP algorithm for the signal        

reconstruction. 

INPUT: -Observation matrix 𝒀, CS matrix 𝑩, and 

sparsity 𝑲 

OUTPUT: -Estimate value of signal 𝑆𝑗, residual error𝑅𝑗

  

INITIALIZATION: - 𝑺[0] = 0,𝑹[0] = 𝒀, 𝑨0
[0]

= ø  

For j=1, j=j+1; as soon as the criteria is satisfy   

 Find the residual error 𝑹[𝑗−1] and the inner 

product 𝒂𝑗 = 𝑩𝑇𝑹[𝑖−1]; 

 Allocate the element  of  𝑎𝑗   

 𝑳[𝑗] = 𝑎𝑟𝑔𝑚𝑎𝑥⎸𝒂𝐿
[𝑗]⎸/‖𝑩𝐿‖2; 

 Expansion of the index 𝑨0
[𝑗]

= 𝑨0
[𝑗−1]

∪ 𝑳[𝑗]; 

 𝑺[𝑗]=𝑩†𝑨0
[𝑗]  𝒀, and "†"denote pseudo-inversing;  

 Upgrade the residual error 𝑅[𝑗] = 𝑌 − 𝐵𝑆[𝑗]; 
End For  

 

3. COMPRESSED SENSING DE-NOISING 

METHOD 

 

A de-noising method for vibration signal based on 

compressed sensing will be analysis in this portion. The 

vibration signals were acquired from the induction 

motor (single phase) under loaded condition. The 

induction motor was run with healthy bearing (6203-2Z-

H320B-JEM-SKF) was shown in Fig.3, the vibration 

signal of healthy bearing was taken by accelerometer 

(ESPL3X15) [6]. The simulation time was set as 2 

second. The vibration time signal of healthy bearing 

shown in Fig.5. The faulty bearing and there vibration 

time signal was shown in Fig.4 and Fig.6 respectively. 

 

  
Fig.3. Healthy bearing 

 
Fig.4. Faulty bearing  

Fig.5. Healthy vibration time signal  

Fig. 6. Faulty vibration time signal 

 Generally, the nature signals are not absolutely sparse. 

But they can be represented sparsely by some transform 

domain 𝜳  such as discrete cosine transforms (DCT).   

We select a signal 𝑺 ∈ 𝑹𝑝 (P=1200) from the signal 

shown in Fig. 7, shows uncontaminated vibration signal 

and The DCT result of signal 𝑆 is shown in Fig.8. We 

can see from fig.8, that the almost coefficient after 

applying DCT are close to zero, that means the signal 𝒙 

can be represented nearly sparse.  Signal sprsity is the 

essential condition for compressed sensing de-noising. 

In general the signal  𝑺 ∈ 𝑹𝑝 can be compressible 

(sparsely) in domain 𝜳.  

Fig.7. Uncontaminated vibration signal 



Fig.8. Corresponding coefficient after DCT 

Now create the white Gaussian noise 𝒘 ∈ 𝑹𝑝. 

According to the compressed sensing theory noise can't 

be compressible in domain 𝜳. If the signal 𝑺 is polluted 

by white Gaussian noise 𝒘. Then we can obtained (𝑺 +

𝒘) ∈ 𝑹𝑝. Consider the measurement matrix  𝟇 ∈
𝑹𝑀∗𝑃(M<P), then the contaminate vibration signal 

projected high dimension space to low dimension space 

and obtained linear observation 𝑌 =  𝟇(𝑺 + 𝒘) and 

sparse form of signal 𝑺 and noise 𝒘 are 𝑋𝑠 and 𝑋𝑤 

respectively. Then observation 𝒀 can be written as 

𝒀 = 𝑩(𝑿𝒔 + 𝑿𝒘)                           (8) 

Where  𝑩 =  𝟇𝜳, implemented model of compressed 

sensing de-noising shown in Fig.9. 

 

    

 

 

 

 

 

 

Fig.9. Implemented model of compressed sensing de-noising  

 

4.   EXPERIMENTAL RESULTS 

 

The vibration signal shown in Fig.7. Will be used as a 

uncontaminated signal 𝑺 ∈ 𝑹𝑃 (P=1200), and the white 

Gaussian noise will be used to polluted the vibration 

signal, then we obtained contaminated signal 𝒔𝒘 ∈ 𝑹𝒑. 

The 𝜳(DCT matrix) and 𝟇(Gaussian random matrix) 

will be taken as a dictionary matrix and the 

measurement matrix respectively. The OMP algorithm 

will be used for signal reconstruction. To evaluate the 

simulation results of de-noised vibration signal 𝑺. The 

compression ratio of the signal [16] and the signal to 

noise ratio (SNR) of the contaminated vibration signal 

and de-noise signal are calculated respectively [3].  

 

𝑪𝑺 =
𝑵

𝑵𝒄
                                 (9)  

 

Where 𝑁, 𝑁𝑐 denoted the signal data amount and 

compressed data amount. The SNR of the original signal 

can be calculated as follow  

            𝑺𝑵𝑹 = 10log (∑ 𝑆𝑖
2𝑝

𝑖=1 /∑ 𝑤𝑖
2𝑝

𝑖=1 )         (10) 

The SNR of the de-noise signal can be calculated as 

follow 

       𝑺𝑵𝑹 = 10 log (
∑ 𝑆𝑖

2𝑝
𝑖=1

∑ (𝑠𝑤′−𝑤)𝑖
2𝑝

𝑖=1

)                (11) 

Where wn’ denoted the de-noised signal. The 

uncontaminated vibration signal shown in fig.10, and 

the original signal shown in Fig.11, the signal after de-

noise shown in Fig.12. The compression ratio of the 

signal is 1.142, And SNR of the original signal is 

13.0733dB, while the SNR of the de-noised signal is 

20.3990 dB. We can compare the SNR of original signal 

and de-noised signal and the SNR of de-noise signal is 

improved obviously. There for the proposed method 

should be effective for vibration signal de-noising.  

Fig.10. Uncontaminated vibration signal 

Fig.11. Original signal 

Fig.12. De-noised or reconstructed signal 
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It can be seen in above figures that de-noised signal by 

this method is almost closed to the uncontaminated 

signal 𝑺 as compared to the original signal. The signal 

reconstruction error also calculated to evaluate the 

results as follows [16].  

𝝃 =  ǁ�̂� − 𝑺ǁ𝟐
ǁ𝑺ǁ𝟐

                                (12) 

Where 𝑆 ̂, 𝑆 separately denoted the reconstructed signal 

and original signal. The reconstruct error is 0.0640 

when the value of 𝐾 = 30 and 𝑀 = 700 set in the OMP 

algorithm. The reconstruction error is shown in table 1. 

Table 1: Reconstruction error for different value of 

sparsity 𝐾 and measurement  𝑀 = 600. 

𝑲 5 

 
10 15 20 25 

 

30 35 40 45 50 

𝝃 .04

48 

.05

44 

.05

66 

.06

03 

.06

74 

.06

40 

.06

01 

.06

10 

.06

36 

.06

90 

 

It is seen in table that when the value of 𝐾  is increase 

the reconstruction error will also increase, there for we 

have to choose the appropriate value of 𝐾 and 𝑀 that the 

results should be better, while when measurement 𝑀 is 

increase the error is decrease but execution time will be 

increase. Therefore setting the measurement 𝑀 = 700 

and sparsity 𝐾 = 30 and the results shows above.    

5. CONCLUSIONS   

 
This paper proposes a de-noising method for vibration 

signal based on compressed sensing theory. The 

experiments results show the performance of the 

proposed method in vibration signal de-noising. The 

results of signal de-noising mostly affected by 

measurement number 𝑀 and the sparsity 𝐾 which is set 

in OMP algorithm. Usually, the value of  𝐾 smaller, then 

the de-noising results is better. While increasing the 

measurements, the de-noising results will improve but 

corresponding computation time would also be 

increased. Therefore, we should set moderate 𝑀 and an 

appropriate 𝐾 that the SNR would be improved and 

signal reconstruction error is minimum. In our 

experiments, the DCT matrix was used as the dictionary 

matrix for representing the vibration signal sparsely and 

Gaussian random matrix used as measurement matrix. 
The future work mainly focuses on some other 

transform domain to represent more sparsely which 

would be beneficial to decrease the signal reconstruction 

error and also studied recovery algorithm in next work. 
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