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Abstract. Network intrusion detection, a well-explored cybersecurity
field, has predominantly relied on supervised learning algorithms in the
past two decades. However, their limitations in detecting only known
anomalies prompt the exploration of alternative approaches. Motivated
by the success of self-supervised learning in computer vision, there is
a rising interest in adapting this paradigm for network intrusion detec-
tion. While prior research mainly delved into contrastive self-supervised
methods, the efficacy of non-contrastive methods, in conjunction with en-
coder architectures serving as the representation learning backbone and
augmentation strategies that determine what is learned, remains unclear
for effective attack detection. This paper compares the performance of
five non-contrastive self-supervised learning methods using three encoder
architectures and six augmentation strategies. Ninety experiments are
systematically conducted on two network intrusion detection datasets,
UNSW-NB15 and 5G-NIDD. For each self-supervised model, the com-
bination of encoder architecture and augmentation method yielding the
highest average precision, recall, F1-score, and AUCROC is reported.
Furthermore, by comparing the best-performing models to two unsuper-
vised baselines, DeepSVDD, and an Autoencoder, we showcase the com-
petitiveness of the non-contrastive methods for attack detection. Code
at: https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS

Keywords: Network Intrusion Detection · Self-Supervised Learning ·
Data Augmentation.

1 Introduction

In the face of a rising tide of security threats targeting the internet and computer
networks, the need for developing flexible and adaptive security approaches is
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of paramount importance. The swift evolution of network technologies has in-
creased the complexity and severity of attacks [14]. In light of this dynamic
landscape, the adoption of Network Intrusion Detection System (NIDS) [8] has
become prevalent as an effective strategy to counter the expanding threat sce-
nario. NIDS that use supervised methods have been the subject of extensive
research over the past two decades [11, 34]. However, the requirement for exten-
sive labeled data in training poses challenges due to cost and time implications.
1

Self-Supervised Learning (SSL) has become increasingly prominent in recent
years, offering an effective remedy for the labeled data scarcity challenge across
various domains. By leveraging the underlying structure and patterns in the data,
SSL learns meaningful representations without the need for labeled data. Sub-
sequently, these acquired representations are useful in other downstream tasks,
such as anomaly detection [15]. Many recent SSL methods, particularly those
relying on a joint-embedding architecture, share a common goal: learning rep-
resentations that remain invariant under various distortions (data augmenta-
tions). In other words, these methods seek to generate similar embeddings for
different augmented views of the same sample [32]. Contrastive methods define
positive and negative sample pairs through data augmentation, seeking to bring
the output embeddings of positive pairs into closer proximity while simultane-
ously pushing negative pairs further apart [6]. This process requires comparing
each sample with many others to work effectively. However, discarding negative
samples and solely minimizing the distance between positive pairs during train-
ing can lead to the learned representation collapsing into a constant solution,
where all inputs map to the same output [4]. To overcome this limitation, the
computer vision (CV) community has introduced a set of SSL models, includ-
ing BYOL [13], SimSiam [7], Barlow Twins [36], VICReg [5], and W-MSE [10].
These models are collectively referred to as non-contrastive methods because
they require no negative samples, differing primarily in how they avoid repre-
sentation collapse. Nonetheless, non-contrastive SSL models rely on two crucial
elements: a) data augmentations, which are essential for regulating the degree
of invariance beneficial for downstream tasks, and b) encoder architectures that
act as the representation learning backbone in SSL models. Unlike CV, where
specific data augmentations or encoder architectures have been established, and
different non-contrastive SSL models are commonly compared to each other [5],
to the best of our knowledge, the practice of comparing these models, along
with determining suitable augmentation strategies or encoder architectures for
non-contrastive SSL in NID, remains unclear. Therefore, this paper aims to
investigate the interplay between augmentation, encoder, and non-contrastive
SSL models by proposing a two-stage pipeline. In the initial stage, an informa-
tive representation of only normal network traffic data without labels is learned,
involving augmentations, encoders, and non-contrastive SSL models. In the sec-

1 Alternatively, semi-supervised learning methods have shown promising performance
while utilizing a few labeled samples [2]. However, this paper focuses on self-
supervised learning, predicated on the assumption of label-free training.



Non-Contrastive SSL for NIDS 3

ond stage, a K-means detector is introduced to distinguish between benign and
attack data. For augmentation, four strategies from prior NID research and two
new strategies from the tabular domain, not previously applied in NID, are uti-
lized. Regarding the encoders, three different architectures serve as the represen-
tation learning backbone for the five non-contrastive models mentioned above.
Ninety different combinations are systematically investigated, stemming from
the permutations of augmentation techniques, encoder architectures, and non-
contrastive SSL models. The best results are reported, with the most suitable
combination of augmentation methods and encoder architectures being deter-
mined for each non-contrastive SSL model. Performance is assessed using the
metrics precision, recall, F1-score, and AUCROC on two publicly available NID
datasets. To the best of our knowledge, we are the first to conduct a compara-
tive analysis of non-contrastive SSL models in NID, specifically examining their
performance under different augmentation methods and encoder architectures.

The paper is structured as follows: In Section 2, we review previous studies,
emphasizing similarities and distinctions between our work and prior research.
Section 3 outlines the augmentation methods, encoder architectures, SSL models,
and the K-means detector employed in our study. Our experimental setup is
detailed in Section 4. The results of our study are presented in Section 5. The
paper concludes with Section 6.

2 Related Work

In this section, prior related research on non-contrastive SSL is discussed with a
focus on the used SSL model, augmentation strategy, and encoder architecture.

Wang et al. [31] were the first to adopt the BYOL model from CV for the
task of NID. Their approach involves transforming network traffic samples into
grayscale images, incorporating standard computer vision augmentations such
as flipping, cropping, and introducing a method called Random Shuffle, which
shuffles values within each sample. However, the authors did not provide a clear
demonstration of the specific benefits of this augmentation strategy for the de-
tection task. They also argued against using Gaussian Noise for augmentation.
In addition, the paper investigates the impact of six different encoders, all rooted
in the field of CV, and notes that the BoTNet attains the highest performance
metric. The direct application of a CV pipeline for NID has also been questioned
in [19], where a zero-masking strategy (also referred to as Zero Out Noise) is pro-
posed for augmentation instead of relying solely on CV augmentations. BYOL
is also employed in android malware detection, as demonstrated in [33], utiliz-
ing a TextCNN as an encoder and incorporating two augmentation strategies:
Gaussian Noise and row- or column-wise feature masking. Recently, BYOL has
been adapted for the encrypted network classification task in [29], where data
augmentation operates by dividing a flow of packets into sub-flows and using
one sub-flow as an augmented version of another. These sub-flows are created
through an incremental sampling strategy described in [29]. Apart from BYOL,
VICReg is the only other non-contrastive SSL model applied in the domain of



4 H. Fard et al.

NID in [21], where the authors used theSwap Noise augmentation strategy from
the tabular domain [30]. This technique involves randomly swapping a small por-
tion of the columns between two samples to generate noisy augmented samples
for training. For the encoder, an MLP is employed.

In summary, previous research exploring the performance of non-contrastive
SSL models for NID commonly employed a single model. They either replicated
an entire CV pipeline or adopted a singular augmentation strategy along with
a lone encoder. In addition, these studies consistently incorporated a supervised
linear classifier in their detection stage, implying that access to a labeled subset
of the dataset was assumed during the finetuning stage. In contrast, this paper
conducts a) a comparative analysis of the performance among different non-
contrastive SSL models using six distinct augmentation strategies and three
diverse encoder architectures, and b) employs an unsupervised linear classifier
(K-means) in the detection stage, rendering it label-free.

3 Method

3.1 Augmentations

As previously emphasized, the choice of augmentation methods is pivotal in
shaping the SSL objective, as it dictates what the non-contrastive SSL models
learn. In this section, we explain the considered augmentation methods.

Swap Noise. Given a traffic network sample i ∼ D from dataset D with i ∈
IRdD , where dD is the number of features of sample i. To generate an augmented
version of this sample i′, each feature of i is randomly replaced with a feature
at the same position from other samples in D with probability p sampled from
a Bernoulli distribution [30, 35, 3, 28]. This procedure is given by

i′ = i⊙ (1−m) + j ⊙m, (1)

where m ∈ {0, 1}dD is a binary mask vector with each element drawn from
a Bernoulli distribution, j is a feature vector where each feature is randomly
sampled from the original data within the same feature and ⊙ is the element-
wise multiplication.

Zero Out Noise. Similar to Swap Noise, features are randomly replaced by
zeros in this augmentation. The generation of an augmented sample i′ from a
sample i is then given by

i′ = i⊙ (1−m), (2)

where m is again a binary vector sampled from a Bernoulli distribution with
parameter p [30, 19].

Gaussian Noise. In addition to these replacement methods, we can add
Gaussian noise onto randomly selected feature values [30, 22]. The noise is sam-
pled from a normal distribution with ϵ = N(µ, σ2), where µ ∈ IR is the mean
and σ2 ∈ IR>0 is the variance. Formally, this is given by

i′ = i+−→ϵ ⊙m, (3)
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where −→ϵ is a vector of values, with each value sampled from the normal dis-
tribution N(µ, σ2) and m is the binary mask vector sampled from a Bernoulli
distribution with parameter p.

Random Shuffle. The former augmentation methods alter the features’
values. In contrast to the former augmentations, we can randomly shuffle the
features’ positions within a sample i to generate the augmented version of the
sample [31]. For this shuffling, a version of the Fisher-Yates algorithm given in
Appendix B is used to generate the augmented version of sample i.

Subsets. Instead of creating two views, in this augmentation the features
of D are split into k subsets, before being fed into the encoder fθ [30]. Each
subset consists of a set of features that can overlap with a neighbor subset with
a defined percentage of the subset’s number of features. We randomly shuffle
the dataset features at the beginning of each run to remove any negative bias
created by the order of features before building the subsets.

The subsets can be seen as different views of the original sample fed into the
model. In contrast to the previously mentioned augmentation methods, Subsets
automatically creates more than one view and thus is not required to be executed
multiple times. With k > 2 as the number of subsets, more than two views are
obtained. Therefore, we compute the pairwise loss of all views and take the mean
as the final loss. At test time, the samples must be split into subsets similar to
those at training time, because the trained encoder is adjusted to the subset’s
shape. Therefore, each subset s1, s2, . . . , sk is processed by the encoder fθ to gen-
erate a representation for each subset y1, y2, . . . , yk = fθ(s1), fθ(s2), . . . , fθ(sk).
Then, these representations of the subsets are aggregated using the representa-
tion’s element-wise mean, forming the final representation for the downstream
task.

Mixup. Each former-explained augmentation method operates in the input
space, implying that the augmentations take a raw network traffic sample and
transform it into one or multiple views of this sample. In contrast, the Mixup
augmentation operates in the representation space [35, 28]. Thus, the encoders
simply receive two copies of the input sample and generate the representations
y = fθ(i), y

′ = fθ(i). Then, Mixup creates a convex combination between y and
another randomly selected representation of the current batch yj . This augmen-
tation is mathematically described by

ȳ = α ∗ y + (1− α) ∗ yj (4)

Similarly, the second representation y′ is augmented with a different randomly
selected representation of the batch.

The different augmentation strategies are further illustrated in Figure 1.

3.2 Encoders

Therefore, each subset s1, s2, . . . , sk is processed by the encoder fθ to generate
a representation for each subset y1, y2, . . . , yk = fθ(s1), fθ(s2), . . . , fθ(sk). Then,
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Fig. 1. Visualisation of different augmentation strategies. Swap Noise: each feature of
sample i is randomly replaced with a feature from the same position in other sam-
ples, with probability p from a Bernoulli distribution. m is a binary mask vector with
elements drawn from a Bernoulli distribution, and ⊙ represents element-wise multipli-
cation. Zero Out Noise: to generate the augmented view i′, features of sample i are
multiplied element-wise by 1 minus the binary mask vector. Gaussian Noise: −→ϵ is a
vector of values, with each value sampled from the normal distribution. This vector
is element-wise multiplied with a binary mask vector and summed with the original
sample vector i to generate the augmented sample. Mixup: operates in the represen-
tation space where the encoder fθ receives two copies of the representations y = fθ(i)
and y′ = fθ(i

′). Mixup creates a convex combination between y and another randomly
selected representation of the current batch yj . Similarly, the second representation y′

is augmented with a different randomly selected representation of the batch. Subsets:
dataset features are split into k subsets before being fed into the encoder fθ. Each
subset can overlap with a neighboring subset by a defined percentage of features. For
k > 2, more than two views are obtained. Each subset is processed by the encoder fθ
to generate representations y1, y2, . . . , yk. These representations are aggregated using
their element-wise mean, forming the final representation for the downstream task.
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these representations of the subsets are aggregated using the representation’s
element-wise mean, forming the final representation for the downstream task.

The representations generated by the SSL model’s encoder play a crucial
role in improving the performance of the downstream task. To this end, three
different encoder architectures are chosen to serve as the representation learning
backbone for the non-contrastive SSL models. The details of each architecture
are explained in the following.

CNN. For the Convolutional Neural Networks (CNNs) architecture, the pro-
cedure described in [19] is adhered to, where the authors reshaped a network
traffic sample with dD features to H × W × C = 1 × dD × 1. Through this
processing, we can use a 2D convolutional layer with filters of height H = 1 and
arbitrary width W . The precise architecture is given in Appendix 8.

MLP. The encoder consists of four fully connected layers, with the first
layer being the input layer, followed by two hidden layers and the output layer.
After each of the first three layers, we perform batch normalization followed by
applying a ReLU activation function before feeding the output of the current
layer to the next layer. The embedding dimension is set to 256 for all layers.
Consequently, the input dimension of the first input layer equals the number
of features from the input sample, whereas all remaining layers have an input
dimension of 256. The MLP architecture is adapted from [3].

FT-T. The Feature Tokenizer Transformer (FT-Transformer) is a supervised
transformer model introduced for tabular data consisting of a Feature Tokenizer
and a Transformer [12]. We decided to take advantage of the FT-Transformer
because, unlike typical Transformers used e.g. in [31], the FT-Transformer is ca-
pable of handling numerical and categorical data. Given that the pre-training of
the encoder is label-free, we exclude the classification token utilized by the pre-
diction head of the FT-Transformer to integrate it into our pipeline. The Feature
Tokenizer creates an embedding of an input network traffic sample by separately
processing numerical and categorical features. Afterward, the embeddings of all
features are stacked upon each other, which forms the final embedding of the in-
put sample. The embedding is further processed by the Transformer part of the
encoder, which consists of a stack of Transformer layers. The structural architec-
ture of the Transformer layers remained unaltered, following the specifications in
the original paper [12]. In our implementation, we set the embedding dimension
of the feature tokenizer to 32 and the number of self-attention heads for the
Multi-Head Self-Attention mechanism to 4. In addition, we chose 4 Transformer
layers, encoding the input embedding. The output of the Transformer encoder
is then flattened for the subsequent computations. Furthermore, we added a
dropout of 0.1 into each attention and feedforward sub-layer, similar to the orig-
inal implementation [12].

The introduced encoders replace the original encoders in the implementa-
tions of the SSL models in our framework. This adaption allows the models to
operate on network traffic data. To ensure a fair and competitive comparison,
the architecture of the encoders described above is kept identical for each SSL
model.
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3.3 Non-Contrastive SSL Models

As mentioned in Section 1, non-contrastive SSL models minimize the distance of
representations obtained from different augmented versions of a sample, which
is realized through a joint embedding architecture. However, a shortcoming of
joint embedding architectures is a phenomenon known as collapse, where the
two branches ignore the inputs and produce constant output vectors (trivial
solutions). In the this subsection, we delve into the distinct features of these
models with a particular emphasis on their role in preventing collapse, which
are illustrated in Figure 2.

The two augmented views x, x′ are fed to an encoder f with weights θ which
yields the representations y = fθ(x), y′ = fθ(x

′). Then, y and y′ are further
processed by the network h (referred to as the projector) with weights ϕ. In our
case, f can be any one of three encoders described in Section 3.2 and h is an
MLP (two fully-connected layers with batch normalization and ReLU activation)
with embedding dimension 256 for each model to ensure a fair comparison. After
this step, different criteria are applied to the projector embeddings z and z′:

BYOL. Collapse is prevented through architectural modifications, where
in one branch, the weights θm for the encoder f and ϕm for the projector h
are the estimated moving averages of their respective weights θ and ϕ in the
other branch. One branch incorporates an additional predictor, denoted as g
with weights ψ, to map the output of one network to the other, resulting in an
asymmetric architecture. Finally, the output embeddings of the two branches
are feature-wise normalized (F-normed) 2, and the similarity loss is computed
as the mean-squared error (mse) between them [13].

SimSiam. The estimated moving average operation from BYOL is omitted
because it was found to be unnecessary for preventing representation collapse
[7]. Similar to BYOL, SimSiam includes a predictor network in one branch and
a stop-gradient operation in the other branch [5]. The stop-gradient operation
allows the branch with the predictor to be optimized with the projector output
of the other branch as the target, but not the other way around.

Barlow Twins. The design of the objective function, rather than architec-
tural modifications, is responsible for preventing collapse. The objective function
assesses the cross-correlation matrix between the outputs of the two branches
with the goal of minimizing the deviation from the identity matrix [36]. It com-
prises two key terms: an invariance term (inv) that aims to set the diagonal
elements of the cross-correlation matrix to 1 and a decorrelation term (c), which
decorrelates pairs of different dimensions within the batch-wise normalized (B-
Norm) embeddings [5], i.e., it aims to set the off-diagonal elements of the cross-
correlation matrix to 0.

VICReg. Similar to Barlow Twins, VICReg avoids collapse through its ob-
jective function, which balances three essential components: a variance term, a
covariance term, and an invariance term. The variance and covariance of each
branch undergo independent regularization through v and cov, respectively. The

2 In our implementation, F-norm always refers to ℓ2 normalization.
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Fig. 2. Comparison of the different non-contrastive SSL models. The two augmented
views x, x′ are fed to an encoder f (can be an MLP, CNN, or FT-T ) with weights
θ which yields the representations y = fθ(x), y′ = fθ(x

′). Then, y and y′ are further
processed by the network h with weights ϕ. h is an MLP (two fully-connected layers
with batch normalization and ReLU activation). After this step, different criteria are
applied to the projector embeddings z and z′. VICReg: regularizes the variance and
covariance of each branch independently with v and cov, respectively. The invariance
term is determined as the mean-squared distance between each pair of vectors z and z′.
The final loss is the weighted sum of these three terms. BYOL: one branch incorporates
an additional predictor, denoted as g with weights ψ, to map the output of one network
to the other, resulting in an asymmetric architecture. The output embeddings of the two
branches are feature-wise normalized (F-normed) and the similarity loss is computed
as the mean-squared error (mse) between them. Barlow Twins: its objective function
assesses the cross-correlation matrix between the outputs of the two branches and has
two terms: an invariance term (inv) that aims to set the diagonal elements of the cross-
correlation matrix to 1 and a decorrelation term (c), which decorrelates pairs of different
dimensions within the batch-wise normalized (B-Norm) embeddings. SimSiam: adds a
predictor network in one branch and a stop-gradient operation in the other, omitting
BYOL’s moving average. W-MSE: applies batch slicing and a Cholesky decomposition-
based whitening transformation to F-normed embeddings. The loss is the mean-squared
error (mse) between whitened, normalized embeddings of the two branches.
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variance regularization term v imposes a constraint on the variance along the
batch dimension, ensuring it exceeds a specified threshold for every embedding
dimension. Simultaneously, the covariance regularization term cov is defined as
the sum of the squared off-diagonal coefficients of the covariance matrix. More-
over, both the variance and covariance regularization terms are computed in-
dependently for each branch. The invariance term is determined as the mean-
squared distance between each pair of vectors z and z′. The final loss is the
weighted sum of these three terms [5].

W-MSE. Similar to VICReg and Barlow Twins, W-MSE prevents collapse
through its objective function. This involves a batch slicing operation that reor-
ganizes batches of projector output embeddings z and z′ into smaller sub-batches
[16]. Following this, a Cholesky decomposition-based whitening transformation
is applied to the F-normed embeddings of each sub-batch [5]. Finally, the loss is
computed as the mean squared error between the whitened, normalized embed-
dings of the two branches [10].

3.4 Classifier

Fig. 3. K-means classifier generates an anomaly score (as) for a network traffic sample
i.

After the training phase of the non-contrastive SSL models has completed,
only the encoder fθ is kept, and all other parts of each model are discarded
[17]. The weights of the encoder are frozen, and a simple classifier is trained on
top of the frozen representation of the data, as shown in Figure 3. Training a
linear classifier on top of a pre-trained encoder and using a labeled set of the
dataset for fine-tuning on the downstream task is the most common approach
in computer vision, which is also used in NID by [31, 33, 29, 21]. However, in
this paper, no access to labeled data for fine-tuning is assumed, and the learned
representations of the encoders are evaluated via a simple K-means algorithm
with a single cluster center in an unsupervised manner, following [26]. The K-
means classifier trained on top of the encoder calculates an anomaly score from
a given feature representation y = fθ(i). The anomaly score ac is defined as the
Euclidean distance E between the cluster center and the representation of the
test sample ts processed by the encoder fθ given as

as = ∥E∥2 = ∥fθ(ts)− cc∥2 (5)
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where cluster center cc is given by:

cc =
1

nD

nD∑
j=1

fθ(ij) (6)

D = {i1, i2, . . . , inD
} are the nD data samples used for training the unsupervised

classifier.

4 Experiments

In the preceding sections, the four key components of our pipeline were explained:
the augmentation methods, encoder architectures, non-contrastive SSL models,
and the unsupervised classification head, yielding a complete pipeline suitable
for a NID task. We treat every unique combination as an individual experiment,
resulting in a total of 90 experiments (3 × 6 × 5). Each combination is then
hyper-optimized, trained, and evaluated on two NIDS datasets under identical
conditions to ensure a fair performance comparison. In this section, the evalua-
tion protocol, metrics, datasets, and hyperparameter optimization strategy are
examined. The complete pipeline is given in our repository3.

4.1 Evaluation Protocol and Metrics

Ensuring a fair and consistent comparison of different models is crucial. Unfortu-
nately, in scientific publications, this is not always achieved due to inconsistent
hyperparameter tuning or the use of misleading metrics for evaluation, such as
accuracy in an unbalanced test set. Moreover, various choices for the class of
interest, discrepancies in the training protocol, and different ratios of anomalies
in the training set are barriers to comparative evaluations. Therefore, we adhere
to the evaluation protocol of [1], where the training set consists exclusively of
normal data and the test set includes both normal data and anomalies, with
the split ratio as specified in [1]. The positive class is consistently defined as the
anomalous class, which forms the basis for the performance metrics. These in-
clude the threshold-independent metric AUROC and threshold-dependent met-
rics, precision, recall (detection rate), and F1-score, computed with an optimal
threshold. To account for statistical uncertainty, each combination of augmen-
tation method, encoder architecture, and SSL model is treated as a distinct
experiment and executed in 10 runs. The mean and standard deviation are sub-
sequently calculated over all runs, ensuring robust performance evaluations and
more accurate estimations of each model’s performance.

4.2 Datasets

To benchmark the different SSL models in the pipeline, two NIDS datasets are
utilized: UNSW-NB15 [23] and 5G-NIDD [25]. The UNSW-NB15 dataset is well-
recognized in the NID domain, proving more suitable for modern NID than the
3 https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS
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Table 1. General information on the datasets after preprocessing,

Dataset Number of Samples Number of Features Attack Ratio
UNSW-NB15 154 098 196 0.4437
5G-NIDD 1 215 655 58 0.6072

NSL-KDD dataset [9]. The 5G-NIDD dataset is collected using the 5G Test
Network (5GTN) in Finland. A key feature of this dataset is the generation of
benign traffic by actual mobile devices in the network, as opposed to simulated
traffic. The benign traffic consists of HTTP, HTTPS, SSH, and SFTP traffic. In
addition, it includes two attack categories: Port Scan (including SYN Scan, TCP
Connect Scan, UDP Scan) and Dos/DDoS (covering ICMP flood, UDP flood,
SYN flood, HTTP flood, Slow rate DoS - Slowloris, Slow rate DoS - Torshammer)
attacks.

Both datasets were initially cleaned by removing NaN values, dropping dupli-
cated features and samples, and normalizing the values of the features. Further-
more, categorical features were one-hot encoded. Thus, the datasets only consist
of numerical features that fit each encoder’s input type. Finally, the malicious
samples were merged for the NID task. A script for this general preprocessing is
provided in our repository4 5. Table 1 summarizes the information of the datasets
after the preprocessing step.

4.3 Hyperparameter Optimization

The implementation comprises three sets of variable hyperparameters: model-
specific parameters, augmentation parameters, and general training parameters
such as learning rate and epochs. Due to the absence of established references
guiding the appropriate configuration of these parameters within our pipeline,
and recognizing that directly adopting hyperparameter values from original pa-
pers may result in biased and non-competitive outcomes, optimization of hyper-
parameters was conducted for each dataset, model, augmentation, and encoder
combination using Tune [18].

The ADAM optimizer was consistently employed for model optimization both
in hyperparameter optimization and final runs. During the initial optimization
phase, the learning rate was set to 1e−4 and the maximum number of epochs
was fixed at 200. Subsequently, optimal model and augmentation parameters
were determined using BayesOptSearch [24] with 200 trials, except for the W-
MSE model and subset augmentation, which utilized a BasicVariantGenerator
due to an integer search space. Following this, the identified optimal parameters
were established, and a grid search was conducted on common learning rates
(1e−2, 1e−3, 1e−4, 1e−5), each with three trials. Finally, the optimal number
4 https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS/blob/main/
src/data/process.py

5 Aside from the feature preprocessing steps described above, no further feature selec-
tion methods were applied
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of epochs was determined by training the models with the previously obtained
parameters for 200 epochs and three runs. The epoch with the highest average
metric over the three runs was considered as the optimal number of epochs.
Optimal hyperparameters for each combination are available in our repository6.

4.4 Experimental Environment

A 64-Bit computer with Debian version 11.7 is used to execute the experiments.
As hardware components, the Intel(R) Core(TM) i9-10980XE CPU 3.00GHz
with 32 GB RAM and an NVIDIA RTX A5000 GPU with 24 GB VRAM are
given.

5 Results

Our experimental results, detailed in Tables 2 and 3, showcase the combinations
of augmentation strategy and encoder architecture that yielded the highest av-
erage precision, recall, F1-score, and AUCROC metrics for each SSL model on
the UNSW-NB15 and 5G-NIDD datasets, respectively.

UNSW-NB15. For the UNSW-NB15 dataset, BYOL exhibits comparably
lower performance than other models. Notably, the Gaussian Noise augmenta-
tion strategy, which was previously deemed unsuitable by [31] yields the best
result for BYOL! On the contrary, the Random Shuffle augmentation, proposed
in [31], consistently underperforms when combined with any encoder or SSL
model. As a result, it is not featured in Table 2. The poor performance of the
Random Shuffle augmentation, compared to other augmentation methods, be-
comes more evident in Tables 4 and 5, where the performance of BYOL and
SimSiam models are compared across all augmentation methods on the UNSW-
NB15 dataset. Another absent augmentation strategy in Table 2 is Swap Noise,
used by the authors in [21] in conjunction with VICReg and an MLP encoder.
In our experiments, VICReg attains the highest average precision, F1-Score, and
AUCROC with the Subsets augmentation. Similarly, Barlow Twins demonstrates
the best average performance metrics when combined with the MLP encoder and
the Subsets augmentation method. In addition, the Zero Out Noise augmenta-
tion, combined with the SimSiam model and FT-Transformer, yields the highest
detection rate.

5G-NIDD. VICReg, combined with a CNN encoder and the Gaussian Noise
augmentation, achieved the highest average precision, recall, and F1-Score among
all other non-contrastive SSL models. This showcases the viability of Gaussian
Noise as an augmentation strategy. One possible reason for the exclusion of this
strategy in [31] could be attributed to either insufficient hyperparameter opti-
mization or its combination with other CV augmentations, such as horizontal
flip, vertical flip, random crop, or even Random Shuffle, leading to suboptimal

6 https://github.com/renje4z335jh4/non_contrastive_SSL_NIDS/blob/main/
hyperopt/best_config.yml
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Table 2. Comparison of non-contrastive SSL models with the highest average perfor-
mance metrics (all with standard deviation) on the UNSW-NB15 dataset.

Model ENC AUG Precision Recall F1-Score AUROC
BYOL FT-T GN 0.720± 0.021 0.776± 0.024 0.747± 0.022 0.704± 0.037
SimSiam FT-T ZON 0.762± 0.049 0.823 ± 0.053 0.791± 0.051 0.762± 0.048
VICReg MLP S 0.788 ± 0.059 0.810± 0.062 0.798 ± 0.056 0.786 ± 0.071
BarlowTwins MLP S 0.783± 0.066 0.809± 0.053 0.795± 0.056 0.764± 0.105
W-MSE CNN M 0.763± 0.031 0.806± 0.019 0.784± 0.018 0.756± 0.043

Table 3. Comparison of non-contrastive SSL models with the highest average perfor-
mance metrics (all with standard deviation) on the 5G-NIDD dataset.

Model ENC AUG Precision Recall F1-Score AUROC
BYOL CNN SN 0.867± 0.015 0.911± 0.017 0.888± 0.013 0.775± 0.017
SimSiam CNN S 0.841± 0.070 0.877± 0.070 0.858± 0.069 0.724± 0.134
VICReg CNN GN 0.932 ± 0.010 0.961 ± 0.026 0.946 ± 0.009 0.908± 0.005
BarlowTwins MLP M 0.916± 0.012 0.909± 0.012 0.912± 0.009 0.925 ± 0.009
W-MSE MLP M 0.836± 0.054 0.891± 0.057 0.863± 0.056 0.756± 0.077

performance. Similar to the results in Table 2, Random Shuffle did not achieve
competitive results, irrespective of the SSL model it was employed with. Conse-
quently, it is not featured in Table 3 as well. Barlow Twins, in conjunction with
the MLP encoder and Mixup augmentation, achieved the highest AUCROC. In
addition, Mixup is the augmentation method that, along with the MLP encoder,
achieved the highest metrics for W-MSE on this dataset.

Notably, Mixup is the only augmentation method used to operate in the
representation space, resulting in competitive outcomes on both datasets. This
suggests that incorporating augmentation in the representation space can serve
as a practical alternative to augmentations in the input space. Furthermore, the
FT-Transformer encoder, which, in combination with BYOL and the SimSiam
model, achieved the highest average performance metrics for these models in
Table 2, is notably absent in Table 3. i.e., for all other combinations of augmen-
tation and SSL models, the CNN and MLP encoders consistently outperform the
FT-Transformer on both datasets. This observation indicates that the choice and
optimization of augmentation techniques and hyperparameters may exert a more
significant influence than the use of deeper and more complex architectures as
backbone encoders. Experimental findings presented in [33] align with this per-
spective, indicating that employing deeper ResNet architectures as encoders in
their BYOL model for android malware detection resulted in diminishing returns
in accuracy.

Moreover, comparing the results in Tables 2 and 3 shows that when the aug-
mentation involves Subsets, irrespective of the SSL model or encoder used, it
leads to high uncertainty across performance metrics. Another drawback of this
augmentation is its computational complexity during training time, as the com-
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putation of loss involves combinations of projections, which limits the number
of subsets for data splitting [30].

As detailed in Section 3.3, BYOL and SimSiam share a similar architec-
ture, differing primarily in the absence of an estimated moving average in Sim-
Siam compared to BYOL. This architectural distinction is a key feature that
sets the two models apart. To emphasize the differences between these two SSL
models, we also present the performance metrics for both models with the FT-
Transformer as its encoder and integrate all augmentation strategies on the
UNSW-NB15 dataset. The corresponding results are detailed in Table 4 and 5.

Table 4. Results of the BYOL model with the FT-T as the encoder utilizing different
augmentation strategies on the UNSW-NB15 dataset.

Model ENC AUG Precision Recall F1-Score AUROC
BYOL FT-T M 0.679± 0.014 0.733± 0.014 0.705± 0.014 0.644± 0.039
BYOL FT-T RS 0.625± 0.005 0.676± 0.006 0.650± 0.005 0.520± 0.012
BYOL FT-T S 0.679± 0.023 0.733± 0.026 0.705± 0.024 0.634± 0.043
BYOL FT-T GN 0.720 ± 0.020 0.775 ± 0.023 0.746 ± 0.022 0.703 ± 0.037
BYOL FT-T SN 0.671± 0.007 0.725± 0.010 0.697± 0.008 0.629± 0.013
BYOL FT-T ZON 0.680± 0.016 0.738± 0.016 0.708± 0.016 0.649± 0.029

Table 5. Results of the SimSiam model with the FT-T as the encoder utilizing different
augmentation strategies on the UNSW-NB15 dataset.

Model ENC AUG Precision Recall F1-Score AUROC
SimSiam FT-T M 0.657± 0.023 0.711± 0.024 0.680± 0.024 0.591± 0.042
SimSiam FT-T RS 0.657± 0.044 0.711± 0.046 0.683± 0.045 0.551± 0.047
SimSiam FT-T S 0.664± 0.058 0.718± 0.062 0.690± 0.059 0.569± 0.630
SimSiam FT-T GN 0.720± 0.021 0.777± 0.020 0.747± 0.020 0.712± 0.039
SimSiam FT-T SN 0.672± 0.075 0.714± 0.062 0.692± 0.066 0.597± 0.093
SimSiam FT-T ZON 0.761 ± 0.048 0.823 ± 0.053 0.791 ± 0.050 0.762 ± 0.048

In Table 4, notable variations in AUCROC are observed for the BYOL model
depending on the augmentation method. Specifically, employing Random Shuf-
fle leads to an AUCROC of 0.52, while utilizing Gaussian Noise significantly
improves the AUCROC to 0.70. A similar trend is evident in the performance
of SimSiam, as presented in Table 5. When Random Shuffle is employed, an
AUCROC of 0.55 is attained. However, opting for the Gaussian Noise augmen-
tation with SimSiam results in higher average performance metrics compared to
the BYOL model utilizing the same augmentation method.

Comparison with unsupervised baselines: Before concluding with the
results section, the aim is to compare the non-contrastive models with the high-
est average performance metrics against two well-known unsupervised meth-
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ods: DeepSVDD and AE. DeepSVDD, a deep learning-based one-classification
method, entails mapping input data into a hypersphere with the objective of
minimizing the hypersphere’s volume. This mapping situates normal samples
inside the hypersphere, while anomalies reside outside. AE, a vanilla autoen-
coder with a reconstruction-based objective, employs an MLP architecture for
the encoder and decoder. It is noteworthy that AE has demonstrated superior
performance over other sophisticated reconstruction-based methods across di-
verse datasets, including NID datasets, as detailed in [1]. To ensure fairness and
comparability of results, the hyperparameters of the baselines were tuned using
Tune, following the same procedure described in Section 4.3. The results of this
comparison are outlined in Tables 6 and 7 for the UNSW-NB15 and 5G-NIDD
datasets, respectively. In the UNSW-NB15 dataset, VICReg achieves the high-
est average precision, while for other metrics, the AE consistently outperforms
non-contrastive SSL models. DeepSVDD shows less favorable results. A similar
pattern is observed for the 5G-NIDD dataset, where AE attains the highest av-
erage performance metrics. Although the highest average performance metrics
achieved by the non-contrastive SSL models are comparable to those of AE, the
results underscore the significance of tuning baseline hyperparameters. Previous
studies investigating the performance of non-contrastive SSL models often fail
to specify the extent of hyperparameter tuning in their baseline comparisons,
potentially creating a misleading sense of confidence.

Table 6. Comparison of non-contrastive SSL models with the highest average per-
formance metrics (all with standard deviation) on the UNSW-NB15 dataset against
unsupervised models on the same dataset.

Model ENC AUG Precision Recall F1-Score AUROC
SimSiam FT-T ZON 0.762± 0.049 0.823± 0.053 0.791± 0.051 0.762± 0.048
VICReg MLP S 0.788 ± 0.059 0.810± 0.062 0.798± 0.056 0.786± 0.071
DeepSVDD — — 0.683± 0.021 0.735± 0.025 0.708± 0.023 0.656± 0.047
AE — — 0.786± 0.013 0.837 ± 0.029 0.811 ± 0.018 0.793 ± 0.024

Table 7. Comparison of non-contrastive SSL models with the highest average perfor-
mance metrics (all with standard deviation) on the 5G-NIDD dataset against unsuper-
vised models on the same dataset.

Model ENC AUG Precision Recall F1-Score AUROC
VICReg CNN GN 0.932± 0.010 0.961± 0.026 0.946± 0.009 0.908± 0.005
BarlowTwins MLP M 0.916± 0.012 0.909± 0.012 0.912± 0.009 0.925± 0.009
DeepSVDD — — 0.895± 0.060 0.937± 0.055 0.915± 0.057 0.865± 0.117
AE — — 0.939 ± 0.027 0.965 ± 0.018 0.951 ± 0.020 0.932 ± 0.020
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6 Conclusion

In this paper, we explore the interplay between augmentation methods, encoders,
and non-contrastive SSL models. We propose a two-stage pipeline: first, learning
a useful representation of normal network traffic in a self-supervised manner;
second, freezing the pre-trained encoder weights and using a K-means algorithm
to distinguish between benign and attack data. Our empirical findings revealed
the poor performance of the Random Shuffle method across all SSL models. In
contrast, Gaussian Noise, previously deemed unsuitable by [31], yielded the best
average performance metric for the BYOL model on the UNSW-NB15 dataset.
This could be due to insufficient hyperparameter optimization or its combination
with other CV augmentations, such as horizontal flip, vertical flip, random crop,
or even Random Shuffle, leading to suboptimal performance. Mixup combined
with Barlow Twins achieved the highest AUCROC on the 5G-NIDD dataset,
highlighting the effectiveness of augmentation in the representation space as an
alternative to augmentations in the sample space. Subsets, used with three differ-
ent SSL models on both datasets, exhibited competitive performance. Notably,
in combination with VICReg, it achieved the highest precision, F1-score, and
AUCROC on the UNSW-NB15 dataset, though this method led to increased
uncertainty in performance metrics. Zero Out Noise and Swap Noise showed
competitive performance only with BYOL and SimSiam models, respectively,
and only on the UNSW-NB15 dataset.

While our experiments underscore the importance of augmentation methods,
they also reveal two significant drawbacks: a) these methods are not specifically
tailored for NID, and b) they do not necessarily satisfy the domain constraints of
NID, meaning they are not function-preserving and may lead to the generation
of unrealistic samples [27]. Designing NID-specific augmentation methods that
satisfy domain constraints for SSL methods is a promising avenue for future
research.

Regarding SSL models, VICReg and Barlow Twins consistently attained
higher average performance metrics than other SSL models. The asymmetric
architectural design choices in SimSiam and BYOL did not offer an advantage
over these methods. For encoders, the FT-Transformer demonstrated competi-
tive performance only as the backbone for BYOL and SimSiam models, and only
on the UNSW-NB15 dataset. In all other cases, the conceptually simpler MLP
and CNN architectures proved more viable.

Finally, this paper compares the performance of non-contrastive SSL models
to DeepSVDD and AE. The results show that non-contrastive SSL models out-
performed DeepSVDD, while AE achieved higher average performance metrics
than non-contrastive SSL models. This difference may be due to the use of a
naive K-means detector. Future work could explore the utilization of improved
distance metrics, such as the Mahalanobis distance [20], in the K-means detector.
Additionally, incorporating more sophisticated unsupervised detectors, such as
Isolation Forest or OCSVM, might address the minor performance gap observed
between non-contrastive SSL models and reconstruction-based approaches.
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A Encoder Structure

Table 8. Architecture of the CNN encoder. conv is a convolutional layer followed by
a ReLU activation function, and pooling represents a pooling layer. For each layer, the
kernel size, number of filters (only for convolutional layers), input shape, and output
shape are given for an example network traffic sample with 196 features.

Layer Kernel Filter Input Output
conv1 1× 2 32 1× 196× 1 1× 195× 32
conv2 1× 2 64 1× 195× 32 1× 194× 64
conv3 1× 2 128 1× 194× 64 1× 193× 128
pooling 1× 3 − 1× 193× 128 1× 64× 128
conv4 1× 2 256 1× 64× 128 1× 63× 256
pooling 1× 2 − 1× 63× 256 1× 31× 256
conv5 1× 2 512 1× 31× 256 1× 30× 512
pooling 1× 4 − 1× 30× 512 1× 7× 512

B Augmentation

Algorithm 1 Pseudocode of Fisher-Yates inspired Random Shuffle augmenta-
tion method.
Require: ij = {f (1)

j , f
(2)
j , . . . , f

(dD)
j } ▷ network traffic sample ij composed of dD

features
for k = dD − 1 to 0 do

p← random_integer(0, k)
i
(p)
j , i

(k)
j = i

(k)
j , i

(p)
j

end for
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