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FOUR-VALUED EXPANSIONS OF BELNAP’S LOGIC:
INHERITING BASIC PECULIARITIES

ALEXEJ P. PYNKO

Abstract. The main results of the paper are that:

(1) any four-valued expansion L4 of Belnap’s four-valued logic B4 (cf. [4]):

(a) is defined by a unique expansion M4 of the four-valued matrix DM4 over the De Morgan truth lattice diamond
{f, n, b, t} defining B4 as such;

(b) satisfies Relevance Principle iff it is has neither a theorem nor an inconsistent formula;
(c) has no proper extension satisfying Relevance Principle;
(d) is minimally four-valued;

(e) is defined by no truth/false-singular matrix;
(f) has an extension defined by an expansion of a consistent submatrix B of DM4 iff the underlying algebra of B is a

subalgebra of the underlying algebra A4 of M4;
(g) is subclassical iff {f, t} forms a subalgebra of A4, in which case the logic of M4�{f, t} defines a unique classical

extension of L4 being also an extension of any inferentially consistent extension of L4;
(h) is [inferentially] maximal iff M4 has no proper consistent [truth-non-empty] submatrix;

(i) is maximally paraconsistent iff {f, b, t} does not form a subalgebra of A4 iff the proper axiomatic extension LEM
4 of

L4 relatively axiomatized by the Excluded Middle law axiom is either classical, if L4 is subclassical, or inconsistent,
otherwise, iff LEM

4 is not (maximally) paraconsistent iff LEM
4 is not an expansion of the logic of paradox LP = BEM

4

and, otherwise, providing L4 is subclassical and every primary operation of A4 is either regular or both b-idempotent

and no more than binary, LEM
4 has exactly two proper consistent extensions forming a chain, the greatest one being

classical and relatively axiomatized by the Modus ponens rule for material implication, the least one being relatively
axiomatized by the Ex Contradictione Quodlibet rule, both ones having same theorems as LEM

4 has, and so being

non-axiomatic, while LEM
4 being the only proper consistent axiomatic extension of L4, whenever A4 is regular;

(j) has no theorem/inconsistent formula iff {n/b} forms a subalgebra of A4;

(k) [providing L4 has a/no theorem] L4 has the distributive lattice of its disjunctive [arbitrary/merely non-pseudo-

axiomatic] extensions being dual isomorphic to the one of all lower cones of the set of all [truth-non-empty] consistent
submatrices of M4 (in particular, to be found effectively, whenever the expanded signature is finite) and is a sublattice

of the nine[six]-element non-chain distributive lattice of all disjunctive [non-pseudo-axiomatic] extensions of B4;

(l) has its proper disjunctive extension LR
4 relatively axiomatized by the Resolution rule that:

(i) is paracomplete iff the carrier of the subalgebra of A4 generated by {n} does not contain b;

(ii) is not inferentially paracomplete iff it is inferentially either classical, if L4 is subclassical, or inconsistent,

otherwise, iff {f, n, t} does not form a subalgebra of A4 iff LR
4 is not an expansion of Kleene’s three-valued logic

K3 = BR
4 ;

(m) has the entailment relation equal to the set of all inequalities identically true in A4 iff L4 is self-extensional iff

it has the Property of Weak Contraposition iff the specular permutation on {f, n, b, t} retaining both f and t but
permuting n and b is an endomorphism of A4 iff the extension of L4 relatively axiomatized by the Modus Ponens[Ex

Contradictione Quodlibet] rule is defined by [the direct product of M4 and] 〈A4, {t}〉, in which case:

(i) L4 is subclassical;
(ii) there is either no, if L4 is maximally paraconsistent, or exactly one, otherwise, non-pseudo-axiomatic consistent

non-classical proper self-extensional extension of L4, any self-extensional extension of L4 being disjunctive;

(iii) {n[, f, t]} forms a subalgebra of A4 iff {b[, f, t]} does so, in which case:
(A) L4 satisfies Relevance Principle iff it has no theorem/inconsistent formula;

(B) LEM
4 is (maximally) paraconsistent iff LR

4 is inferentially paracomplete, in which case, providing A4 is

regular, LR
4 is maximally inferentially paracomplete, while any extension of L4 is both paraconsistent and

inferentially paracomplete iff it is a sublogic of LEM
4 ∩ LR

4 .;
(C) [providing L4 has a/no theorem] disjunctive [arbitrary/merely non-pseudo-axiomatic] extensions of L4 form

the nine[six]-element non-chain distributive lattice isomorphic to that of B4;
(D) providing A4 is regular [and L4 has a/no theorem], [arbitrary/merely non-pseudo-axiomatic] extensions of

LEM
4 ∩ LR

4 form the eleven[seven]-element non-chain distributive lattice, those of LR
4 being all disjunctive,

proper ones being inferentially either classical or inconsistent, and so not inferentially paracomplete, in which
case LR

4 is maximally (inferentially) paracomplete, as opposed to its implicative expansions;

(2) any three-valued (disjunctive/conjunctive) paraconsistent logic L3 with subclassical negation:

(a) is defined by a (unique disjunctive/conjunctive) superclassical matrix over {f, b, t}, referred to as characteristic one
of L3;

(b) is maximally paraconsistent iff either {b} does not form a subalgebra of the underlying algebra A of any characteristic

matrix of L3 or there is a ternary b-relative weak conjunction for A, viz., a ternary formula ϕ such that ϕA(b, f, t) = f
and ϕA(b, t, f) 6= t, in which case a characteristic matrix of L3 is unique(;

(c) has no proper paraconsistent disjunctive/conjunctive extension/, in which case it is maximally paraconsistent);

(d) is minimally three-valued;
(e) is subclassical if(f) {f, t} forms a subalgebra of the underlying algebra of its characteristic matrix, in which case (L3

is maximally paraconsistent, while )the logic of the restriction of its characteristic matrix on {f, t} defines a (unique)
classical extension of L3(/, being also an extension of any consistent extension of L3);

(3) for every n > 2, there is a minimally n-valued maximally paraconsistent subclassical [both conjunctive and disjunctive]

logic.
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Belnap’s four-valued logic, expansion, [bounded] distributive/De Morgan/Kleene/Boolean lattice, conjunctive/disjunctive logic|matrix, congru-
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1. Introduction

Perhaps, the principal value of universal mathematical investigations consists in discovering uniform transparent points
behind particular results originally proved ad hoc as well as in providing powerful generic tools enabling one “to kill as much
as possible birds with as less as possible stones”. This thesis is the main paradigm of the present study.

Belnap’s “useful” four-valued logic (cf. [4]) arising as the logic of first-degree entailment in relevance logic R (FDE, for
short) has been naturally expanded by additional connectives in [19]. The present paper pursues the study of such expansions
with regard to certain generic aspects in addition to those of functional completeness and both sequential and equational
axiomatizations comprehensively explored therein collectively with Paragraph 6.1.1.1 here and [23], respectively.

More precisely, we study how four-valued expansions of FDE (as well as their extensions) inherit certain remarkable features
of FDE as such. This marks the primary framework of the paper. On the other hand, it is closely related to certain more
(secondary) issues additionally studied here (especially because this study uses the generic tools initially elaborated for solving
exactly the secondary tasks alone and only then applied to primary ones).

First of all, FDE satisfies Relevance Principle (viz., Variable Sharing Property; cf. [1]) in the sense that it satisfies the
entailment φ→ ψ only if φ and ψ have a common propositional variable. This clarifies the items (1b,1c,1j) of the Abstract.

Moreover, the four-valued matrix defining FDE has four proper consistent submatrices, each defining a consistent proper
extension of FDE. This explains the item (1f) of the Abstract.

In particular, FDE is subclassical in the sense that a definitional clone (viz., copy) of the classical logic is an extension of it.
When exploring this peculiarity within the framework of expansions of FDE, we inevitably deal with formally miscellaneous
classical logics as those which are defined by classical matrices, that is, consistent two-valued matrices with classical negation.
In case such is conjunctive with respect to any (possibly, secondary) binary connective (in particular, is a model of an expansion
of FDE), the logic defined by such a matrix is nothing but a definitional copy of the standard classical logic, because any two-
valued operation is definable via the classical negation and conjunction. We equally follow this paradigm, when studying
three-valued and n-valued paraconsistent logics. This clarifies the items (1g) and (2e) of the Abstract.

The four-valuedness typical of FDE and its expansions also implies their both [inferential] paracompleteness (viz., refuting
the [inferential version of] Excluded Middle law axiom) and paraconsistency (viz., refuting the Ex Contradictione Quodlibet
rule). It is this joint peculiarity of FDE that has predetermined its profound applications to Computer Science and Artificial
Intelligence. This inevitably raises the issue of exploring how extensions of (four-valued expansions of) FDE retain such
peculiarities (cf. the items (1i,1l) of the Abstract).

In this connection, the issue of strong [inferential] maximality typical of the classical logic in the sense of having no proper
[inferentially] consistent extension becomes equally acute as for four-valued expansions of FDE. The thing is that [purely-
]bilattice expansions of FDE with[out] truth and falsehood constant are [inferentially] maximal, as it ensues from the general
characterization of the maximality (cf. the item (1h) of the Abstract). Taking [21] into account, particular cases of such
maximality have actually been proved in [19] ad hoc.

And what is more, four-valued expansions of FDE normally (but not at all generally) have three-valued paraconsis-
tent/paracomplete extensions, defined by three-valued submatrices of characteristic four-valued matrices (cf. the items (1f,1i/l)
of the Abstract), shown here to be relatively axiomatized by the Excluded Middle law axiom/ the Resolution rule in that case.
Then, their defining three-valued paraconsistent submatrices appear to be conjunctive and superclassical in the sense of the
reference [Pyn 95b] of [17], according to which any logic defined by such a matrix is maximally paraconsistent in the sense of
having no proper paraconsistent extension (cf. the items (2b,2c) of the Abstract and historically the paragraph after Theorem
2.1 of [17]).1 Particular cases of such three-valued maximal paraconsistency have been proved ad hoc in [17], [22] as well as in
[27] taking [21] into account. On the other hand, as it follows from our characterization of the maximal paraconsistency (cf.
the item (1i) of the Abstract), any (including constant-free purely) bilattice expansion is maximally paraconsistent, though is
not subclassical, in view the item (1g) of the Abstract, as opposed to the expansion by classical (viz., Boolean) negation.

In this way, we conclude that the maximal paraconsistency is not at all a prerogative of three-valued logics. As a matter of
fact, we argue that, for every n > 2, there is a minimally n-valued (in the sense of not being defined by a matrix with less than
n values; cf. the items (1d,2d) of the Abstract in this connection) maximally paraconsistent subclassical logic (cf. the item
(3) of the Abstract). In this connection, it is remarkable that existence of non-minimally n-valued maximally paraconsistent
subclassical logic has been actually due to [17], because the logic of paradox [14] is equally defined by an n-valued matrix.
Among other things, such generic minimally n-valued example is defined by a false-singular matrix, as opposed to four-valued
expansions of FDE (cf. the item (1e) of the Abstract).

Furthermore, FDE is disjunctive. This raises the problem of finding all disjunctive extensions of (four-valued expansions of)
FDE (cf. the item (1k) of the Abstract). (Although, likewise, FDE is conjunctive, the conjunctivity is immediately inherited
by extensions, so this point is just taken for granted.)

After all, a one more quite remarkable peculiarity of FDE is that its entailment relation is defined (semi)lattice-wise in
the sense that FDE satisfies the entailment φ → ψ iff the inequality φ / ψ (viz., the equality (φ ∧ ψ) ≈ φ) is identically
true in the diamond non-Boolean De Morgan lattice, i.e, in the variety of De Morgan lattices. Within the framework of four-
valued expansions of FDE, this property appears to be equivalent to the so-called self-extensionality (cf. Theorem 4.68(i)⇔(v)),
profound study of which has been due to [18] that has provided a generic algebraic (more specifically, lattice-theoretic) approach
to conjunctive non-pseudo-axiomatic self-extensional logics (cf. Section 4.1 therein) properly enhanced here by omitting the
stipulation “non-pseudo-axiomatic”. Recall that a propositional logic is said to be self-extensional, provided its interderivability

1Though being prepared and announced by 1995, the fundamental material of the both references [Pyn 95a] and [Pyn 95b] of [17] has never been
published for a quarter of century, while certain quirky kleptomaniacs all over the world (like Avron & Co.; Tribus, Skura, at al.; Font, Jansana &

Co. — including Prenosil, Albuquerque, Rivieccio et al.) have succeeded in plagiarizing it as well as other contributions announced in [17]. This is
why we take the opportunity to eventually present them here.
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relation is a congruence of the formula algebra, in which case any fragment of it is self-extensional as well (cf. [18]), while
the converse is far from being generally valid. Any axiomatic extension of the intuitionistic logic as well as any inferentially
consistent two-valued logic (including the classical one and its fragments) is self-extensional. This explains the meaning of the
item (1m) of the Abstract.

The rest of the paper is as follows. The exposition of the material of the paper is entirely self-contained (of course,
modulo very basic issues concerning Set Theory, Lattice Theory, Universal Algebra, Model Theory and Mathematical Logic
not specified here explicitly, to be found, e.g., in [3], [6], [8], [11] and [12]). Section 2 is a concise summary of basic issues
underlying the paper, most of which have actually become a part of logical and algebraic folklore. Section 3 is devoted to
certain key preliminary issues concerning false-singular matrices, disjunctivity, equality determinants and De Morgan lattices.
In Section 4 we formulate and prove main results of the paper concerning solely four-valued expansions of FDE. Section 5 is
entirely devoted to the issue of (especially, maximal) paraconsistency within both three-valued and generic n-valued framework.
Then, in Section 6, we exemplify the previous three sections by applying them to three general classes of expansions, including
those introduced in [19], with providing quick argumentations/refutations of their properties under consideration and finding
all disjunctive extensions of (first of all, self-extensional non-maximally paraconsistent) expansions of FDE as well as all
extensions of the unique proper non-classical self-extensional non-pseudo-axiomatic extension of any regular self-extensional
non-maximally paraconsistent expansion of FDE (in particular, FDE itself), as well as to certain well-known three-valued
paraconsistent logics. Finally, Section 7 is a brief summary of principal contributions of the paper.

2. Basic issues

Notations like img, dom, ker, hom, πi and Con and related notions are supposed to be clear.

2.1. Set-theoretical background. We follow the standard set-theoretical convention, according to which natural numbers
(including 0) are treated as finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted by ω.
The proper class of all ordinals is denoted by ∞.

Likewise, functions are viewed as binary relations, the left/right components of their elements being treated as their argu-
ments/values, respectively. Then, to retain both the conventional prefix writing of functions and the fact that (f ◦ g)(a) =
f(g(a)), we have just preferred to invert the conventional order of relation composition components. In particular, given two
binary relations R and Q, we put R[Q] , (R ◦Q ◦R−1).

In addition, singletons are often identified with their unique elements, unless any confusion is possible.
Given a set S, the set of all subsets of S [of cardinality ∈ K ⊆ ∞] is denoted by ℘[K](S). A subset T ⊆ S is said to

be proper, if T 6= S. Further, given any equivalence relation θ on S, as usual, by νθ we denote the function with domain S
defined by νθ(a) , [a]θ , θ[{a}], for all a ∈ S, in which case ker νθ = θ, whereas we set (T/θ) , νθ[T ], for every T ⊆ S.
Next, S-tuples (viz., functions with domain S) are often written in either sequence t̄ or vector ~t forms, its s-th component
(viz., the value under argument s), where s ∈ S, being written as either ts or ts. Given two more sets A and B, any relation
R ⊆ (A× B) (in particular, a mapping R : A → B) determines the equally-denoted relation R ⊆ (AS × BS) (resp., mapping
R : AS → BS) point-wise, that is, R , {〈ā, b̄〉 ∈ (AS × BS) | ∀s ∈ S : as R bs}. Likewise, given a set A, an S-tuple B of
sets and any f̄ ∈ (

∏
s∈S B

A
s ), put (

∏
f̄) : A→ (

∏
B), a 7→ 〈fs(a)〉s∈S . (In case I = 2, f0 × f1 stands for (

∏
f̄).) Further, set

∆S , {〈a, a〉|a ∈ S}, relations of such a kind being referred to as diagonal, and S+ ,
⋃
i∈(ω\1) S

i, elements of S∗ , (S0 ∪ S+)
being identified with ordinary finite tuples, the binary concatenation operation on which being denoted by ∗, as usual. In
addition, any binary operation � on S determines the equally-denoted mapping � : S+ → S as follows: by induction on the
length l = (dom ā) of any ā ∈ S+, put:

�ā ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Given any f : S → S, by induction on any n ∈ ω, define fn : S → S, by setting:

fn(a) ,

{
a if n = 0,
f(fn−1(a)) otherwise.

for all a ∈ S. Finally, given any R ⊆ S2, Tr(R) , {〈π0(π0(r̄)), π1(πl−1(r̄))〉|r̄ ∈ Rl, l ∈ (ω \ 1)} is the least transitive binary
relation on S including R, referred to as the transitive closure of R. After all, given any T ⊆ S/f : S → S/R ⊆ S2, an n-ary
operation g on S, where n ∈ ω, is said to be T -idempotent/f-preserving/R-monotonic, provided, for all b ∈ T/ā ∈ An/b̄, c̄ ∈ An
such that b̄ R c̄, it holds that g(n× {b}) = b/f(g(ā)) = g(f ◦ ā)/ g(b̄) R g(c̄), respectively.

In general, we use the following standard notations going back to [4]:

t , 〈1, 1〉, f , 〈0, 0〉,

b , 〈1, 0〉, n , 〈0, 1〉.

In addition, the mapping µ : 22 → 22, 〈a, b〉 7→ 〈b, a〉 is said to be mirror/specular, in which case µ−1 = µ, so µ is bijective, i.e.,
a permutation on 22. Moreover, by v we denote the partial ordering on 22 defined by (~a v ~b) def⇐⇒ ((a0 6 b0)&(b1 6 a1)), for
all ~a,~b ∈ 22. Then, given any B ⊆ 22, (µ�B)-preserving/(v∩B2)-monotonic n-ary operations on B, where n ∈ ω, are referred
to as specular/regular, respectively.

Let A be a set. An anti-chain of any S ⊆ ℘(A) is any N ⊆ S such that max(N) = N . Likewise, a lower cone of S is
any L ⊆ S such that, for each X ∈ L, (℘(X) ∩ S) ⊆ L. This is said to be generated by a G ⊆ L, whenever L = (G)O

S ,
(S ∩

⋃
{℘(X) | X ∈ G}). (Clearly, in case S — in particular, A — is finite, the mappings N 7→ (N)O

S and L 7→ max(L) are
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inverse to one another bijections between the sets of all anti-chains and lower cones of S.) A U ⊆ ℘(A) is said to be upward-
directed, provided, for every S ∈ ℘ω(U), there is some T ∈ U such that (

⋃
S) ⊆ T . A subset of ℘(A) is said to be inductive,

whenever it is closed under unions of upward-directed subsets. Further, any X ∈ T ⊆ ℘(A) is said to be K-meet-irreducible
(in/of T ), where K ⊆ ∞, provided it belongs to every U ∈ ℘K(T ) such that (A ∩

⋂
U) = X (in which case X 6= A, whenever

0 ∈ K), the set of all them being denoted by MIK(T ).2 A closure system over A is any C ⊆ ℘(A) such that, for every S ⊆ C,
it holds that (A ∩

⋂
S) ∈ C, in which case the poset 〈C,⊆ ∩ C2〉 to be identified with C alone is a complete lattice with meet

A∩
⋂

. In that case, any B ⊆ C is called a (closure) basis of C, provided C = {A∩
⋂
S|S ⊆ B}. An operator over A is any unary

operation O on ℘(A). This is said to be (monotonic) [idempotent] {transitive} 〈inductive/finitary/compact〉, provided, for all
(B, )D ∈ ℘(A) 〈resp., any upward-directed U ⊆ ℘(A)〉, it holds that (O(B))[D]{O(O(D)} ⊆ O(D) 〈resp., O(

⋃
U) ⊆

⋃
O[U ]〉.

A closure operator over A is any monotonic idempotent transitive operator C over A, in which case imgC is a closure system
over A, determining C uniquely, because, for every closure basis B of imgC (including imgC itself) and each X ⊆ A, it holds
that C(X) = (A ∩

⋂
{Y ∈ B|X ⊆ Y }), called dual to C and vice versa. (Clearly, C is inductive iff imgC is so.)

Remark 2.1. As a consequence of Zorn’s Lemma, according to which any inductive non-empty set has a maximal element,
given any inductive closure system C, MI(C) is a closure basis of C, and so is MIK(C) ⊇ MI(C), where K ⊆ ∞. �

A [dual] Galois retraction between posets 〈P,5〉 and 〈Q,.〉 is any couple 〈f, g〉 of anti-monotonic [resp., monotonic] mappings
f : P → Q and g : Q → P such that (g ◦ f) = ∆P and (f ◦ g) ⊆ .[−1], in which case case the former poset is said to be a
[dual] Galois retract of the latter, while f is a dual embedding [resp., an embedding] of the former into the latter. (Galois
retractions are exactly Galois connections with injective/surjective left/right component; cf. [21] and [27]. Moreover, dual
Galois retractions between 〈P,5〉 and 〈Q,.〉 are exactly Galois retractions between 〈P,5〉 and 〈Q,.−1〉.)

2.2. Algebraic background. Unless otherwise specified, abstract algebras are denoted by Fraktur letters (possibly, with
indices/prefixes/suffixes), their carriers (viz., underlying sets) being denoted by corresponding Italic letters (with same in-
dices/prefixes/suffixes, if any).

Let A be an algebra. Then, Con(A) is an inductive closure system over A2, in which case A is said to be simple/congruence-
distributive, whenever the lattice Con(A) is two-element/distributive. Next, A is said to be subdirectly irreducible, provided
∆A ∈ MI(Con(A)), in which case |A| > 1. (Clearly, any simple algebra is subdirectly irreducible.)

A (propositional) language/signature is any algebraic (viz., functional) signature Σ (to be dealt with by default throughout
the paper) constituted by function (viz., operation) symbols of finite arity to be treated as (propositional) connectives. Given
any α ∈ ℘∞[\1](ω) [in case Σ has no nullary symbol], put Vα , {xβ |β ∈ α} and (∀α) , (∀Vα). Then, we have the absolutely-free
Σ-algebra Fmα

Σ freely-generated by the set Vα, elements of which being viewed as (propositional) variables of rank α, referred
to as the formula Σ-algebra of rank α, its endomorphisms/elements of its carrier Fmα

Σ (viz., Σ-terms of rank α) being called
(propositional) Σ-substitutions/-formulas of rank α. A Σ-equation/identity of rank α is then any couple of the form φ ≈ ψ,
where φ, ψ ∈ Fmα

Σ, to be identified with the ordered pair 〈φ, ψ〉, the set of all them being denoted by EqαΣ. (In general, the
reservation “of rank α” is normally omitted, whenever α = ω.) Given any [m, ]n ∈ ω, by σ[m:]+n we denote the Σ-substitution
extending [xi/xi+n]i∈(ω[\m]).

The variety axiomatized by a given I ⊆ EqωΣ is the class of all Σ-algebras satisfying each identity in I. A θ ∈ Con(Fmω
Σ) is

said to be fully invariant, provided σ[θ] ⊆ θ, for every Σ-substitution σ, in which case θ is the set of all Σ-identities satisfied in
the variety axiomatized by θ. Conversely, the set θV of all Σ-identities satisfied in a variety V (clearly, axiomatized by θV) is a
fully invariant congruence of Fmω

Σ. In this way, the closure system of all fully invariant congruences of Fmω
Σ is dual isomorphic

to the lattice of all varieties of Σ-algebras (cf. [6]).
A class K of Σ-algebras is said to be congruence-distributive, whenever every member of it is so. In general, the class

of all [non-one-element] subalgebras/homomorphic images/isomorphic copies of members of K is denoted by (S/H/I)[>1]K,
respectively. Likewise, the class of all subdirectly irreducible members of K is denoted by Si(K). Finally, the variety generated
by K (viz., the least one including K), being clearly axiomatized by the set of all Σ-identities true in K, is denoted by V(K).
The variety V(∅), constituted by all one-element Σ-algebras, is said to be trivial.

Let I be a set, A an I-tuple of Σ-algebras and B a subalgebra of C ,
∏
i∈I Ai. Given any [prime] filter F on I (viz., a

non-empty [proper prime] filter of the lattice 〈℘(I),∩,∪〉), we then have θBF , {〈ā, b̄〉 ∈ B2 | {i ∈ I | ai = bi} ∈ F} ∈ Con(B),
congruences of such a kind being referred to as [prime] filtral [in which case:

(2.1) (C/θCF ) ∈ I(img A),

whenever both img A and all members of it are finite].
Recall the following useful well-known facts:

Lemma 2.2. Let A and B be Σ-algebras and h ∈ hom(A,B). (Suppose (img h) = B.) Then, for every ϑ ∈ Con(B),
h−1[ϑ] ∈ {θ ∈ Con(A) | (kerh) ⊆ θ} (whereas h[h−1[ϑ]] = ϑ, while, conversely, for every θ ∈ Con(A) such that (kerh) ⊆ θ,
h[θ] ∈ Con(B), whereas h−1[h[θ]] = θ).

Remark 2.3 (cf., e.g., Theorem 1.3 of [13]). In view of Remark 2.1, given any member A of a variety V, Θ , MI(Con(A)) is a
basis of the inductive closure system Con(A) over A2, each (A/θ) ∈ V, where θ ∈ Θ, being subdirectly irreducible, in view of
Lemma 2.2, in which case ∆A = (A2∩

⋂
Θ), so e , (

∏
θ∈Θ νθ) : A→ (

∏
θ∈Θ(A/θ)) is an embedding of A into

∏
θ∈Θ(A/θ), and

so is an isomorphism from A onto the subdirect product (
∏
θ∈Θ(A/θ))�(img e) of the tuple 〈A/θ〉θ∈Θ constituted by subdirectly

irreducible members of V. In particular, V = V(Si(V)). �

2In general, any mention of K is normally omitted, whenever K = ∞. Likewise, “finitely-/pairwise-” means “ω-/{2}-”, respectively.
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Lemma 2.4 (cf., e.g., the proof of Theorem 2.6 of [13]). Let I be a set, A an I-tuple of Σ-algebras, B a congruence-distributive
subalgebra of

∏
i∈I Ai and θ ∈ MI(Con(B)). Then, there is some prime filter F on I such that θBF ⊆ θ.

Then, combining (2.1), Lemmas 2.2, 2.4 and the Algebra Homomorphism Theorem, we get:

Corollary 2.5 (cf., e.g., Theorem 2.6 of [13]). Let K be a finite class of finite Σ-algebras. Suppose V , V(K) is congruence-
distributive. Then, Si(V) ⊆ H>1S>1K. In particular, Si(V) = IS>1K, whenever every member of S>1K is simple, in which
case every member of Si(V) is simple.

And what is more, we also have:

Corollary 2.6 (Congruence filtrality). Let K be a finite class of finite Σ-algebras, I a set, A ∈ KI and B a congruence-
distributive subalgebra of C ,

∏
i∈I Ai. Suppose every member of S>1K is simple. Then, each element of Con(B) is filtral.

Proof. Consider any θ ∈ MI(Con(B)), in which case θ 6= B2. Then, by Lemma 2.4, there is some prime filter F on I such
that Con(B) 3 ϑ , θBF ⊆ θ, in which case we have η , θCF ∈ Con(C), while B2 6= ϑ = (B2 ∩ η) = ker(νη�∆B), and so, by
the Algebra Homomorphism Theorem and (2.1), we get (B/ϑ) ∈ IS>1(C/η) ⊆ IS>1IK ⊆ IS>1K. Hence, by Lemma 2.2, we
eventually get θ = ϑ. Thus, each element of MI(Con(B)) is filtral. In this way, Remark 2.1 and the fact that the set of all
filters on I is a closure system over ℘(I), while the mapping F 7→ θBF preserves intersections, complete the argument. �

By Corollary 2.6, we then immediately get:

Corollary 2.7 (Congruence inheritance). Let Σ′ ⊆ Σ, K a finite class of finite Σ-algebras, I a set, A ∈ KI and B a subalgebra
of

∏
i∈I Ai. Suppose every member of S>1(K�Σ′) is simple and B�Σ′ is congruence-distributive. Then, Con(B) = Con(B�Σ′).

2.3. Propositional logics and matrices. A Σ-rule is any couple 〈Γ, ϕ〉, where (Γ ∪ {ϕ}) ∈ ℘ω(Fmω
Σ), normally written in

the standard sequent form Γ ` ϕ, ϕ/any element of Γ being referred to as the/a conclusion/premise of it. A (substitutional)
Σ-instance of it is then any Σ-rule of the form σ(Γ ` ϕ) , (σ[Γ] ` σ(ϕ)), where σ is a Σ-substitution. As usual, Σ-rules without
premises are called Σ-axioms and are identified with their conclusions. A[n] [axiomatic] Σ-calculus is any set C of Σ-rules
[without premises], the set of all Σ-instances of its elements being denoted by SIΣ(C). Then, Γ ` ϕ is said to be derivable in
C, if there is a C-derivation of it, i.e., a proof of ϕ (in the conventional proof-theoretical sense) by means of axioms and rules
in Γ ∪ SIΣ(C).

A (propositional) Σ-logic is any closure operator C over Fmω
Σ that is structural in the sense that σ[C(X)] ⊆ C(σ[X]), for

all X ⊆ Fmω
Σ and all σ ∈ hom(Fmω

Σ,Fmω
Σ), or, equivalently, imgC is closed under inverse Σ-substitutions (we sometimes write

X `C Y for C(X) ⊇ Y ). A(n) (in)consistent set of C is any X ⊆ Fmω
Σ such that C(X) 6= (=) Fmω

Σ. Then, C is said to be
[inferentially] (in)consistent, provided ∅[∪{x0}] is a(n in)consistent set of C or, equivalently, in view of the structurality of C,
x1 6∈ (∈)C(∅[∪{x0}]). A Σ-rule Γ ` ϕ is said to be satisfied in C, provided ϕ ∈ C(Γ), Σ-axioms satisfied in C being referred
to as its theorems. A [proper] extension of C is any Σ-logic C ′ ⊇ C [distinct from C], in which case C is said to be a [proper]
sublogic of C ′. Then, an extension C ′ of C is said to be axiomatized by a Σ-calculus C relatively to C, provided it is the least
extension of C satisfying each rule of C. The extension CnC of the diagonal Σ-logic relatively axiomatized by C is said to be
axiomatized by C and is referred to as the consequence of C, in which case it is inductive and satisfies any Σ-rule iff this is
derivable in C. (Conversely, any inductive Σ-logic is axiomatized by the set of all Σ-rules satisfied in it.) An extension C ′ of C
is said to be axiomatic, whenever it is relatively axiomatized by an axiomatic Σ-calculus A, in which case, for all X ⊆ Fmω

Σ,
it holds that:

(2.2) C ′(X) = C(X ∪ SIΣ(A)).

Next, C is said to be [inferentially] maximal, whenever it is [inferentially] consistent and has no proper [inferentially] consistent
extension. Further, C is said to be [weakly] �-conjunctive (cf. [18]), where � is a (possibly, secondary) binary connective
of Σ, provided C(φ � ψ)[⊇] = C({φ, ψ}), for all φ, ψ ∈ Fmω

Σ. Next, C is said to have the Property of Weak Contraposition
with respect to a unary connective o of Σ (cf. [16]), provided (ψ ∈ C(φ)) ⇒ (oφ ∈ C(oψ)), for all φ, ψ ∈ Fmω

Σ. Likewise,
C is said to be [maximally] o-paraconsistent, provided x1 6∈ C({x0, ox0}) [and C has no proper o-paraconsistent extension].
Furthermore, C is said to be non-pseudo-axiomatic (cf. [18]), provided

⋂
k∈ω C(xk) ⊆ C(∅) (the converse inclusion always

holds by the monotonicity of C). Likewise, it is said to be purely-inferential/theorem-less, provided C(∅) = ∅ or, equivalently,
∅ ∈ (imgC). In addition, Relevance Principle (viz., Variable Sharing Property ; cf. [1]) is said to hold/satisfied in C, provided,
for every α ∈ (ω \ 1), all φ ∈ Fmα

Σ and all ψ ∈ Fmω\α
Σ , ψ 6∈ C(φ), in which case C has neither a theorem nor an inconsistent

formula. Finally, C is said to be self-extensional (cf. [18]), provided ≡C , (EqωΣ ∩(kerC)) ∈ Con(Fmω
Σ), in which case, by

the sructurality of C, ≡C is fully invariant, the corresponding variety being called the intrinsic variety of C and denoted by
IV(C).

Remark 2.8. Given a Σ-logic C, we have the Σ-logic C+/−0, defined by C+/−0(X) , C(X), for all non-empty X ⊆ Fmω
Σ,

and C+/−0(∅) , (∅/(
⋂
k∈ω C(xk))), being the greatest/least purely-inferential/non-pseudo-axiomatic sublogic/extension of C,

called the purely-inferential/non-pseudo-axiomatic version of C, in which case ≡C = ≡C+/−0 . Then, the mappings C 7→ C+0

and C 7→ C−0 are inverse to one another isomorphisms between the posets of all non-pseudo-axiomatic and of all purely-
inferential Σ-logics ordered by ⊆. �

Remark 2.9 (cf. Theorem 4.8 of [18] for the “non-pseudo-axiomatic” case). Since any inductive non-pseudo-axiomatic con-
junctive logic C ′′ is uniquely determined by ≡C′′ , while the conjunctivity is retained by extensions, in view of Remark 2.8, we
conclude that, given any inductive non-pseudo-axiomatic/purely-inferential conjunctive self-extensional Σ-logic C, the map-
ping C ′ 7→ IV(C ′) is a dual embedding of the poset of all inductive non-pseudo-axiomatic/purely-inferential self-extensional
extensions of C into the lattice of all subvarieties of IV(C). �
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Since any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic, Remark 2.9 actually enhances Theorem 4.8
of [18] beyond non-pseudo-axiomatic logics.

A (propositional) Σ-matrix (cf. [9]) is any couple of the form A = 〈A, DA〉, where A is a Σ-algebra, called the underlying
algebra of A, while DA ⊆ A is called the truth predicate of A, elements of which being referred to as distinguished values of
A. (In general, matrices are denoted by Calligraphic letters (possibly, with indices/prefixes/suffixes), their underlying algebras
being denoted by corresponding Fraktur letters (with same indices/prefixes/suffixes, if any).) This is said to be n-valued/truth[-
non]-empty/(in)consistent/false-singular/ truth-singular, where n ∈ ω, provided |A| = n/DA = [6=]∅/DA 6= (=)A/|A \DA| ∈
2/|DA| ∈ 2. Next, given any Σ′ ⊆ Σ, A is said to be a ( Σ-)expansion of (A�Σ′) , 〈A�Σ′, DA〉. (Any notation, being specified
for single matrices, is supposed to be extended to classes of matrices member-wise.) Finally, the Σ-matrix {(A) , 〈A, A \DA〉
is refereed to as complementary to/of A.

A Σ-matrix A is said to be finite/generated by a B ⊆ A, whenever A is so. Then, it is said to be K-generated, where K ⊆ ∞,
whenever it is generated by some B ∈ ℘K(A).

As usual, Σ-matrices are treated as first-order model structures (viz., algebraic systems; cf. [11]) of the first-order signature
Σ ∪ {D} with unary predicate D, any Σ-rule Γ ` φ being viewed as the basic [or universal, depending upon the context] first-
order Horn formula [∀ω]((

∧
Γ) → φ) under the standard identification of any propositional Σ-formula ψ with the first-order

atomic formula D(ψ).
Given any α ∈ ℘∞\1(ω) and any class M of Σ-matrices, we have the closure operator CnαM over Fmα

Σ defined by CnαM(X) ,
(Fmα

Σ ∩
⋂
{h−1[DA]|A ∈ M, h ∈ hom(Fmα

Σ,A), h[X] ⊆ DA}, for all X ⊆ Fmα
Σ, in which case we have:

(2.3) CnαM(X) = (Fmα
Σ ∩CnωM(X)),

because hom(Fmα
Σ,A) = {h� Fmα

Σ |h ∈ hom(Fmω
Σ,A)}, for any Σ-algebra A, as A 6= ∅. (Note that CnαM(∅) = ∅, whenever M

has a truth-empty member. Moreover, using either the ultra-product technique (cf. [11]) or the topological one (cf. [9]), CnαM
is shown to be inductive, whenever both M and all members of it are finite.) Then, CnωM is a Σ-logic called the one of M. A
Σ-logic C is said to be K-defined by M, where K ⊆ ∞, provided C(X) = CnωM(X), for all X ∈ ℘K(Fmω

Σ). A Σ-logic is said to
be [minimally] n-valued, where n ∈ ω, whenever it is defined by an n-valued Σ-matrix [but by no m-valued one with m ∈ n].
A Σ-matrix A is said to be o-paraconsistent, where o is a unary connective of Σ, whenever the logic of A is so. (Clearly, the
logic of any class of matrices is [inferentially] consistent iff the class contains a consistent [truth-non-empty] member.)

Remark 2.10. Since any rule with[out] premises is [not] true in any truth-empty matrix, given any class M of Σ-matrices and
any non-empty class S of truth-empty Σ-matrices, the logic of S ∪M is the purely-inferential version of the logic of M. �

Example 2.11. Let A be a two-valued consistent truth-non-empty Σ-matrix and C the logic of A. Then, ≡C is the set of all
Σ-identities true in A, i.e., in V(A), in which case C is self-extensional, while IV(C) = V(A). �

A Σ-matrix A is said to be a model of a Σ-logic C, provided C ⊆ CnωA, the class of all them being denoted by Mod(C).
Next, A is said to be [weakly] �-conjunctive, where � is a (possibly, secondary) binary connective of Σ, provided ({a, b} ⊆
DA)[⇐]⇔ ((a�A b) ∈ DA), for all a, b ∈ A, that is, CnωA is [weakly] �-conjunctive. Then, A is said to be [weakly] �-disjunctive,
whenever {(A) is [weakly] �-conjunctive.

Given any [axiomatic] Σ-calculus C, members of Mod(C) , Mod(CnC) are called its models as well. This fits well the above
model-theoretic conventions, according to which, in particular, given a class M of Σ-matrices, M∩Mod(C) is referred to as the
relative (equality-free first-order strict) [positive] universal Horn model subclass of M relatively axiomatized by C.

Let A and B be two Σ-matrices. A (strict) [surjective] homomorphism from A [on]to B is any h ∈ hom(A,B) such that
[h[A] = B and] DA ⊆ (=)h−1[DB], the set of all them being denoted by hom[S]

(S)(A,B). Note that:

(2.4) homS(A,B) = homS({(A), {(B)).

And what is more, we have (∀h ∈ hom(A,B) : [((img h) = B)⇒](hom(Fmα
Σ,B) ⊇ [=]{h ◦ g|g ∈ hom(Fmα

Σ,A)}), so we get:

(∃h ∈ hom[S]
S (A,B))⇒(CnαB ⊆ [=] CnαA),(2.5)

(∃h ∈ homS(A,B))⇒(CnαA(∅) ⊆ CnαB(∅)),(2.6)

for all α ∈ ℘∞\1(ω). Then, A is said to be a [proper] submatrix of B, whenever ∆A ∈ homS(A,B) [and A 6= B], in which case
we set (B�A) , A. Injective/bijective strict homomorphisms from A to B are referred to as embeddings/isomorphisms of/from
A into/onto B, in case of existence of which A is said to be embeddable/isomorphic into/to B.

Let A be a Σ-matrix. Elements of Con(A) , {θ ∈ Con(A)|θ[DA] ⊆ DA} 3 ∆A are called congruences of A. Given any
∅ 6= Θ ⊆ Con(A) ⊆ Con(A), Tr(

⋃
Θ), being well-known to be a congruence of A, is then easily seen to be a congruence of

A. Therefore, a(A) , (
⋃

Con(A)) ∈ Con(A), in which case this is the greatest congruence of A (it is this fact that justifies
using the symbol a), while Con(A) = {θ ∈ Con(A)|θ ⊆ a(A)}. Then, A is said to be simple, provided a(A) = ∆A, the class
of all simple models of a Σ-logic C being denoted by Mod∗(C). Given any θ ∈ Con(A[A]), we have the quotient Σ-matrix
(A/θ) , 〈A/θ,DA/θ〉, in which case νθ ∈ homS

[S](A,A/θ). The quotient <(A) , (A/a(A)) is called the reduction of A.

Corollary 2.12. Let A and B be Σ-matrices and h ∈ hom(S)
S (A,B). Then, for every ϑ ∈ Con(B), h−1[ϑ] ∈ {θ ∈ Con(A) |

(kerh) ⊆ θ} (whereas h[h−1[ϑ]] = ϑ, while, conversely, for every θ ∈ Con(A) such that (kerh) ⊆ θ, h[θ] ∈ Con(B), whereas
h−1[h[θ]] = θ).

Proof. With using Lemma 2.2. First, consider any ϑ ∈ Con(B). Then, the fact that h−1[ϑ][DA] ⊆ DA is by the fact
that ϑ[DB] ⊆ DB, while DA = h−1[DB]. (Conversely, consider any θ ∈ Con(A) such that kerh ⊆ θ. Then, the fact that
(h[θ])[DB] ⊆ DB is by the fact that θ[DA] ⊆ DA, while DA = h−1[DB].) �
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By Corollary 2.12, we immediately have:

Corollary 2.13. Let A and B be Σ-matrices and h ∈ homS(A,B). Suppose A is simple. Then, h is injective.

Proposition 2.14 (Matrix Homomorphism Theorem). Let A, B and C be Σ-matrices, f ∈ homS
S(A,B) and g ∈ hom(S)

[S] (A, C).
Suppose (ker f) ⊆ (ker g). Then, h , (g ◦ f−1) ∈ hom(S)

[S] (B, C).

Proof. The fact that h ∈ hom(B,C) (and h[B] = C) is well-known due to the Algebra Homomorphism Theorem. Finally, we
also have h−1[DC ] = f [g−1[DC ]][=] ⊇ f [DA] = f [f−1[DB]] = DB, for f [A] = B, as required. �

Proposition 2.15. Let A and B be two Σ-matrices and h ∈ homS
S(A,B). Then, a(A) = h−1[a(B)] and a(B) = h[a(A)].

Proof. As ∆B ∈ Con(B), by Corollary 2.12, we have kerh = h−1[∆B ] ∈ Con(A), and so kerh ⊆ a(A), in which case, by
Corollary 2.12, we get:

h−1[a(B)] ⊆ a(A),
h[h−1[a(B)]] = a(B),

h[a(A)] ⊆ a(B),
h−1[h[a(A)]] = a(A).

These collectively imply the equalities to be proved, as required. �

Since, for any equivalence θ on any set A, it holds that νθ[θ] = ∆A/θ, as an immediate consequence of Proposition 2.15, we
also have:

Corollary 2.16. Let A be a Σ-matrix. Then, <(A) is simple.

Proposition 2.17. Let C be a Σ-logic and M a finite class of finite Σ-matrices. Suppose C is finitely-defined by M. Then, C
is defined by M. In particular, C is inductive.

Proof. In that case, C ′ , CnωM ⊆ C, for C ′ is inductive, while ≡C = ≡C′ . For proving the converse point-wise inclusion, it
suffices to prove that M ⊆ Mod(C). For consider any A ∈ M, any Γ ⊆ Fmω

Σ, any ϕ ∈ C(Γ) and any h ∈ hom(Fmω
Σ,A) such

that h[Γ] ⊆ DA. Then, α , |A| ∈ (℘∞\1(ω)∩ ω). Take any bijection e : Vα → A to be extended to a g ∈ hom(Fmα
Σ,A). Then,

e−1 ◦ (h�Vω) is extended to a Σ-substitution σ, in which case σ(ϕ) ∈ C(σ[Γ]), for C is structural, while σ[Γ∪{ϕ}] ⊆ Fmα
Σ. For

every B ∈ M, we have the equivalence relation θB , {〈a, b〉 ∈ B2 | (a ∈ DB)⇔ (b ∈ DB)} on B, in which case B/θB is finite, for
B is so. Moreover, as both α, M and all members of it are finite, we have the finite set I , {〈h′,B〉 | B ∈ M, h′ ∈ hom(Fmα

Σ,B)},
in which case, for each i ∈ I, we set hi , π0(i), Bi , π1(i) and θi , θBi . Then, by (2.3), we have θ , (≡C′ ∩ EqαΣ) =
(EqαΣ ∩

⋂
i∈I h

−1
i [θi]), in which case, for every i ∈ I, θ ⊆ h−1

i [θi] = ker(νθi
◦hi), and so gi , (νθi

◦hi ◦ ν−1
θ ) : (Fmα

Σ /θ)→ Bi. In
this way, f , (

∏
i∈I gi) : (Fmα

Σ /θ)→ (
∏
i∈I Bi) is injective, for (ker f) = ((Fmα

Σ /θ)
2∩

⋂
i∈I(ker gi)) is diagonal. Hence, Fmα

Σ /θ

is finite, for
∏
i∈I Bi is so, and so is (σ[Γ]/θ) ⊆ (Fmα

Σ /θ). For each c ∈ (σ[Γ]/θ), choose any φc ∈ (σ[Γ] ∩ ν−1
θ [{c}]) 6= ∅.

Put ∆ , {φc | c ∈ (σ[Γ]/θ)} ∈ ℘ω(σ[Γ]). Consider any ψ ∈ σ[Γ]. Then, ∆ 3 φ[ψ]θ ≡C ψ, in which case ψ ∈ C(∆),
and so σ[Γ] ⊆ C(∆). In this way, σ(ϕ) ∈ C(∆) = C ′(∆), for ∆ ∈ ℘ω(Fmω

Σ), so, by (2.3), σ(ϕ) ∈ CnαM(∆). Moreover,
g[∆] ⊆ g[σ[Γ]] = h[Γ] ⊆ DA, and so h(ϕ) = g(σ(ϕ)) ∈ DA, as required. �

Proposition 2.18. Let M be a class of truth-non-empty Σ-matrices. Then, the logic of M is non-pseudo-axiomatic.

Proof. Consider any ϕ ∈
⋂
k∈ω CnωM(xk), any A ∈ M and any h ∈ hom(Fmω

Σ,A). Then, ϕ ∈ Fmk
Σ, for some k ∈ ω. Choose any

a ∈ DA 6= ∅. Let g ∈ hom(Fmω
Σ,A) extend (h�(Vω \ {xk}))∪ {〈xk, a〉}. Then, g(xk) = a ∈ DA, and so h(ϕ) = g(ϕ) ∈ DA. �

Given a set I and an I-tuple A of Σ-matrices, [any submatrix B of] the Σ-matrix (
∏
i∈I Ai) , 〈

∏
i∈I Ai, (

∏
i∈I Ai) ∩⋂

i∈I π
−1
i [DAi ]〉 is called the [a] [sub]direct product of A [whenever, for each i ∈ I, πi[B] = Ai]. As usual, when I = 2, A0×A1

stands for the direct product involved. Likewise, if (imgA) ⊆ {A} (and I = 2), where A is a Σ-matrix, AI , (
∏
i∈I Ai) [resp.,

B] is called the [a] [sub]direct I-power (square) of A.

Lemma 2.19 (Subdirect Product Lemma). Let M be a [finite] class of [finite] Σ-matrices and A a {truth-non-empty} (simple)
([ω∩](ω+ 1))-generated model of the logic of M. Then, there is some strict surjective homomorphism from a subdirect product
of a [finite] tuple constituted by consistent {truth-non-empty} submatrices of members of M onto <(A) (resp., onto A itself).

Proof. Take any A′ ∈ ℘[ω∩](ω+1)(A) generating A and any a ∈ A 6= ∅, in which case A′′ , (A′ ∪ {a}) ∈ (℘[ω∩](ω+1)(A) \ 1)
generates A, and so α , |A′′| ∈ (([ω∩](ω + 1)) \ 1) ⊆ ℘∞\1(ω). Next, take any bijection from Vα onto A′′ to be extended to
a surjective h ∈ hom(Fmα

Σ,A), in which case it is a surjective strict homomorphism from B , 〈Fmα
Σ, X〉, where {∅ 6=}X ,

h−1[DA], onto A, and so, by (2.5), B is a {truth-non-empty} model of the logic of M. Then, applying (2.3) twice, we get
CnαM(X) ⊆ CnαB(X) ⊆ X ⊆ CnαM(X). Furthermore, we have the [finite] set I , {〈h′,D〉 | h′ ∈ hom(B,D),D ∈ M, (img h′) *
DD}, in which case, for every i ∈ I, we set hi , π0(i), and so Ci , (π1(i)�(img hi)) is a consistent {truth-non-empty}
submatrix of π1(i) ∈ M. Clearly, X = CnαM(X) = (Fmα

Σ ∩
⋂
i∈I h

−1
i [DCi ]). Therefore, g , (

∏
i∈I hi) : Fmα

Σ → (
∏
i∈I Ci) is a

strict homomorphism from B to
∏
i∈I Ci such that, for each i ∈ I, (πi◦g) = hi, in which case πi[g[Fmα

Σ]] = hi[Fmα
Σ] = Ci, and so

g is a surjective strict homomorphism from B onto the subdirect product E , ((
∏
i∈I Ci)�(img g)) of C. Put θ , a(A)(= ∆A)

and F , (A/θ). Then, f , (νθ ◦ h) ∈ homS
S(B,F). Therefore, by Corollaries 2.12, 2.16 and Proposition 2.15, we have

(ker g) = g−1[∆E ] ⊆ a(B) = f−1[∆F ] = (ker f), in which case, by Proposition 2.14, e , (f ◦ h−1) ∈ homS
S(E ,F) (and so

(ν−1
θ ◦ e) ∈ homS

S(E ,A)), as required. �
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Given a class M of Σ-matrices, the class of all (truth-non-empty) [consistent] submatrices of members of M is denoted by
S(∗)

[∗] (M), respectively. Likewise, the class of all [sub]direct products of tuples (of cardinality ∈ K ⊆ ∞) constituted by members

of M is denoted by P[SD]
(K) (M). Clearly, Mod(C), where C is a Σ-logic, is closed under P.

Theorem 2.20. Let K and M be classes of Σ-matrices, C the logic of M and C ′ an extension of C. Suppose (both M and all
members of it are finite and) [<](PSD

(ω)(S∗(M))) ⊆ K {in particular, [<](S(P(ω)(M))) ⊆ K 〈in particular, K ⊇ M is closed under
both S and P(ω) [as well as <] 〉}. Then, C ′ is (finitely-)defined by S , (Mod[∗](C ′) ∩ K).

Proof. Clearly, C ′ ⊆ CnωS , for S ⊆ Mod(C ′). Conversely, consider any (Γ ∪ {ϕ}) ∈ ℘(ω)(Fmω
Σ), in which case (there is some

α′ ∈ (ω\1) such that (Γ∪{ϕ}) ⊆ Fmα′

Σ , and so) (Γ∪{ϕ}) ⊆ Fmα
Σ, where α , ((α′∩)ω) ∈ ℘∞\1(ω), such that ϕ 6∈ C ′(Γ). Then,

by the structurality of C ′, 〈Fmω
Σ, C

′(Γ)〉 is a model of C ′ {in particular, of C}, and so is its (α + 1)-generated (in particular,
finitely-generated) submatrix A , 〈Fmα

Σ, C
′(Γ) ∩ Fmα

Σ〉, in view of (2.5), in which case ϕ 6∈ CnαA(Γ), by the idempotencity
of C ′, and so ϕ 6∈ CnωA(Γ), in view of (2.3). Therefore, by Lemma 2.19, there are some B ∈ PSD

(ω)(S∗(M)), in which case
D , [<](B) ∈ [<](PSD

(ω)(S∗(M))) ⊆ K, and some g ∈ homS
S(B,A/a(A)). Then, by (2.5), CnωD = CnωA, in which case [by

Corollary 2.16] D ∈ S, and so ϕ 6∈ CnωS (Γ), as required. �

Corollary 2.21. Let M be a class of Σ-matrices and A an axiomatic Σ-calculus. Then, the axiomatic extension C ′ of the
logic C of M relatively axiomatized by A is defined by S∗(M) ∩Mod(A).

Proof. Then, Mod(C ′) = (Mod(C) ∩Mod(A)), and so (2.5), (2.6) and Theorem 2.20 with K , PSD(S∗(M)) ⊆ Mod(C), in
which case (Mod(C ′) ∩ K) = (Mod(A) ∩ K) = PSD(S∗(M) ∩Mod(A)), complete the argument. �

Given any Σ-logic C and any Σ′ ⊆ Σ, in which case Fmα
Σ ⊆ Fmα

Σ′ and hom(Fmα
Σ′ ,Fmα

Σ′) = {h� Fmα
Σ′ |h ∈ hom(Fmα

Σ,Fmα
Σ),

h[Fmα
Σ′ ] ⊆ Fmα

Σ′}, for all α ∈ ℘∞\1(ω), we have the Σ′-logic C ′, defined by C ′(X) , (Fmω
Σ′ ∩C(X)), for all X ⊆ Fmω

Σ′ , called
the Σ′-fragment of C, in which case C is said to be a ( Σ-)expansion of C ′. In that case, given also any class M of Σ-matrices
defining C, in its turn, C ′ is defined by M�Σ′.

2.3.1. Classical matrices and logics. Let o ∈ Σ be unary.
A two-valued consistent Σ-matrix A is said to be o-classical, provided, for all a ∈ A, (a ∈ DA) ⇔ (oAa 6∈ DA), in which

case it is truth-non-empty, for it is consistent, and so is both truth- and false-singular, but not o-paraconsistent.
A Σ-logic is said to be o-[sub]classical, whenever it is [a sublogic of] the logic of a o-classical Σ-matrix. Then, a Σ-logic is

said to be inferentially o-classical, whenever it is either o-classical or the purely inferential version of a o-classical Σ-logic.
Next, o is called a subclassical negation for a Σ-logic C, whenever the o-fragment of C is o-subclassical, in which case:

(2.7) omx0 6∈ C(onx0),

for all m,n ∈ ω such that the integer m− n is odd.

3. Preliminary key issues

3.1. Congruence and equality determinants. A [binary] relational Σ-scheme is any ε ⊆ (℘ω(Fm[2∩]ω
Σ ) × Fm[2∩]ω

Σ ), in
which case, given any Σ-matrix A, we set θAε , {〈a, b〉 ∈ A2 | A |= (∀ω\2

∧
ε)[x0/a, x1/b]} ⊆ A2. Note that, given a one more

Σ-matrix B and an h ∈ hom(S)
S (A,B), we have:

(3.1) h−1[θBε ] ⊆ (=)[=]θAε .

A [unary] unitary relational Σ-scheme is any Υ ⊆ Fm[1∩]ω
Σ , in which case we have the [binary] relational Σ-scheme εΥ ,

{(υ[x0/xi]) ` (υ[x0/x1−i]) | i ∈ 2, υ ∈ σ1:+1[Υ]} such that θAεΥ , where A is any Σ-matrix, is an equivalence relation on A.
A [binary] congruence/equality determinant for a class of Σ-matrices M is any [binary] relational Σ-scheme ε such that, for

each A ∈ M, θAε ∈ Con(A)/ = ∆A, respectively.
Then, according to [24]/[23], a [unary] unitary congruence/equality determinant for a class of Σ-matrices M is any [unary]

unitary relational Σ-scheme Υ such that εΥ is a/an congruence/equality determinant for M. (It is unary unitary equality
determinants that are equality determinants in the sense of [23].)

Lemma 3.1 (cf., e.g., [24]). Fmω
Σ is a unitary congruence determinant for every Σ-matrix A.

Proof. We start from proving the fact the equivalence relation θA , θAεFmω
Σ
∈ Con(A). For consider any ς ∈ Σ of arity n ∈ ω, any

i ∈ n, in which case n 6= 0, any ~a ∈ θA, any b̄ ∈ An−1, any φ ∈ Fmω
Σ and any c̄ ∈ Aω. Put ψ , ς(〈〈xj+1〉j∈i, x0〉 ∗ 〈xk〉k∈(n\i))

and ϕ , ((σ1:+nφ)[x0/ψ]) ∈ Fmω
Σ. Then, we have

(σ1:+1φ)A[xl+1/cl;x0/ς
A(〈〈bj〉j∈i, a0〉 ∗ 〈bk〉k∈((n−1)\i))]l∈ω = (σ1:+1ϕ)A[xl+n+1/cl;x0/a0;xm+1/bm]l∈ω;m∈(n−1) ∈ DA ⇔

DA 3 (σ1:+1ϕ)A[xl+n+1/cl;x0/a1;xm+1/bm]l∈ω;m∈(n−1) = (σ1:+1φ)A[xl+1/cl;x0/ς
A(〈〈bj〉j∈i, a1〉 ∗ 〈bk〉k∈((n−1)\i))]l∈ω,

in which case we eventually get 〈ςA(〈〈bj〉j∈i, a0〉 ∗ 〈bk〉k∈((n−1)\i)), ςA(〈〈bj〉j∈i, a1〉 ∗ 〈bk〉k∈((n−1)\i))〉 ∈ θA, and so θA ∈ Con(A).
Finally, as x0 ∈ Fmω

Σ, we clearly have θA[DA] ⊆ DA, as required. �

Example 3.2 (cf. Example 1 of [23]). {x0} is a unary unitary equality determinant for any consistent truth-non-empty
two-valued (in particular, classical) matrix. �
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Example 3.3. [cf. Example 2 of [23]] Let j ∈ 2, ~k ∈ 22, o a (possibly, secondary) unary connective of Σ and A a Σ-matrix.
Suppose A ⊆ 22, DA = (A ∩ π−1

j [{k1}]) and (oA)−1[DA] = (A ∩ π−1
1−j [{k0}]). Then, Υo , {x0, ox0} is a unary unitary equality

determinant for A. �

Lemma 3.4. Let A be a Σ-matrix and ε a congruence determinant for A. Then, a(A) = θAε . In particular, A is simple,
whenever ε is an equality determinant for it.

Proof. Consider any θ ∈ Con(A) and any 〈a, b〉 ∈ θ. Then, as Con(A) 3 θAε ⊇ ∆A 3 〈a, a〉, we have A |= (∀ω\2
∧
ε)[x0/a, x1/a],

in which case, by the reflexivity of θ, we get A |= (∀ω\2
∧
ε)[x0/a, x1/b], and so 〈a, b〉 ∈ θAε , as required. �

It is remarkable that Proposition 2.15 equally ensues from Lemmas 3.1, 3.4 and (3.1).

Lemma 3.5. Let M be a class of Σ-matrices, C the logic of M and B ∈ Mod∗(C). Then, B ∈ V(π0[M]).

Proof. Consider any (φ ≈ ψ) ∈ EqωΣ being true in π0[M] and any h ∈ hom(Fmω
Σ,B). Take any ϕ ∈ Fmω

Σ and any
v : Vω\2 → B. Then, there is some k ∈ (ω \ 1) such that (φ ≈ ψ) ∈ EqkΣ. Put ϕ′ , σ1:+k(ϕ). Then, for each
A ∈ M and every g ∈ hom(Fmω

Σ,A), we have g(φ) = g(ψ), in which case g(ϕ′[x0/φ]) = g(ϕ′[x0/ψ]), and so the rules
(ϕ′[x0/φ]) ` (ϕ′[x0/ψ]) and (ϕ′[x0/ψ]) ` (ϕ′[x0/φ]) are true in M, and so in B. Let h′ ∈ hom(Fmω

Σ,B) extend (h�Vk) ∪
[xi+k/v(xi+1)]i∈(ω\1). Then, (σ1:+1(ϕ)[x0/h(φ); v]) = h′(ϕ′[x0/φ]) ∈ DB iff DB 3 h′(ϕ′[x0/ψ]) = (σ1:+1(ϕ)[x0/h(ψ); v]). Thus,
B |= (∀ω\2((σ1:+1(ϕ)[x0/x1]) ↔ σ1:+1(ϕ)))[x0/h(φ), x1/h(ψ)], for all ϕ ∈ Fmω

Σ. Hence, by Lemma 3.1, we eventually get
〈h(φ), h(ψ)〉 ∈ a(B) = ∆B , as required. �

Lemma 3.6. Let A and B be Σ-matrices, ε a/an congruence/equality determinant for B and h a/an strict homomor-
phism/embedding from/of A to/into B. Suppose either ε is binary or h[A] = B. Then, ε is a/an congruence/equality
determinant for A.

Proof. In that case, by (3.1), we have θAε = h−1[θBε ]. In this way, Corollary 2.12/the injectivity of h completes the argument. �

Lemma 3.7. Let A be a Σ-matrix with unary unitary equality determinant Υ, B a submatrix of A and h ∈ homS(B,A).
Then, h is diagonal.

Proof. Consider any a ∈ B. Then, for any υ ∈ Υ, we have (υA(a) ∈ DA) ⇔ (υB(a) ∈ DB) ⇔ (υA(h(a)) = h(υB(a)) ∈ DA),
so we get h(a) = a, as required. �

3.2. False-singular consistent weakly conjunctive matrices. Given any consistent false-singular Σ-matrix A, the unique
element of A \DA is denoted by `A.

Lemma 3.8. Let � be a (possibly, secondary) binary connective of Σ, A a consistent false-singular weakly �-conjunctive Σ-
matrix, n ∈ ω, B an n-tuple constituted by consistent submatrices of A and C a subdirect product of B. Then, (n×{`A}) ∈ C.

Proof. In case n = 0, we simply have (n× {`A}) = ∅ ∈ C, for C 6= ∅.
Now, assume n 6= ∅. Define a c̄ ∈ Cn as follows. Consider any i ∈ n. Then, as Bi, being a submatrix of the false-

singular matrix A, is consistent, `A ∈ Bi. Therefore, since πi[C] = Bi, there is some ci ∈ C such that πi(ci) = `A. Finally, put
b , (�Cc̄) ∈ C. Then, for each i ∈ I, we have πi(b) = `A, for A is both weakly �-conjunctive and false-singular, as required. �

3.3. Disjunctivity. Fix any set A and any δ : A2 → A. Given any X,Y ⊆ A, set δ(X,Y ) , δ[X × Y ]. Then, a Z ⊆ A is
said to be [weakly] δ-disjunctive, provided, for all a, b ∈ A, it holds that (({a, b} ∩ Z) 6= ∅)⇔ [⇒](δ(a, b) ∈ Z), in which case,
for all X,Y ⊆ A, we have ((X ⊆ Z)|(Y ⊆ Z)) ⇔ [⇒](δ(X,Y ) ⊆ Z). Next, a closure operator C over A is said to be [weakly]
δ-disjunctive, provided, for all a, b ∈ A and every Z ⊆ A, it holds that

(3.2) C(Z ∪ δ(a, b))[⊆] = (C(Z ∪ {a}) ∩ C(Z ∪ {b})),

in which case the following [resp., (3.3) and (3.4) alone, being equivalent to the weak δ-disjunctivity of C] clearly hold, by (3.2)
with Z = ∅:

δ(a, b) ∈ C(a),(3.3)
δ(a, b) ∈ C(b),(3.4)

a ∈ C(δ(a, a)),(3.5)
δ(b, a) ∈ C(δ(a, b)),(3.6)

C(δ(δ(a, b), c)) = C(δ(a, δ(b, c))),(3.7)

for all a, b, c ∈ A.

Lemma 3.9. Let C be a closure operator over A and B a closure basis of imgC. Suppose each element of B is δ-disjunctive.
Then,

(3.8) (C(Z ∪X) ∩ C(Z ∪ Y )) = C(Z ∪ δ(X,Y )),

for all X,Y, Z ⊆ A. In particular, C is δ-disjunctive and the following holds:

(3.9) δ(C(X), a) ⊆ C(δ(X, a)),

for all (X ∪ {a}) ⊆ A.
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Proof. First, for all a ∈ A, we have:

(a ∈ C(Z ∪X) ∩ C(Z ∪ Y ))

⇔ ∀W ∈ B : ((((Z ⊆W )&(X ⊆W ))⇒ (a ∈W ))

&(((Z ⊆W )&(Y ⊆W ))⇒ (a ∈W )))

⇔ ∀W ∈ B : (((Z ⊆W )&(X ⊆W |Y ⊆W ))⇒ (a ∈W ))

⇔ ∀W ∈ B : (((Z ⊆W )&(δ(X,Y ) ⊆W ))⇒ (a ∈W ))

⇔ (a ∈ C(Z ∪ δ(X,Y ))),

in which case (3.8) holds, and so immediately does its particular case (3.2). Finally, applying (3.8) with Z = ∅ twice, we also
get δ(C(X), a) ⊆ C(δ(C(X), a)) = (C(C(X))∩C(a)) = (C(X)∩C(a)) = C(δ(X, a)), in which case (3.9) holds, as required. �

Lemma 3.10. Let C be a δ-disjunctive closure operator over A and X ∈ (imgC). Then, X is δ-disjunctive iff it is pair-wise-
meet-irreducible in imgC, and so it is finitely-meet-irreducible in imgC iff it is δ-disjunctive and proper.

Proof. First, assume X is not δ-disjunctive. Then, in view of (3.3) and (3.4), X is weakly δ-disjunctive, so there is some
~a ∈ (A \X)2, in which case, for each i ∈ 2, it holds that X 6= C(X ∪ {ai}) ∈ (imgC), such that δ(~a) ∈ X. Therefore, by (3.2),
we have X = (

⋂
i∈2 C(X ∪ {ai})). Hence, X is not pair-wise-meet-irreducible in imgC.

Conversely, assume X is not pair-wise-meet-irreducible in imgC. Then, there is some ~Y ∈ ((imgC) \ {X})2 such that
X = (

⋂
i∈2 Yi), in which case, for each i ∈ 2, X ( Yi, so there is some ai ∈ (Yi \ X) 6= ∅. In this way, by (3.2), we have

δ(~a) ∈ C(X ∪ δ(~a)) = (
⋂
i∈2 C(X ∪ {ai})) ⊆ (

⋂
i∈2 Yi) = X. Thus, X is not δ-disjunctive, as required. �

3.3.1. Disjunctive logics and matrices. Fix any (possibly, secondary) binary connective Y of Σ. Clearly, a Σ-matrix A is
[weakly] Y-disjunctive iff DA is [weakly] YA-disjunctive.

Remark 3.11. Given any more (possibly, secondary) binary connective � of Σ and any Y-disjunctive Σ-logic C, in view of (3.2)
and the structurality of C, C is �-disjunctive iff (x0 �x1) ≡C (x0 Yx1). In particular, any extension/model of C is Y-disjunctive
iff it is �-disjunctive. �

Remark 3.12. In view of (2.4) and (2.5), given two Σ-matrices A and B such that there is a [surjective] strict homomorphism
from A [on]to B, A is (weakly) Y-disjunctive if[f] B is so. �

Corollary 3.13. Let I be a finite set, A an I-tuple of Y-disjunctive Σ-matrices and B a consistent Y-disjunctive subdirect
product of A. Then, (πi�B) ∈ homS

S(B,Ai), for some i ∈ I.

Proof. Then, by Remark 3.12, B , {B ∩ π−1
i [DAi ] | i ∈ I} is a finite set of YB-disjunctive subsets of B. Let C be the closure

operator over B dual to the closure system with basis B. Then, DB = (B ∩
⋂

B) ∈ (imgC) is both YB-disjunctive and proper.
Hence, by Lemmas 3.9 and 3.10, DB ∈ B, as required. �

Corollary 3.14. Let α ∈ ℘∞\1(ω) and M a class of [non-]weakly Y-disjunctive Σ-matrices. Then, CnαM is [non-]weakly
Y-disjunctive [and satisfies (3.9)].

Proof. The “weak” case is evident. [Conversely, for each A ∈ M and every h ∈ hom(Fmα
Σ,A), h−1[DA] is Y-disjunctive, by

Remark 3.12. Then, Lemma 3.9 completes the argument.] �

Corollary 3.15. Let A be a false-singular Σ-matrix and C the logic of A. Then, the following are equivalent:
(i) C is [non-]weakly Y-disjunctive;
(ii) A is [non-]weakly Y-disjunctive;
(iii) C satisfies both (3.3) and (3.4) [as well as (3.5)].

Proof. First, (ii)⇒(i) is by Corollary 3.14. Next, (iii) is a particular case of (i). Finally, assume (iii) holds. Consider any
a, b ∈ A. In case (a/b) ∈ DA, by (3.3)/(3.4), we have (a YA b) ∈ DA. [Now, assume ({a, b} ∩DA) = ∅. Then, DA 63 a = b.
Therefore, by (3.5), we get DA 63 (a YA a) = (a YA b).] Thus, (ii) holds, as required. �

Corollary 3.16. Let C be an inductive Σ-logic. Then, the following are equivalent:
(i) C is Y-disjunctive;
(ii) imgC has a basis consisting of Y-disjunctive sets;
(iii) (3.3), (3.5), (3.6) and (3.9) hold;
(iv) (3.3), (3.5), (3.6) hold and, for any axiomatization C of C, every (Γ ` φ) ∈ SIΣ(C) and each ψ ∈ Fmω

Σ, it holds that
(φ Y ψ) ∈ C(Γ Y ψ).

Proof. First, (i)⇒(ii) is by Remark 2.1 and Lemma 3.10. Next, (ii)⇒(iii) is by Lemma 3.9. Further, (iv) is a particular case
of (iii). Then, the converse is proved by induction on the length of C-derivations. Finally, assume (iii) holds, in which case
(3.4) holds by (3.3) and (3.6), and so does the inclusion from left to right in (3.2), by (3.3) and (3.4). Conversely, consider any
ϕ ∈ (C(Z ∪ {φ}) ∩ C(Z ∪ {ψ})). Then, by (3.3), (3.6) and (3.9), we have (ψ Y ϕ) ∈ C(Z ∪ {φ Y ψ}). Likewise, by (3.3), (3.5)
and (3.9), we also have ϕ ∈ C(Z ∪ {ψ Y ϕ}). Hence, we eventually get ϕ ∈ C(Z ∪ {φ Y ψ}), in which case (3.2) holds, and so
does (i), as required. �

Finally, by (2.2), we immediately have:

Proposition 3.17. Any axiomatic extension of a Y-disjunctive Σ-logic is Y-disjunctive itself.
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3.3.1.1. Disjunctive extensions of logics defined by finite classes of finite disjunctive matrices. Given a Σ-rule Γ ` φ and a
Σ-formula ψ, put ((Γ ` φ) Y ψ) , ((Γ Y ψ) ` (φ Y ψ)). (This notation is naturally extended to Σ-calculi member-wise.)

Lemma 3.18. Let Γ ` φ be a Σ-rule and A a Y-disjunctive Σ-matrix. Then, A ∈ Mod(σ+1(Γ ` φ) Y x0) iff A ∈ Mod(Γ ` φ).

Proof. The “if” part is by the strucuturality of CnωA and Corollary 3.14(3.9). Conversely, assume A ∈ Mod(σ+1(Γ ` φ) Y x0).
Consider any h ∈ hom(Fmω,A) such that h(φ) 6∈ DA. Let g ∈ hom(Fmω,A) extend [x0/h(φ);xi+1/h(xi)]i∈ω, in which case
(g ◦ σ+1) = h, and so, by the Y-disjunctivity of A, we have g(σ+1(φ) Y x0) = (h(φ) YA h(φ)) 6∈ DA. Hence, there is some ψ ∈ Γ
such that (h(ψ) YA h(φ)) = g(σ+1(ψ) Y x0) 6∈ DA, in which case, by the Y-disjunctivity of A, we eventually get h(ψ) 6∈ DA,
and so A ∈ Mod(Γ ` φ), as required. �

Lemma 3.19. Let C be an inductive Y-disjunctive logic, C a Σ-calculus and A ⊆ C an axiomatic Σ-calculus. Then, the
extension C ′ of C relatively axiomatized by C′ , (A ∪ (σ+1[C \A] Y x0)) is Y-disjunctive.

Proof. Then, C being inductive, is axiomatized by a Σ-calculus C′′, in which case C ′ is axiomatized by the Σ-calculus C′′ ∪ C′,
and so is inductive. Moreover, C ′, being an extension of C, inherits (3.3), (3.5), (3.6) and (3.7) held for C. Then, we prove
the Y-disjunctivity of C ′ with applying Corollary 3.16(i)⇔(iv) to both C and C ′. For consider any Σ-substitution σ and any
ψ ∈ Fmω

Σ. First, consider any φ ∈ A. Then, by the structurality of C ′ and (3.3), we have (σ(φ)Yψ) ∈ C ′(∅). Now, consider any
(Γ ` φ) ∈ (C\A). Let ς be the Σ-substitution extending (σ�(Vω\V1))∪[x0/(σ(x0)Yψ)], in which case (ς◦σ+1) = (σ◦σ+1), and so,
by (3.7) and the structurality of C ′, we eventually get (σ[σ+1[Γ]Yx0]Yψ) = ((ς[σ+1[Γ]]Yσ(x0))Yψ) `C′ (ς[σ+1[Γ]]Y(σ(x0)Yψ)) =
ς[σ+1[Γ] Y x0] `C′ ς(σ+1(ϕ) Y x0) = (ς(σ+1(ϕ)) Y (σ(x0) Y ψ)) `C′ ((ς(σ+1(ϕ)) Y σ(x0)) Y ψ) = (σ(σ+1(ϕ) Y x0) Y ψ). �

Lemma 3.20. Let K be a finite class of consistent Y-disjunctive Σ-matrices. Then, the set of all relative [positive] universal
Horn model subclasses of K is a closure system over K closed under unions, and so forms a finite distributive lattice.

Proof. Consider any set I of [positive] universal Horn model subclasses of K, in which case it is finite, for K is so, and so there
are some bijection e : n→ I, where n , |I| ∈ ω, some C : n→ ℘(℘ω[∩1](Fmω

Σ)×Fmω
Σ) and some ᾱ : n→ ℘ω\1(ω \ 1) such that,

for every i ∈ n, e(i) = (K∩Mod(Ci)), Ci ⊆ (℘ω(Fmαi

Σ )× Fmαi

Σ ) and (αi ∩ αj) = ∅, for all j ∈ (n \ {i}). Then, we clearly have
(K∩Mod(

⋃
i∈n Ci)) = (K∩(

⋂
I)). Moreover, every member of (

⋃
I) ⊆ K[∗] is a model of C , {(

⋃
img(π0 ◦ R̄)) ` Y〈π1 ◦ R̄, x0〉 |

R̄ ∈
∏

C} ∈ ℘(℘ω[∩1](Fmω
Σ)× Fmω

Σ). Conversely, consider any A ∈ (K \ (
⋃
I)). Then, for every i ∈ n, A 6∈ e(i), in which case

there are some Ri ∈ Ci and some hi : αi → A such that A 6|= Ri[hi], and so ((
⋃
i∈n π0[Ri]) ` Y〈〈π1(Ri)〉i∈n, x0〉) ∈ C is not

true in A under [x0/a] ∪
⋃
i∈n hi, where a ∈ (A \DA) 6= ∅, for A is consistent. Thus, (

⋃
I) = (K ∩Mod(C)), as required. �

Theorem 3.21. Let M be a finite class of finite Y-disjunctive matrices, C the logic of M and K[∗] , S[∗]
∗ (M). Then:

(i) the mappings C ′ 7→ (Mod(C ′) ∩ K[∗]) and S 7→ CnωS are inverse to one another dual isomorphisms between the poset
of all Y-disjunctive [non-pseudo-axiomatic] extensions of C and that of all relative universal Horn model subclasses of
K[∗], the latter poset forming a finite distributive lattice, and so doing the former one;

(ii) for any Σ-calculus C, the following hold:
a) the extension of C relatively axiomatized by C, being Y-disjunctive [and non-pseudo-axiomatic], corresponds to the

relative universal Horn model subclass of K[∗] relatively axiomatized by C;
b) [providing (C∩Fmω

Σ) 6= ∅] the relative universal Horn model subclass of K[∗] relatively axiomatized by C corresponds
to the Y-disjunctive [non-pseudo-axiomatic] extension of C relatively axiomatized by (C∩Fmω

Σ)∪(σ+1[C\Fmω
Σ]Yx0);

(iii) [providing every member of M is truth-non-empty] relative positive universal Horn model subclasses of K[∗] correspond
exactly to [non-pseudo-axiomatic] axiomatic extensions of C, corresponding objects having same axiomatic relative
axiomatizations and forming dual finite distributive lattices;

(iv) for any C ⊆ K[∗], S[∗]
∗ (C), being a relative universal Horn model subclass of K[∗], corresponds to the logic of C.

In particular, all Y-disjunctive extensions of C are inductive.

Proof. (i) First, the fact that (Mod(CnωS ) ∩ K[∗]) = S, where S is a relative universal Horn model subclass of K[∗], is
immediate, while the fact that CnωS is a Y-disjunctive [and non-pseudo-axiomatic] extension of C is by (2.5), Corollary
3.14 and Remark 3.12 [as well as Proposition 2.18]. Now, consider any Y-disjunctive [non-pseudo-axiomatic] extension
C ′ of C. Then, we have the inductive Y-disjunctive [non-pseudo-axiomatic] extension C ′′ of C (for C is inductive
[and non-pseudo-axiomatic]) defined as follows: for every Z ⊆ Fmω

Σ, put C ′′(Z) , (
⋃
C ′[℘ω(Z)]). Consider any

Σ-rule Γ ` ϕ such that ϕ 6∈ C ′′(Γ) [and Γ 6= ∅]. Then, by Corollary 3.16(i)⇒(ii), there is some Y-disjunctive
X ∈ (imgC ′′) ⊆ (imgC) such that Γ ⊆ X 63 ϕ. Moreover, as Γ is finite, there is some α ∈ (ω \ 1) ⊆ ℘∞\1(ω) such
that (Γ ∪ {ϕ}) ⊆ Fmα

Σ, in which case, in view of (2.3), Γ ⊆ Y , (X ∩ Fmα
Σ) ∈ (img CnαM) is [both] Y-disjunctive

[and non-empty] as well as proper, for ϕ ∈ (Fmα
Σ \Y ). Furthermore, by the structurality of C ′′, 〈Fmω

Σ, X〉 is a model
of C ′′, and so is its consistent [truth-non-empty] submatrix D , 〈Fmα

Σ, Y 〉, in view of (2.5). On the other hand, by
Corollary 3.14, CnαM is Y-disjunctive. Hence, by Lemma 3.10, Y is finitely-meet-irreducible in img CnαM. And what
is more, since both α, M and all members of M are finite, B , {h−1[DA] | A ∈ M, h ∈ hom(Fmα

Σ,A)} is a finite
basis of img CnαM. Therefore, Y ∈ B, in which case there are some A ∈ M and some h ∈ hom(Fmα

Σ,A) such that
Y = h−1[DA], and so h is a surjective strict homomorphism from D onto B , (A�(img h)). In this way, by (2.5), B is
a consistent [truth-non-empty] model of C ′′. Finally, as Γ ⊆ Y = h−1[DB] 63 ϕ, we conclude that Γ ` ϕ is not true in
B ∈ S , (Mod(C ′′) ∩ K[∗]) under h. Thus, since both S and all members of it are finite, in which case C ′′′ , CnωS is
inductive [and non-pseudo-axiomatic, by Proposition 2.18], and so C ′′ = C ′′′, by Proposition 2.17, we eventually get
C ′ = C ′′′ = C ′′, as required, for, in that case, C ′, being inductive, is axiomatized by a Σ-calculus. In this way, Lemma
3.20 completes the argument.
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(ii) Consider any Σ-calculus C. Then:
a) is immediate, in view of (2.5), due to which K ⊆ Mod(C).
b) Let C ′ be the extension of C relatively axiomatized by (C ∩ Fmω

Σ) ∪ (σ+1[C \ Fmω
Σ] Y x0). Then, by Lemma 3.19

with A = (C ∩ Fmω
Σ), C ′ is Y-disjunctive. [And what is more, since A 6= ∅, C ′ is not theorem-less, and so is

non-pseudo-axiomatic.] Then, a) and Lemma 3.18 complete the argument.
(iii) is by (i), (ii), Proposition 3.17, Lemma 3.20 and Remark 3.12 [as well as Proposition 2.18, due to which C, being the

axiomatic extension of C relatively axiomatized by the axiomatic Σ-calculus ∅, is non-pseudo-axiomatic].
(iv) is by (2.5). �

As it is demonstrated by Theorem 4.60 below, (C ∩ Fmω
Σ) ∪ (σ+1[C \ Fmω

Σ] Y x0) cannot be replaced by C in the item (ii)b)
of Theorem 3.21, and so the reservations “positive” and “axiomatic” cannot be omitted in its item (iii).
3.3.1.2. Axiomatic extensions of logics defined by finite classes of finite implicative matrices. Let B be any (possibly, secondary)
binary connective of Σ. By induction on l = (dom φ̄) ∈ ω for any φ̄ ∈ (Fmω

Σ)∗ and any ψ ∈ Fmω
Σ, put:

(φ̄B ψ) ,

{
ψ if l = 0,
φ0 B (((φ̄�(l \ 1)) ◦ ((+1)�(l − 1))) B ψ) otherwise.

A Σ-matrix A is said to be B-implicative, provided, for all a, b ∈ A, it holds that ((a ∈ DA)⇒ (b ∈ DA))⇔ ((aBA b) ∈ DA),
in which case it is ∨B-disjunctive, where (x0 ∨B x1) , ((x0 B x1) B x1), while every submatrix of A is B-implicative,
Remark 3.22. Let M be a finite class of finite B-implicative as well as Y-disjunctive (in particular, Y = YB) Σ-matrices, in
which case the axiom x0 B x0 is true in it, and so every member of K[∗] , S[∗](M), satisfying the axiom involved, in view of
(2.5), is truth-non-empty. Then, any Σ-rule Γ ` ψ is true in any member of K iff φ̄Bψ is so, where φ̄ : |Γ| → Γ is any bijection,
in which case any universal Horn model subclass of K∗ is positive, and so Y-disjunctive extensions of the logic of M are exactly
axiomatic ones, in view of Theorem 3.21(iii). �

A Σ-logic C is said to have Deduction-Detachment Theorem (DDT) with respect to B, provided (φ ∈ C(Γ ∪ {ψ})) ⇔
((ψ B φ) ∈ C(Γ)), for all (Γ ∪ {φ, ψ}) ⊆ Fmω

Σ.

Proposition 3.23. Let A be a false-singular Σ-matrix and C the logic of A. Then, the following are equivalent:
(i) C has DDT with respect to Y;
(ii) C satisfies the following rule and axioms:

{x0, x0 B x1} `x1,(3.10)

x0 B (x1 B x0),(3.11)

x0 B x0;(3.12)

(iii) (3.10), (3.11) and (3.12) are true in A;
(iv) A is B-implicative.

Proof. First, (iv)⇒(i)⇒(ii)⇒(iii) are immediate. Finally, assume (iii) holds. Consider any a, b ∈ A. Then, the fact that
((a ∈ DA)⇒ (b ∈ DA))⇐ ((aBA b) ∈ DA) is by (3.10). Conversely, assume (a ∈ DA)⇒ (b ∈ DA). Then, in case b ∈ DA, by
(3.10) and (3.11), we get (aBA b) ∈ DA. Otherwise, we have a 6∈ DA, in which case a = b, by the false-singularity of A, and
so, by (3.12), we eventually get (aBA b) = (bBA b) ∈ DA, as required. �

3.3.1.3. Disjunctive extensions of the logics of single finite disjunctive matrices with unary initary equality determinant.
Lemma 3.24. Let A be a finite Y-disjunctive Σ-matrix with unary unitary equality determinant Υ, S ⊆ S(A) and B ∈ S∗(A).
Suppose B 6∈ S(S). Then, there is some Σ-rule satisfied in S but is not satisfied in B.
Proof. In case S = ∅, the axiom ` x0 is satisfied in it but is not satisfied in any consistent Σ-matrix (in particular, in B).
Now, assume S 6= ∅, in which case n , |S| ∈ (ω \ 1), and so there is a bijection C : n → S. Consider any i ∈ n, in which case
B * Ci, and so there is some ai ∈ (B \Ci) 6= ∅. Define a ∆i ∈ ℘ω(Fmω

Σ) and a ψ̄i ∈ (Fmω
Σ)∗ as follows. Let m , |Ci| ∈ (ω \1).

Take any bijection ~c : m → Ci. By induction on any j ∈ (m + 1), define a Γj ∈ ℘ω(Fm1
Σ) and a φ̄j ∈ (Fm1

Σ)∗ such that,
for all b ∈ (A \ DA), it holds that A 6|= (Γj ` (Y〈φ̄j , xn〉)[x0/ai, xn/b], while, for all k ∈ j and all a ∈ A, it holds that
A |= (Γj ` (Y〈φ̄j , xn〉)[x0/ck, xn/a], as follows. First, put Γj , ∅ and φ̄j , ∅, in case j = 0. Next, assume j > 0, in which
case (j − 1) ∈ m, and so cj−1 6= ai. Therefore, there is some υ ∈ Υ such that υA(ai) ∈ DA iff υA(cj−1) 6∈ DA. Then, set:

〈Γj , φ̄j〉 ,


〈Γj−1, 〈φ̄j−1, υ〉〉 if υA(ai) 6∈ DA, υ 6∈ (img φ̄j−1),
〈Γj−1, φ̄

j−1〉 if υA(ai) 6∈ DA, υ ∈ (img φ̄j−1),
〈Γj−1 ∪ {υ}, φ̄j−1〉 otherwise.

Finally, put ∆i , (Γm[x0/xi]) and ψ̄i , (φ̄m[x0/xi]). Let Ξ , (
⋃
i∈n ∆i), ξ̄ , (∗〈ψ̄i〉i∈n) and

ϕ ,

{
xn if ξ̄ = ∅,
Yξ̄ otherwise.

In this way, the Σ-rule Ξ ` ϕ is true in S but is not true in B under [xi/ai;xn/b]i∈n, where b ∈ (B \ DA) 6= ∅, for B is
consistent, as required. �

As an immediate consequence of (2.5) and Lemma 3.24, we get:
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Theorem 3.25. Let M, C and K[∗] be as in Theorem 3.21. Suppose M = {A}, where A is a Σ-matrix with equality
determinant. Then, relative universal Horn model subclasses of K[∗] are exactly lower cones of it, under identification of its
members with the carriers of their underlying algebras.

In this way, Lemma 3.24 collectively with Theorems 3.21 and 3.25 provide an effective procedure of finding the lattice of
disjunctive extensions of the logic of a finite disjunctive matrix with equality determinant collectively with their finite relative
axiomatizations and finite anti-chain matrix semantics. Concluding this discussion, we should like to highlight that the effective
procedure of finding relative axiomatizations of disjunctive extensions to be extracted from the constructive proof of Lemma
3.24 is definitely and obviously much less computationally complex than the straightforward one of direct search among all
finite sets of rules.
3.3.1.3.1. Implicative matrices with unary unitary equality determinant. By (2.2), Theorem 3.21, Remark 3.22 and Lemma
3.24, we immediately get:

Corollary 3.26. Let A be a finite �-implicative Σ-matrix with unary unitary equality determinant and S , S∗(A). Then, the
mappings:

E 7→ (Mod(E) ∩ S) = (Mod(E ∩ Fmω
Σ) ∩ S),

C 7→ CnωC
are inverse to one another dual isomorphisms between the lattices of all axiomatic extensions of CnωA and of all lower cones of
S (under identification of submatrices of A with the carriers of their underlying algebras), corresponding axiomatic extensions
of CnωA and lower cones of S having same relative axiomatizations, both lattices being finite and distributive.

This elaboration, being exemplified by applying it to implicative expansions of Belnap’s logic (cf. Subsection 6.1.3 collectively
with Remark 3.22 and Theorem 6.10), is equally applicable to more interesting examples including  Lukasiewicz’ finitely-valued
logics (cf. [10]), for their defining matrices both are implicative (cf. Example 7 of [24]) and have unary unitary equality
determinant, in view of Example 3 of [23] (cf. Proposition 6.10 of [25] for a constructive proof of this result), being however
beyond the scopes of the present work.

3.4. Distributive and De Morgan lattices. Let Σ+
[01] , ({∧,∨}[∪{⊥,>}]) be the [bounded] lattice signature with binary

∧ (conjunction) and ∨ (disjunction) [as well as nullary ⊥ and > (falsehood/zero and truth/unit constants, respectively)].

Lemma 3.27. Let A and B be lattices, a a unit/zero of A, b a unit/zero of B and h ∈ hom(A,B). Suppose h[A] = B.
Then, h(a) = b.

Proof. Then, there is some c ∈ A such that h(c) = b, in which case (a(∨/∧)Ac) = a, and so h(a) = (h(a)(∨/∧)Bb) = b. �

Given any Σ ⊇ Σ+, φ / ψ is used as an abbreviation for (φ ∧ ψ) ≈ φ, where φ, ψ ∈ Fmω
Σ. Then, any Σ-algebra A such that

A�Σ+ is a lattice is well-known to be congruence-distributive (cf., e.g., Example 2 on p. 12 of [13]), the partial ordering of
A�Σ+ being denoted by 6A.

Given any n ∈ (ω \ 1), by Dn[01] we denote the [bounded] distributive lattice given by the chain n, viz., the Σ+
[01]-algebra

with carrier n such that (∧/∨)Dn , ((min /max)�n2) [and (⊥/>)Dn , (0/(n− 1))].
Here, we deal with the signature Σ0[1] , (Σ+

[01] ∪ {∼}) with unary ∼ (weak negation).
A [bounded] De Morgan lattice (cf. [3], [19], [20]) is any Σ0[1]-algebra A such that A�Σ+

[01] is a [bounded] distributive lattice
(cf. [3]) and the following Σ0-identities are true in A:

∼∼x0 ≈ x0,(3.13)
∼(x0 ∨ x1) ≈ ∼x0 ∧ ∼x1,(3.14)
∼(x0 ∧ x1) ≈ ∼x0 ∨ ∼x1,(3.15)

the variety of all them being denoted by [B]DML. Then, a [bounded] Kleene lattice is any [bounded] De Morgan lattice satisfying
the Σ0-identity:

(3.16) (x0 ∧ ∼x0) / (x1 ∨ ∼x1),

the variety of all them being denoted by [B]KL. Next, a [bounded] Boolean lattice is any [bounded] De Morgan lattice satisfying
the Σ0-identity:

(3.17) x0 / (x1 ∨ ∼x1),

the variety of all them being denoted by [B]BL ⊆ [B]KL.3

By DM4[01] we denote the [bounded] De Morgan lattice such that (DM4[01]�Σ+
[01]) , D2

2[01] and ∼DM4[01]~a , 〈1− a1−i〉i∈2,
for all ~a ∈ 22.

Remark 3.28. Since any non-empty proper prime filter of D2
2[01] contains t but not f, and so contains b iff it does not contain n,

Fj , (22 ∩ π−1
j [{1}]), where j ∈ 2, are exactly all non-empty proper prime filters of D2

2[01], in which case 〈DM4[01], Fj〉 is both

∧-conjunctive and ∨-disjunctive, while, by Example 3.3 with ~k = ∆2 and o = ∼, we see that Υ∼ is a unary unitary equality
determinant for it. �

Recall also the following rather well-known (within Universal Algebra) fact:

3According to [3], “Boolean/Kleene/De Morgan algebra” traditionally stands for “bounded Boolean/Kleene/De Morgan lattice”.
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Lemma 3.29. Let B be a subalgebra of DM4. Then, Con(B) ⊆ {∆B , B
2}. In particular, B is simple iff |B| > 1.

Proof. Consider any θ ∈ (Con(B) \ {∆B}). Take any ~a ∈ (θ \∆B) 6= ∅. Consider the following exhaustive cases:
(1) img~a ⊆ {f, t}.

Then, img~a = {f, t}, for a0 6= a1, and so f θ t.
(2) img~a ⊆ {n, b}.

Then, img~a = {n, b}, for a0 6= a1, in which case n θ b, and so f = (n ∧B b) θ (n ∧B n) = n = (n ∨B n) θ (n ∨B b) = t.
(3) ai ∈ {f, t}, while a1−i ∈ {b, n}, for some i ∈ 2.

Then, ai θ a1−i = ∼Ba1−i θ ∼Bai, and so f θ t, because ∼B〈j, j〉 = 〈1− j, 1− j〉, for all j ∈ 2.
Thus, in any case, we have f θ t. Therefore, for every c ∈ B, we get c = (f ∨B c) θ (t∨B c) = t. Hence, θ = B2, as required. �

Given any n ∈ (ω \ 1), by Kn[01] we denote the chain [bounded] Kleene lattice such that (Kn[01]�Σ+
[01]) , Dn[01] and

∼Kn[01]i , (n−1− i), for all i ∈ n, K2[01] being a [bounded] Boolean lattice. Then, en , {〈0, 0〉, 〈1, n− 1〉} ∈ hom(K2[01],Kn[01])
is injective. Moreover, for any n ∈ (ω \ 3), ~n , ({〈0, 0〉, 〈n− 1, 2〉} ∪ (((n− 1) \ 1)× {1})) ∈ hom(Kn[01],K3[01]) is surjective.
Finally, for any i ∈ 2, e3,i , {〈0, f〉, 〈2, t〉, 〈1, 〈i, 1− i〉〉} ∈ hom(K3[01],DM4[01]) is injective.

4. Four-valued expansions of Belnap’s logic

Fix any language Σ ⊇ Σ0[1] such that either Σ ⊇ Σ01 or (Σ∩Σ01) = Σ0 and any Σ-algebra A such that (A�Σ0[1]) = DM4[01].
Given any Σ-matrix B, set

←−
B , 〈B, (∼B)−1[B \DB]〉. Put A , 〈A, 22 ∩ π−1

0 [{1}]〉, in which case
←−
A = 〈A, 22 ∩ π−1

1 [{1}]〉, and
−→
A , 〈A, {t}〉. Since [bounded] Belnap’s four-valued logic (cf. [4]), denoted by C[B]B from now on, is defined by DM4[01] ,
(A�Σ0[1]) (cf. [16]),4 the logic C of A is a four-valued expansion of C[B]B. We start our study from marking its framework.

4.1. Characteristic matrix expansions.

Lemma 4.1. Let Σ′ be an algebraic signature, o a (possibly, secondary) unary connective of Σ′, A′ a Σ′-matrix, I a set,
D an I-tuple constituted by submatrices of A′, E a submatrix of

∏
i∈I Di and a ∈ DE . Suppose oEa ∈ DE . Then, a ∈

(DA
′ ∩ (oA′)

−1
[DA

′
])I .

Proof. Then, for each i ∈ I, both πi(a) ∈ DA′ and oA′πi(a) = πi(oEa) ∈ DA′ , as required. �

Next, a subalgebra B of A is said to be regular, whenever its operations are so. (Clearly, every subalgebra of DM4[01] is
regular.) Likewise, B is said to be b-idempotent, where b ∈ B, provided its operations are so. (Clearly, B is b-idempotent iff
{b} forms a subalgebra of it.) Finally, B is said to be specular, whenever (µ�B) ∈ hom(B,A). (Clearly, DM4[01] is specular.)

Lemma 4.2. Let I be a set, C ∈ S(A)I , B a Σ-matrix and e an embedding of B into
∏
i∈I Ci. Suppose {f, b, t} forms a

subalgebra of A, {I × {a} | a ∈ {f, t}} ⊆ e[B] and, for each i ∈ I, {f, b, t} ∪ Ci forms a regular subalgebra of A and either
n 6∈ Ci or A�{f, b, t} is specular. Then, (B u 2) , ((B × {b}) ∪ {〈e−1(I × {f}), f〉, 〈e−1(I × {t}), t〉}) forms a subalgebra of
B × (A�{f, b, t}), in which case π0�(B u 2) is a surjective strict homomorphism from (B u 2) , ((B × (A�{f, b, t}))�(B u 2))
onto B.

Proof. Consider any ς ∈ Σ of arity n ∈ ω and any b̄ ∈ (B u 2)n. In case ςA(ā) = b, where ā , (π1 ◦ b̄), we clearly
have ςB×A(b̄) ∈ (B × {b}) ⊆ (B u 2). Otherwise, since {f, b, t} forms a subalgebra of A, we have ςA(ā) ∈ {f, t}. Put
N , {k ∈ n | ak = b}. Consider any i ∈ I. Put c̄ , (πi ◦ e ◦ π0 ◦ b̄). Then, for every j ∈ (n \ N), it holds that
Ci 3 cj = aj ∈ {f, t}. Hence, cj v aj , for all j ∈ n. Therefore, by the regularity of A�({f, b, t} ∪ Ci), we have ςA(c̄) v ςA(ā).
Consider the following complementary cases:

(1) n ∈ Ci.
Then, Ci 3 µ(aj) v cj , for all j ∈ n. Therefore, as, in that case, A�{f, b, t} is specular, by the regularity of
A�({f, b, t} ∪ Ci), we have ςA(ā) = µ(ςA(ā)) = ςA(µ ◦ ā) v ςA(c̄), and so we get ςA(c̄) = ςA(ā).

(2) n 6∈ Ci.
Then, ςA(c̄) ∈ Ci ⊆ {f, b, t}. Therefore, since both f and t are minimal elements of the poset {f, b, t} ordered by v, we
get ςA(c̄) = ςA(ā).

Thus, in any case, we have ςA(c̄) = ςA(ā). and so, by the injectivity of e, we get ςB×A(b̄) ∈ {〈e−1(I × {f}), f〉, 〈e−1(I × {t}), t〉}
⊆ (B u 2), as required. �

Lemma 4.3. Let B be a model of C. Suppose either A is b-idempotent or both A is regular and {f, b, t} forms a specular
subalgebra of A (in particular, Σ = Σ0[1]), while B is not a model of the rule:

(4.1) {x0,∼x0} ` (x1 ∨ ∼x1).

Then, there is some submatrix D of B such that A is isomorphic to <(D).

Proof. In that case, there are some a, b ∈ B such that (4.1) is not true in B under [x0/a, x1/b]. Then, in view of (2.5), the
submatrix E of B generated by {a, b} is a finitely-generated model of C, in which (4.1) is not true under [x0/a, x1/b]. Hence,
by Lemma 2.19 with M = {A}, there are some set J , some J-tuple C constituted by submatrices of A, some subdirect product
F of C, in which case (F�Σ0) ∈ DML, for DML 3 DM4 is a variety, and some g ∈ homS

S(F ,<(E)), in which case, by (2.5), F
is a model of C, in which case it is ∧-conjunctive, for A is so (cf. Remark 3.28 with j = 0), but is not a model of (4.1), in

4This equally ensues from Theorem 4.68(x)⇒(v) below, (2.5), the ∧-conjuctivity (cf. Remark 3.28 with j = 0) and the finiteness (and so the
inductivity of the logic) of DM4[01] as well as the fact that DM4�{n} is truth-empty, while µ ∈ hom(DM4[01], DM4[01]).
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which case there are some c, d ∈ F such that {c,∼Fc} ⊆ DF 63 d >F ∼Fd. Then, by Lemma 4.1, c = (I × {b}), in which case
∼Fc = c, and so (F \DF ) 3 e , ((c∧F d)∨F ∼Fd) = ∼Fe 6F d. Hence, e ∈ {b, n}J , while K , {i ∈ J | πi(e) = n} 6= ∅. Given
any ā ∈ A2, set (a0|a1) , ((K × {a0}) ∪ ((J \K)× {a1})). In this way, we have:

F 3 c = (b|b),(4.2)

F 3 e = (n|b),(4.3)

F 3 (c ∧F e) = (f|b),(4.4)

F 3 (c ∨F e) = (t|b).(4.5)

Consider the following complementary cases:
(1) either A is b-idempotent or K = J .

Then, f , {〈x, (x|b)〉 | x ∈ A} is an embedding of A into F , in which case g′ , (g ◦ f) ∈ homS(A,<(E)), and so, by
Corollary 2.13, Lemma 3.4 and Remark 3.28 with j = 0, g′ is injective. In this way, g′ is an isomorphism from A onto
the submatrix G , (<(E)�(img g′)) of <(E), and so h , g′

−1 ∈ homS
S(G,A).

(2) A is not b-idempotent and K 6= J .
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case φA(b) = f and ψA(b) = t, where φ , (x0 ∧ (ϕ∧∼ϕ))
and ψ , (x0 ∨ (ϕ ∨ ∼ϕ)), and so, by (4.2), we get:

F 3 φF(c) = (f|f),(4.6)

F 3 ψF(c) = (t|t).(4.7)

Moreover, in that case, both A is regular and {f, b, t} forms a specular subalgebra of A. And what is more, e′ , {〈a′, 〈a′〉〉
is an embedding of A into A1 such that {1× {x} | x ∈ {f, t}} = e′[{f, t}] ⊆ e′[A]. In this way, Lemma 4.2 with I = 1
and both A and e′ instead of B and e, respectively, used tacitly throughout the rest of the proof, is well-applicable to A.
Then, since K 6= ∅ 6= (J \K), by (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7), we see that f , {〈〈x, y〉, (x|y)〉 | 〈x, y〉 ∈ (Au
2)} is an embedding of H , (Au2) into F , while h′ , (π0�(Au2)) ∈ homS

S(H,A). Then, g′ , (g◦f) ∈ homS(H,<(E)),
and so g′ is a surjective strict homomorphism from H onto the submatrix G , (<(E)�(img g′)) of <(E). And what is
more, by Lemma 3.4 and Remark 3.28 with j = 0, A is simple. Hence, by Corollary 2.12 and Proposition 2.15, we get
(ker g′) ⊆ a(H) = (kerh′). Therefore, by Proposition 2.14, h , (h′ ◦ g′−1) ∈ homS

S(G,A).
Thus, in any case, there are some submatrix G of E/θ, where θ , a(E), and some h ∈ homS

S(G,A). Then, D , (E�ν−1
θ [G]),

being a submatrix of E , is so of B, in which case h′′ , (νθ�D) ∈ homS(D,G) is surjective, and so is h′′′ , (h◦h′′) ∈ homS(D,A).
On the other hand, by Lemma 3.4 and Remark 3.28 with j = 0, A is simple. Hence, by Proposition 2.15, ϑ , a(D) = (kerh′′′).
Therefore, by Proposition 2.14, νϑ ◦ h′′′−1 is an isomorphism from A onto <(D), as required. �

Corollary 4.4. Let C ′ be an extension of C. Suppose either A is b-idempotent or both A is regular and {f, b, t} forms a
specular subalgebra of A (in particular, Σ = Σ0[1]), while the rule (4.1) is not satisfied in C ′. Then, C ′ = C.

Proof. In that case, ∼(x1 ∨∼x1) 6∈ T , C ′({x0,∼x0}), so, by the structurality of C ′, 〈Fmω
Σ, T 〉 is a model of C ′ (in particular,

of C) not being a model of (4.1). In this way, (2.5) and Lemma 4.3 complete the argument. �

Proposition 4.5. Let M be a class of Σ-matrices. Suppose either A is b-idempotent or both A is regular and {f, b, t} forms a
specular subalgebra of A (in particular, Σ = Σ0[1]), while C is defined by M. Then, there are some B ∈ M and some submatrix
D of B such that A is isomorphic to <(D).

Proof. Note that the rule (4.1) is not satisfied in C, because it is not true in A under [x0/b, x1/n]. Therefore, as C is defined
by M, there is some B ∈ M ⊆ Mod(C) not being a model of (4.1), in which case Lemma 4.3 completes the argument. �

Now, we are in a position to argue several interesting corollaries of Proposition 4.5:

Corollary 4.6. Let M be a class of Σ-matrices. Suppose the logic of M is an expansion of CB (in particular, Σ = Σ0 and
the logic of M is CB itself). Then, some B ∈ M is not truth-/false-singular. In particular, any four-valued expansion of CB

(including CB itself) is defined by no truth-/false-singular matrix.

Proof. By contradiction. For suppose every member of M is truth-/false-singular. Then, M�Σ0 is a class of truth-/false-singular
Σ0-matrices defining CB. Then, by Proposition 4.5, there are some B ∈ (M�Σ0) and some submatrix D of B such that DM4

is isomorphic to E , (D/θ), where θ , a(D), in which case E is truth-/false-singular, for D is so, because B is so/, while
((D/θ) \ (DD/θ)) ⊆ ((D \DD)/θ), and so is DM4. This contradiction completes the argument. �

Corollary 4.7. Any four-valued Σ0[1]-matrix B defining C[B]B is isomorphic to DM4[01].

Proof. By Proposition 4.5, there are then some submatrix D of B and some isomorphism e from DM4[01] onto D/θ, where
θ , a(D), in which case 4 = |DM4[01]| = |D/θ| 6 |D| 6 |B| = 4, in which case 4 = |D/θ| = |D| = |B|, and so νθ is injective,
whereas D = B. In this way, e−1 ◦ νθ is an isomorphism from B onto DM4[01], as required. �

This, in its turn, enables us to prove:

Theorem 4.8. Any four-valued expansion of C[B]B is defined by an expansion of DM4[01].

Proof. Let B be a four-valued Σ-matrix defining an expansion of C[B]B. Then, B�Σ0[1] is a four-valued Σ0[1]-matrix defining
C[B]B itself. Hence, by Corollary 4.7, there is an isomorphism e from B�Σ0[1] onto DM4[01]. In that case, e is an isomorphism
from B onto the expansion 〈e[B], e[DB]〉 of DM4[01]. In this way, (2.5) completes the argument. �



16 A. P. PYNKO

Thus, the way of construction of four-valued expansions chosen in the beginning of this section does exhaust all of them.
And what is more, any of them is defined by a unique expansion of DM4, as it follows from the theorem immediately ensuing
from the following key lemma “killing several (more precisely, |S∗(DM4)| = 5; cf. Subsubsection 6.1.4) birds with one stone”:

Lemma 4.9 (Four-Valued Key Lemma). Let B be a Σ-matrix. Suppose (B�Σ0) ∈ S∗(DM4) and B is a model of C. Then, B
is a submatrix of A.

Proof. In that case, B is consistent and, being finite, is finitely-generated. In addition, by Lemmas 3.4, 3.6 and Remark 3.28
with j = 0, it is simple. And what is more, by Remarks 3.12 and 3.28 with j = 0, B is ∨-disjunctive. Therefore, as A is finite,
by Lemma 2.19 with M = {A}, there are some finite set I, some I-tuple C constituted by submatrices of A, some subdirect
product D of C and some g ∈ homS

S(D,B), in which case, by Remark 3.12 and (2.5), D is consistent and ∨-disjunctive,
and so, by Corollary 3.13, there is some i ∈ I such that h , (πi�D) ∈ homS

S(D, Ci). Moreover, by Lemmas 3.4, 3.6 and
Remark 3.28 with j = 0, Ci is simple. Therefore, by Proposition 2.15, (kerh) = a(D) = (ker g). Hence, by Proposition 2.14,
e , (h ◦ g−1) ∈ homS(B, Ci) ⊆ homS(B,A) ⊆ homS(B�Σ0,DM4), in which case, by Lemma 3.7 and Remark 3.28 with j = 0, e
is diagonal, as required. �

By (2.5) and Lemma 4.9, we immediately get the following universal characterization:

Corollary 4.10. Let B ∈ S∗(DM4). Then, the logic of a Σ-expansion of B is an extension of C iff B is a subalgebra of A.

Theorem 4.11. Let B be a Σ-matrix. Suppose (B�Σ0) = DM4 and B is a model of C (in particular, C is defined by B).
Then, B = A.

Proof. Then, by Lemma 4.9, B is a submatrix of A, in which case B = A, for B = A, as required. �

In view of Theorem 4.11, A is said to be characteristic for C. Subsections 4.2, 4.3, 4.4, 4.5 and 4.6 provide characterizations
of certain properties of four-valued expansions of CB via respective properties of their characteristic matrices. And what is
more, A is ∨-disjunctive and has a unary unitary equality determinant (cf. Remark 3.28 with j = 0), so Theorems 3.21 and
3.25 are well applicable to C immediately yielding the item (1k) of the Abstract (cf. Subsubsection 6.1.4 for more detail).

Corollary 4.12. Let Σ′ ⊇ Σ be a signature and C ′ a four-valued Σ′-expansion of C. Then, C ′ is defined by a unique
Σ′-expansion of A.

Proof. Then, by Theorem 4.8, C ′ is defined by a Σ′-expansion A′ of DM4, in which case C is defined by the Σ-expansion A′�Σ
of DM4, and so (A′�Σ) = A, in view of Theorem 4.11. In this way, Theorem 4.11 completes the argument. �

4.1.1. Minimal four-valuedness. As a one more interesting consequence of Proposition 4.5, we have:

Theorem 4.13. Let M be a class of Σ-matrices. Suppose the logic of M is an expansion of CB (in particular, Σ = Σ0 and
the logic of M is CB itself). Then, 4 6 |B|, for some B ∈ M. In particular, any four-valued expansion of CB (including CB

itself) is minimally four-valued.

Proof. In that case, CB is defined by M�Σ0, and so, by Proposition 4.5, there are some B ∈ M and some submatrix D of B�Σ0

such that DM4 is isomorphic to D/θ, where θ , a(D). In this way, 4 = |DM4| = |D/θ| 6 |D| 6 |B|, as required. �

4.2. Relevance Principle.

Lemma 4.14. C is purely-inferential iff {n} forms a subalgebra of A.

Proof. First, assume {n} forms a subalgebra of A, in which case A�{n} is a truth-empty submatrix of A, and so C is purely
inferential, in view of (2.5).

Conversely, assume {n} does not form a subalgebra of A. Then, there is some ϕ ∈ Fm1
Σ such that ϕA(n) 6= n, in which case

(ϕA(n) ∨A ∼AϕA(n)) ∈ DA, and so ((x0 ∨ ∼x0) ∨ (ϕ ∨ ∼ϕ)) ∈ C(∅), as required. �

Lemma 4.15. C has no inconsistent formula iff {b} forms a subalgebra of A.

Proof. First, assume {b} does not form a subalgebra of A. Then, there is some ϕ ∈ Fm1
Σ such that ϕA(b) 6= b, in which case

(ϕA(b) ∧A ∼AϕA(b)) 6∈ DA, and so ((x0 ∧ ∼x0) ∧ (ϕ ∧ ∼ϕ)) is an inconsistent formula of C.
Conversely, assume {b} forms a subalgebra of A. Let us prove, by contradiction, that C has no inconsistent formula. For

suppose some ϕ ∈ Fmω
Σ is an inconsistent formula of C, in which case ϕ ∈ Fmα

Σ, for some α ∈ (ω \ 1), while xα ∈ C(ϕ). Let
h ∈ hom(Fmω

Σ,A) extend (Vα × {b}) ∪ (Vω\α × {f}). Then, h(ϕ) = b ∈ DA, whereas h(xα) = f 6∈ DA. This contradiction
completes the argument. �

Theorem 4.16. The following are equivalent:
(i) C satisfies Relevance Principle;
(ii) C is purely inferential and has no inconsistent formula;
(iii) both {n} and {b} form subalgebras of A.

Proof. First, (ii) is a particular case of (i). Next, (ii)⇒(iii) is by Lemmas 4.14 and 4.15.
Finally, assume (iii) holds. Consider any α ∈ (ω \ 1), any φ ∈ Fmα

Σ and any ψ ∈ Fmω\α
Σ . Let h ∈ hom(Fmω

Σ,A) extend
(Vα × {b})∪ (Vω\α × {n}). Then, h(φ) = b ∈ DA, whereas h(ψ) = n 6∈ DA. Thus, ψ 6∈ C(φ), and so (i) holds, as required. �

Corollary 4.17 (cf. Theorem 4.2 of [16] for the case Σ = Σ0). C has no proper extension satisfying Relevance Principle.
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Proof. Consider any extension C ′ of C satisfying Relevance Principle, in which case C, being a sublogic of C ′, does so as well,
and so, by Theorem 4.16(i)⇒(iii), {b} forms a subalgebra of A. Moreover, as C ′ is ∧-conjunctive, for A is so (cf. Remark 3.28
with j = 0), (4.1) is not satisfied in C ′, for 1 ∈ (ω \ 1), while (x0 ∧ ∼x0) ∈ Fm1

Σ, whereas (x1 ∨ ∼x1) ∈ Fmω\1
Σ . In this way,

Corollary 4.4 completes the argument. �

Perhaps, this is the principal maximality of C in addition to the standard one studied below.

4.3. Maximality.

Lemma 4.18. Any proper submatrix B of A defines a proper extension C ′ of C.

Proof. For consider the following complementary cases:
(1) b ∈ B.

Then, n 6∈ B, for B 6= A, while (n ∧B b) = f, whereas (n ∨B b) = t. In that case, (x0 ∨ ∼x0) ∈ (C ′(∅) \ C(∅)).
(2) b 6∈ B.

Then, B is not ∼-paraconsistent, as opposed to A, and so is C ′, as opposed to C.
Thus, in any case, C ′ 6= C, as required, in view of (2.5). �

Lemma 4.19. Let D ∈ S∗(A). Then, providing D 6= {n} (in particular, D is truth-non-empty), {f, t} ⊆ D, in which case D
is truth-non-empty. In particular, D is truth-non-empty iff D 6= {n}.

Proof. In that case, we have ({f, n} ∩ D) 6= ∅. In this way, the fact that (n ∧A b) = f, while ∼Af = t, whereas ∼At = f,
completes the argument. �

Clearly, A is consistent [and truth-non-empty], and so C is [inferentially] consistent. In this connection, we have:

Theorem 4.20. C is [inferentially] maximal iff A has no proper consistent [truth-non-empty] submatrix.

Proof. First, consider any proper consistent [truth-non-empty] submatrix B of A. Then, by Lemma 4.18, the logic C ′ of B is
a[n inferentially] consistent proper extension of C, and so C is not [inferentially] maximal.

Conversely, assume A has no proper consistent [truth-non-empty] submatrix. Consider any [inferentially] consistent exten-
sion C ′ of C. Then, x0 6∈ T , C ′(∅[∪{x1})[3 x1], while, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular,
of C), and so is its consistent [truth-non-empty] finitely-generated submatrix B = 〈Fm2

Σ,Fm2
Σ ∩T 〉, in view of (2.5). Hence, by

Lemma 2.19 with M = {A}, there are some finite set I, some I-tuple C constituted by consistent [truth-non-empty] submatrices
of A, some subdirect product D of C and some g ∈ homS

S(D,B/a(B)), in which case, by (2.5), D is a consistent model of C ′,
and so, in particular, I 6= ∅. Moreover, for any i ∈ I, [as Ci is truth-non-empty] Ci = A is truth-non-empty anyway. Hence,
by the following claim, both D 3 a , (I × {f}) and D 3 b , (I × {t}}):

Claim 4.21. Let I be a finite set, C an I-tuple constituted by consistent truth-non-empty submatrices of A and B a subdirect
product of C. Then, {I × {f}, I × {t}} ⊆ B.

Proof. In that case, B�Σ+ is a finite lattice, so it has both a zero a and a unit b. Consider any i ∈ I. Then, as Ci is
both consistent and truth-non-empty, by Lemma 4.19, we have {f, t} ⊆ Ci. Therefore, since πi[B] = Ci and (πi�B) ∈
hom(B�Σ+,Ci�Σ+), by Lemma 3.27, we get πi(a) = f and πi(b) = t. Thus, B 3 a = (I × {f}) and B 3 b = (I × {t}), as
required. �

Next, if {f, t} ( A did form a subalgebra of A, A�{f, t} would be a proper consistent [truth-non-empty] submatrix of
A. Therefore, there are some φ ∈ Fm2

Σ and some j ∈ 2 such that φA(f, t) = 〈j, 1− j〉. Likewise, if {f, 〈j, 1− j〉, t} ( A
did form a subalgebra of A, A�{f, 〈j, 1− j〉, t} would be a proper consistent [truth-non-empty] submatrix of A. Therefore,
there is some ψ ∈ Fm3

Σ such that ψA(f, 〈j, 1− j〉, t) = 〈1− j, j〉. In this way, {φA(f, t), ψA(f, φA(f, t), t)} = {n, b}. Then,
D ⊇ {φD(a, b), ψD(a, φD(a, b), b)} = {I × {n}, I × {b}}. Thus, {I × {c} | c ∈ A} ⊆ D. Hence, as I 6= ∅, {〈c, I × {c}〉 | c ∈ A}
is an embedding of A into D, in which case, by (2.5), C is an extension of C ′, and so C ′ = C, as required. �

4.4. Subclassical expansions.

Lemma 4.22. Let B be a (simple) finitely generated consistent truth-non-empty model of C. Then, the following hold:
(i) B is ∼-paraconsistent, if ∼(x0 ∧ ∼x0) is true in B and {f, t} does not form a subalgebra of A;
(ii) providing {f, t} forms a subalgebra of A, A�{f, t} is embeddable into B/a(B) (resp., into B itself).

Proof. Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.19 with M = {A}, there are some finite set I, some I-tuple
C constituted by consistent truth-non-empty submatrices of A, some subdirect product D of C and some g ∈ homS

S(D, E),
in which case, by (2.5), D is consistent, and so, in particular, I 6= ∅. Hence, by Claim 4.21, both D 3 a , (I × {f}) and
D 3 b , (I × {t}}). Consider the following respective cases:

(i) ∼(x0 ∧ ∼x0) is true in B and {f, t} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(f, t) ∈ {n, b}. Take any i ∈ I 6= ∅. Then, {f, t} = πi[{a, b}] ⊆ Ci.
Moreover, (πi�D) ∈ homS(D, Ci), in which case, by (2.5) and (2.6), Ci is a model of ∼(x0 ∧ ∼x0), and so n 6∈ Ci, for
∼A(n ∧A ∼An) = n 6∈ DA. And what is more, Ci is a subalgebra of A. Hence, ϕA(f, t) ∈ Ci, and so ϕA(f, t) = b,
for n 6∈ Ci. Then, D 3 c , ϕD(a, b) = (I × {b}), in which case ∼Dc = c ∈ DD, and so D, being consistent, is
∼-paraconsistent, and so is B, in view of (2.5), as required.
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(ii) {f, t} forms a subalgebra of A,
in which case F , (A�{f, t}) is ∼-classical, and so simple, in view of Example 3.2 and Lemma 3.4. Finally, as
{I × {d} | d ∈ F} ⊆ D and I 6= ∅, e , {〈d, I × {d}〉 | d ∈ F} is an embedding of F into D, in which case,
(g ◦ e) ∈ homS(F , E), and so Corollary 2.13 completes the argument. �

Theorem 4.23. C is ∼-subclassical iff {f, t} forms a subalgebra of A, in which case any ∼-classical model of C is isomorphic
to A 6n6b , A�{f, t}, and so the logic of this submatrix is the only ∼-classical extension of C.

Proof. Let B be a ∼-classical model of C, in which case it is simple (cf. Example 3.2 and Lemma 3.4) and finite (in particular,
finitely generated), but not ∼-paraconsistent.

First, consider any a ∈ B. Then, {a,∼Ba} 6⊆ DB, for B is ∼-classical, in which case (a ∧B ∼Ba) 6∈ DB, for B is ∧-
conjunctive, because C is so, since A is so (cf. Remark 3.28 with j = 0), and so ∼B(a ∧B ∼Ba) ∈ DB, for B is ∼-classical.
Thus, ∼(x0 ∧ ∼x0) is true in B. Hence, by Lemma 4.22(i), {f, t} forms a subalgebra of A.

Conversely, assume {f, t} forms a subalgebra of A, in which case D , (A�{f, t}) is a ∼-classical model of C, by (2.5), and is
embeddable into B, by Lemma 4.22(ii), and so is isomorphic to it, for they are both two-valued. In this way, (2.5) completes
the argument. �

In view of Theorem 4.23, the unique ∼-classical extension of a ∼-subclassical four-valued expansion C of CB is said to be
characteristic for/of C and denoted by CPC, the maximality nature of which is as follows:

Theorem 4.24. Let C ′ be an inferentially consistent (in particular, consistent non-pseudo-axiomatic) extension of C. Suppose
{f, t} forms a subalgebra of A. Then, A�{f, t} is a model of C ′.

Proof. Then, x1 6∈ C ′(x0) 3 x0, while, by the structurality of C ′, 〈Fmω
Σ, C

′(x0)〉 is a model of C ′ (in particular, of C), and so
is its consistent truth-non-empty finitely generated submatrix 〈Fm2

Σ,Fm2
Σ ∩C ′(x0)〉, in view of (2.5). In this way, (2.5) and

Lemma 4.22(ii) complete the argument. �

Example 4.25. When Σ = Σ0, {n} forms a subalgebra of A, in which case B , (A�{n}) is a consistent truth-empty submatrix
of A, and so, by (2.5), the logic C ′ of B is a consistent but inferentially inconsistent extension of C. Then, C ′ is not subclassical,
because any classical logic is inferentially consistent, for any classical matrix is both consistent and truth-non-empty. In this
way, the reservation “inferentially” cannot be omitted in the formulation of Theorem 4.24. �

4.5. Paraconsistent and paracomplete extensions. The axiomatic extension of C relatively axiomatized by the Excluded
Middle law axiom:

(4.8) x0 ∨ ∼x0

is denoted by CEM.
An extension C ′ of C is said to be (maximally) [inferentially] paracomplete, provided (x0 ∨ ∼x0) 6∈ C ′(∅[∪{x1}]) (and C ′

has no proper [inferentially] paracomplete extension). Then, a model of C is said to be [inferentially] paracomplete, whenever
the logic of it is so.

Clearly, a submatrix B of A is paracomplete/∼-paraconsistent iff n ∈ B/both b ∈ B and (B ∩ {n, f}) 6= ∅. In particular, A
is both ∼-paraconsistent and paracomplete, and so is C.

By A−n we denote the ∼-paraconsistent submatrix of A generated by {f, b, t}, the logic of it being denoted by C−n. (Clearly,
A−n = A 6n , (A�{f, b, t}), if {f, b, t} forms a subalgebra of A, and A−n = A, otherwise.)

Lemma 4.26. Let B be a ∼-paraconsistent model of C. Then, there is some submatrix D of B such that A−n is embeddable
into D/a(D).

Proof. In that case, there are some a ∈ DB such that ∼Ba ∈ DB and some b ∈ (B \DB). Then, in view of (2.5), the submatrix
D of B generated by {a, b} is a ∼-paraconsistent finitely-generated model of C. Hence, by Lemma 2.19 with M = {A}, there
are some finite set I, some I-tuple C constituted by consistent submatrices of A, some subdirect product E of C and some
g ∈ homS

S(E ,D/a(D)). Hence, by (2.5), E is ∼-paraconsistent, in which case it is consistent, and so I 6= ∅. Take any a ∈ DE
such that ∼Ea ∈ DE . Then, by Lemma 4.1, E 3 a = (I × {b}), in which case, for each i ∈ I, DCi 3 πi(a), and so Ci is
truth-non-empty. Therefore, by Claim 4.21, we also have both E 3 b , (I×{f}) and E 3 c , (I×{t}). Consider the following
complementary cases:

(1) {f, b, t} does not form a subalgebra of A.
Then, A−n = A and there is some ϕ ∈ Fm3

Σ such that ϕA(f, b, t) = n, in which case E 3 ϕE(b, a, c) = (I×{ϕA(f, b, t)}) =
(I × {n}), and so {I × {d} | d ∈ A−n} ⊆ E.

(2) {f, b, t} forms a subalgebra of A.
Then, A−n = {f, b, t}, and so {I × {d} | d ∈ A−n} ⊆ E.

Thus, in any case, {I × {d} | d ∈ A−n} ⊆ E. Then, as I 6= ∅, e , {〈d, I × {d}〉 | d ∈ A−n} is an embedding of A−n into E , in
which case (g ◦ e) ∈ homS(A−n,D/a(D)), and so Corollary 2.13, Lemmas 3.4, 3.6 and Remark 3.28 with j = 0 complete the
argument. �

Corollary 4.27. A−n is a model of any ∼-paraconsistent extension of C. In particular, C−n is the greatest ∼-paraconsistent
extension of C, and so maximally ∼-paraconsistent, in which case an extension of C is ∼-paraconsistent iff it is a sublogic of
C−n.

Proof. Consider any ∼-paraconsistent extension C ′ of C, in which case x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality
of C ′, 〈Fmω

Σ, T 〉 is a ∼-paraconsistent model of C ′, and so of C. Then, (2.5) and Lemma 4.26 complete the argument. �
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Lemma 4.28 (cf. Corollary 5.3 of [16] for the case Σ = Σ0). Suppose {f, b, t} forms a subalgebra of A/ {f, t}[∪{b}] does [not]
form a subalgebra of A. Then, the logic of A 6n/ 6n6b is the proper consistent axiomatic extension of C relatively axiomatized by
(4.8).

Proof. In that case, (Mod (4.8) ∩ S∗(A)) = S∗(A 6n/ 6n6b). In this way, Corollary 2.21, the consistency of A 6n/ 6n6b and the fact that
(4.8) is not satisfied in A under [x1/n] complete the argument. �

The logic of DM4[01]�{f, b, t} is known as the [bounded] logic of paradox LP[01] [14] (cf. [17]).

Theorem 4.29. The following are equivalent:
(i) C is maximally ∼-paraconsistent;
(ii) C = C−n;
(iii) CEM 6= C−n;
(iv) {f, b, t} does not form a subalgebra of A;
(v) CEM is not ∼-paraconsistent;
(vi) CEM is not maximally ∼-paraconsistent;
(vii) CEM is either ∼-classical, if C is ∼-subclassical, or inconsistent, otherwise;
(viii) any consistent non-∼-classical extension of C is paracomplete;
(ix) any ∼-paraconsistent extension of C is paracomplete;
(x) no expansion of LP is an extension of C;
(xi) CEM is not an expansion of LP .

Proof. First, (i)⇒(ii) is by (2.5). The converse is by Corollary 4.27. Thus, (i)⇔(ii) holds. Next, (ii)⇒(iii) is by the paracom-
pleteness of C. In addition, (iv)⇒(ii) is immediate.

Further, assume {f, b, t} forms a subalgebra of A, in which case A−n = A6n, and so, by Lemma 4.28, CEM = C−n is an
expansion of LP . Thus, both (iii)⇒(iv) and (xi)⇒(iv) hold.

Furthermore, (vi) is a particular case of (v). Likewise, (v) is a particular case of (ix), while (ix) is a particular case of (viii).
Moreover, (vi)⇒(iii) is by Corollary 4.27. And what is more, (vii)⇒(viii) is by Theorems 4.23 and 4.24.

Finally, assume (iv) holds. Let S be the set of all non-paracomplete consistent submatrices of A, in which case, by Corollary
2.21, CEM is defined by S. Consider any B ∈ S. Since it is not paracomplete, we have n 6∈ B, in which case f ∈ B, for it is
consistent, and so t = ∼Af ∈ B. Therefore, by (iv), b 6∈ B, for {f, t} ⊆ B 63 n. Thus, B = {f, t}. In this way, by Theorem
4.23, either S = {B}, in which case CEM is ∼-classical, if C is ∼-subclassical, or S = ∅, in which case CEM is inconsistent,
otherwise. Thus, (vii) holds.

After all, (xi/x) is a particular case of (x/ix), as required. �

It is Theorem 4.29(i)⇔(iv) that provides a quite useful algebraic criterion of the maximal ∼-paraconsistency of C inherited
by its four-valued expansions, in view of Corollary 4.12, applications of which are demonstrated in Subsection 6.1.

4.5.1. The resolutional extension. By C [EM+]R we denote the resolutional extension of C [EM], viz., the one relatively axioma-
tized by the Resolution rule:

(4.9) {x1 ∨ x0,∼x1 ∨ x0} ` x0.

Put S[∗] 6b , {B ∈ S[∗](A) | b 6∈ B}.

Lemma 4.30. Let o and Y be (possibly, secondary) unary and binary connectives of Σ, C ′ a Y-disjunctive Σ-logic and C ′′ an
extension of C ′. Then,

(4.10) {x1 Y x0, ox1 Y x0} ` (x2 Y x0)

is satisfied in C ′′ iff

(4.11) {x1 Y x0, ox1 Y x0} ` x0

is so.

Proof. In that case, (3.4) and (3.5), being valid for C ′, remain so for C ′′. First, assume (4.10) is satisfied in C ′′, in which case
(4.10)[x2/x0] is so, in view of the structurality of C ′′, and so is (4.11), in view of (3.5) and the transitivity of C ′′. Conversely, the
fact that (4.11) and (3.4) are satisfied in C ′′ implies the fact that (4.10) is so, in view of the transitivity of C ′′, as required. �

By Lemmas 3.18, 4.30, Corollary 3.14 and Remark 3.28 with j = 0, we first have:

Corollary 4.31. CR is a proper extension of C.

Theorem 4.32. CEM+R is equal to CPC, if C is ∼-subclassical, and inconsistent, otherwise.

Proof. With using Remark 3.28 with j = 0, Theorems 3.21, 4.23 and Lemma 4.30. Then, CEM+R is defined by the set S of all
non-paracomplete members of S∗, 6b. In that case, S = {A�{f, t}}, if {f, t} forms a subalgebra of A, and S = ∅, otherwise, as
required. �

By Remark 3.28 with j = 0, Theorem 3.21 and Lemma 4.30, we also have:

Lemma 4.33. CR is defined by S[∗] 6b.

By Lemmas 4.14 and 4.33, we first have:

Corollary 4.34. CR is purely inferential iff C is so. In particular, CR is paracomplete, whenever C is purely inferential.
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In addition, we also get:

Corollary 4.35. Suppose {f, n, t} forms a subalgebra of A. Then, CR is defined by A 6b , (A�{f, n, t}),

Proof. In that case, S6b = S(A 6b), and so (2.5) and Lemma 4.33 complete the argument. �

Theorem 4.36. The following are equivalent:
(i) CR is paracomplete;
(ii) there is some subalgebra B of A such that b 6∈ B 3 n;
(iii) the carrier of the subalgebra of A generated by {n} does not contain b;
(iv) there is no ϕ ∈ Fm1

Σ such that ϕA(n) = b.

Proof. In view of Lemma 4.33, CR is paracomplete iff S6b contains a paracomplete matrix. Thus, (i)⇔(ii) holds. Finally,
(ii)⇔(iii)⇔(iv) are immediate. �

Lemma 4.37. Let a ∈ {b, n}. Suppose {f, [a, ]t} forms a [regular] subalgebra of A. Then, Ka
4 , {〈f, f〉, 〈a, f〉, 〈a, t〉, 〈t, t〉}

forms a subalgebra of (A�{f, a, t})× (A�{f, t}).

Proof. Let B be the subalgebra of (A�{f, a, t})× (A�{f, t}) generated by Ka
4 . If 〈t, f〉 was in B, there would be some ϕ ∈ Fm4

Σ

such that both ϕA(f, a, a, t) = t and ϕA(f, f, t, t) = f, in which case, since (n/b) v / w b, for every b ∈ {f, t}, by the regularity
of A�{f, a, t}, we would get t v / w f. Therefore, as ∼A(f/t) = (t/f), we conclude that B = Ka

4 , as required. �

Lemma 4.38. Let B ⊆ {b, n}. Suppose {f, t} ∪B forms a specular subalgebra of A. Then, {f, t} forms a subalgebra of A.

Proof. By contradiction. For suppose {f, t} does not form a subalgebra of A. In that case, there are some ς ∈ Σ of some
arity n ∈ ω and some ā ∈ {f, t}n such that ςA(ā) ∈ B. Then, (µ ◦ ā) = ā, while µ(ςA(ā)) 6= ςA(ā), in which case µ 6∈
hom(A�({f, t} ∪B),A), and so this contradiction completes the argument. �

Theorem 4.39. Suppose {f, n, t} forms a regular specular subalgebra of A, in which case {f, t} forms a subalgebra of A6b
(cf. Lemma 4.38), [while {n} does not form a subalgebra of A6b] (in particular, Σ = Σ0[1]). Then, an extension of C is
[non-]inferentially paracomplete iff it is a sublogic of CR. In particular, CR is maximally [non-]inferentially paracomplete.

Proof. In that case, by Corollary 4.35, CR is defined by the truth-non-empty paracomplete (and so inferentially paracomplete)
Σ-matrix A 6b, in which case, in particular, any extension of C, being a sublogic of CR, is inferentially paracomplete, and so
paracomplete.

Conversely, consider any [non-]inferentially paracomplete extension C ′ of C, in which case [since C ′(∅) ⊇ C(∅) 6= ∅, in
view of Lemma 4.14] (x0 ∨ ∼x0) 6∈ T , C ′(x1), while, by the structurality of C ′, 〈Fmω

Σ, T 〉 is a model of C ′ (in particular,
of C), and so is its finitely-generated inferentially paracomplete submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view of (2.5). Hence, by

Lemma 2.19, there are some set I, some I-tuple C constituted by submatrices of A, some subdirect product D of C, in which
case (D�Σ0) ∈ DML, for DML 3 DM4 is a variety, and some g ∈ homS

S(D,<(B)), in which case, by (2.5), D is an inferentially
paracomplete model of C ′, and so there are some a ∈ DD ⊆ {b, t}I and b ∈ (D \ DD) such that ∼Db 6D b, in which case
{n, b, t}I 3 b �D c , (a ∨D b) ∈ DD. Put J , {i ∈ I | πi(b) = t}, K , {i ∈ I | πi(b) = n} 6= ∅, for b 6∈ DD, and L , {i ∈ I |
πi(b) = b 6= πi(c)}. Given any ā ∈ A4, put (a0|a1|a2|a3) , ((J×{a0})∪(K×{a1})∪(L×{a2})∪((I \(J∪K∪L))×{a3})) ∈ AI .
Then, we have:

D 3 b = (t|n|b|b),(4.12)

D 3 ∼Db = (f|n|b|b),(4.13)

D 3 c = (t|t|t|b),(4.14)

D 3 ∼Dc = (f|f|f|b)(4.15)

Consider the following complementary cases:
(1) A is b-idempotent.

Then, we have the following complementary subcases:
(a) J = ∅,

Then, since K 6= ∅ = J , A6b is specular and {b} forms a subalgebra of A, by (4.12), (4.14) and (4.15), we see that
{〈x, (x|x|µ(x)|b)〉 | x ∈ A6b} is an embedding of A 6b into D. Hence, by (2.5), A 6b is a model of C ′, for D is so.

(b) J 6= ∅.
Then, taking Lemma 4.37 into account, since K 6= ∅ 6= J , A6b is specular and {b} forms a subalgebra of A,
by (4.12), (4.13), (4.14) and (4.15), we see that {〈〈x, y〉, (y|x|µ(x)|b)〉 | 〈x, y〉 ∈ Kn

4} is an embedding of B ,
((A6b × (A�{f, t}))�Kn

4) into D. Moreover, (π0�Kn
4) ∈ homS

S(B,A 6b). Hence, by (2.5), A 6b is a model of C ′, for D is
so.

(2) A is not b-idempotent.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case φA[{b, t}] = {t} and ψA[{b, t}] = {f}, where
φ , (x0 ∨ (ϕ ∨ ∼ϕ)) and ψ , ∼φ, and so, by (4.14), we get:

D 3 ψD(c) = (f|f|f|f),(4.16)

D 3 φD(c) = (t|t|t|t).(4.17)

Consider the following complementary subcases:
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(a) J = ∅,
Then, since K 6= ∅ = J and A6b is specular, by (4.12), (4.16) and (4.17), we see that {〈x, (x|x|µ(x)|µ(x))〉 | x ∈ A6b}
is an embedding of A 6b into D. Hence, by (2.5), A 6b is a model of C ′, for D is so.

(b) J 6= ∅.
Then, taking Lemma 4.37 into account, since K 6= ∅ 6= J and A6b is specular, by (4.12), (4.13), (4.16) and
(4.17), we see that {〈〈x, y〉, (y|x|µ(x)|µ(x))〉 | 〈x, y〉 ∈ Kn

4} is an embedding of B , ((A6b × (A�{f, t}))�Kn
4) into D.

Moreover, (π0�Kn
4) ∈ homS

S(B,A 6b). Hence, by (2.5), A 6b is a model of C ′, for D is so.
Thus, in any case, A 6b is a model of C ′, and so C ′ ⊆ CR, as required. �

The logic of DM4[01]�{f, n, t} is known as Kleene’s [bounded] three-valued logic K3[01] (cf. [8]).

Theorem 4.40. The following are equivalent:
(i) {f, n, t} does not form a subalgebra of A;
(ii) [providing C is not purely inferential] CR is [non-]inferentially either ∼-classical, if C is ∼-subclassical, or inconsistent,

otherwise;
(iii) [providing C is not purely inferential] CR is not [non-]inferentially paracomplete;
(iv) the Σ0-fragment of CR is not inferentially paracomplete;
(v) no expansion of K3 is an extension of C;
(vi) CR is not an expansion of K3.

Proof. First, (vi)⇒(i) is by Corollary 4.35.
Moreover, (vi) is a particular case of (v).
Next, assume (i) holds. We use Remark 2.10, Theorem 4.23 and Lemmas 4.14 and 4.33 tacitly. Consider the following four

exhaustive cases:
(1) C is both ∼-subclassical and not purely inferential.

Then, S∗, 6b = {A�{f, t}}, in which case CR is ∼-classical, and so inferentially so.
(2) C is both purely-inferential and ∼-subclassical.

Then, S∗, 6b = {A�{f, t},A�{n}}, in which case CR is inferentially ∼-classical.
(3) C is both not ∼-subclassical and not purely inferential.

Then, S∗, 6b = ∅, in which case CR is inconsistent, and so inferentially so.
(4) C is both purely-inferential and not ∼-subclassical.

Then, S∗, 6b = {A�{n}}, in which case CR is inferentially inconsistent.
Thus, (ii) holds.

Further, in view of Theorem 4.23, any [inferentially] ∼-classical extension of C is not [inferentially] paracomplete. And what
is more, any [inferentially] paracomplete extension of C is clearly [inferentially] consistent. Hence, (ii)⇒(iii) holds.

Furthermore, (iii)⇒(iv) is by the fact that x0 ∨ ∼x0 is a Σ0-formula.
Finally, by Proposition 2.18, K3 is non-pseudo-axiomatic. Moreover, it is paracomplete, and so inferentially so. And what

is more, (4.9), being satisfied in K3, is so in any expansion of it. In this way, (iv)⇒(v) holds, as required. �

In this connection, it is remarkable that paracomplete analogue of the “maximality” items (i) and (vi) of Theorem 4.29 do
not hold, generally speaking, as it ensues from the following generic counterexamples collectively with Subsubsections 6.1.1
and 6.1.3:

Example 4.41. Suppose C is ∼-subclassical, i.e., {f, t} forms a subalgebra of A (cf. Theorem 4.23). Then, B , (A × A 6n6b
is truth-non-empty, non-∼-paraconsistent and, by (2.6), paracomplete, for A is so, in which case the logic of B is a proper
(inferentially) paracomplete extension of C, in view of (2.5) (and Proposition 2.18). �

Example 4.42. Let A be a (possibly, secondary) binary connective of Σ. Suppose both {f, t} and {f, n[/b], t} form subalgebras
of A, in which case A�{f, t} is a submatrix of A 6b, {A 6b[,A 6n]} defining CR[∩CEM], in view of Corollary 4.35 [and Theorem
4.29(iii)⇒(iv)], while CR[∩CEM] satisfies x0 A x0, whereas {x0, x0 A x1} ` x1 is true in A�{f, t}, in which case B ,
(A 6b× (A�{f, t})) is truth-non-empty, paracomplete, in view of (2.6), for A 6b is so, and a model of the rule {∼ix0 A ∼1−ix0 | i ∈
2} ` (x0 ∨ ∼x0), in its turn, [being also true in A 6n but] not being true in A 6b under [x0/n], and so, by (2.5) (and Proposition
2.18), the logic of {B[,A 6n]} is a proper [both ∼-paraconsistent and] (inferentially) paracomplete extension of CR[∩CEM]. �

Example 4.42 and Subsubsection 6.1.3 show that the preconditions in the formulation of Theorem 4.39 cannot be omitted.
And what is more, as it follows from Theorem 4.39 [resp., Corollary 4.70(ii) below], the condition of existence of implication
A holding both the Reflexivity axiom in {A 6b[,A 6n]} and the Modus Ponens rule in A�{f, t} is essential within Example 4.42.
4.5.1.1. The meet with the least non-paracomplete extension. Next, C is said to be hereditary, provided CEM×R , (CEM∩CR)
is both ∼-paraconsistent and inferentially paracomplete.

Corollary 4.43. The following are equivalent:
(i) C is hereditary;
(ii) CEM is ∼-paraconsistent, while CR is inferentially paracomplete;
(iii) both {f, b, t} and {f, n, t} form subalgebras of A;

in which case:
(1) CEM×R is:

(a) defined by {A 6n,A 6b}, and so is inductive, inferentially consistent, non-pseudo-axiomatic and ∨-disjunctive, while
it is purely inferential iff C is so;
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(b) axiomatized by:

(4.18) {x1 ∨ x0,∼x1 ∨ x0} ` ((x2 ∨ ∼x2) ∨ x0)

relatively to C, and so is a proper extension of C;
(2) {f, t} forms a subalgebra of A, that is, C is ∼-subclassical.

Proof. First, (i)⇔(ii) is by the fact that CEM is not inferentially paracomplete, for it is monotonic and not paracomplete,
while CR is not ∼-paraconsistent, for it is transitive and inherits (3.3) held in its ∨-disjunctive sublogic C (cf. Corollary 3.14
and Remark 3.28 with j = 0). Next, (ii)⇔(iii) is by Theorems 4.29 and 4.40. Further, assume (iii) holds. Then, (1)(a) is by
Theorem 4.29, Remarks 3.12, 3.28 with j = 0, Corollaries 3.14,4.35, Lemma 4.14 and (2.5). Likewise, (1)(b) is by Theorem
3.21, for any submatrix B of A satisfies (4.1) iff {n, b} * B, that is, B is a submatrix of either A 6n or A 6b, and the fact that
(4.18) is not true in A under [x0/f, x1/b, x2/n]. Finally, (2) is by Theorem 4.23, as required. �

4.5.1.1.1. The selfextensionality of the meet.

Theorem 4.44. Suppose C is hereditary. Then, the following are equivalent:
(i) CEM×R is self-extensional;
(ii) CEM×R has the property of Weak Contraposition with respect to ∼;
(iii)

←−−
A 6n/ 6b is a model of CEM×R;

(iv)
←−−
A 6n/ 6b is isomorphic to A 6b/ 6n;

(v) µ�A6n/ 6b is an isomorphism from
←−−
A 6n/ 6b onto A 6b/ 6n;

(vi) A6n/ 6b is specular;
(vii) CEM×R is defined by {A 6n/ 6b,

←−−
A 6n/ 6b};

(viii) A6n is isomorphic to A6b;
(ix) (ψ ∈ CEM×R(φ))⇔ (A6n/ 6b |= (φ / ψ)), for all φ, ψ ∈ Fmω

Σ;
(x) there is some class K of Σ-algebras satisfying semilattice identities for ∧ such that (ψ ∈ CEM×R(φ))⇔ (K |= (φ / ψ)),

for all φ, ψ ∈ Fmω
Σ;

(xi) (ψ ≡CEM×R φ)⇔ (A6n/ 6b |= (φ ≈ ψ)), for all φ, ψ ∈ Fmω
Σ;

(xii) there is some class K of Σ-algebras such that (ψ ≡CEM×R φ)⇔ (K |= (φ ≈ ψ)), for all φ, ψ ∈ Fmω
Σ;

in which case IV(CEM×R) = V(A6n/ 6b).

Proof. We use Corollary 4.43 tacitly.
First, (i)⇒(ii) is by the following claim:

Claim 4.45. Any self-extensional extension C ′ of C has the property of Weak Contraposition with respect to ∼.

Proof. Consider any φ, ψ ∈ Fmω
Σ such that ψ ∈ C ′(φ). Then, since A is both ∧-conjunctive and ∨-disjunctive, and so is C

(cf. Corollary 3.14 and Remark 3.28 with j = 0), we have C ′(φ ∧ ψ) = C ′({φ, ψ}) = C ′(φ), in which case, by the validity of
both (3.15) in A and (3.4) in C, and so in C ′ ⊇ C, as well as the self-extensionality of C ′, we get C ′(∼ψ) ⊇ C ′(∼φ ∨ ∼ψ) =
C ′(∼(φ ∧ ψ)) = C ′(∼φ) 3 ∼φ, as required. �

Next, [since A is ∧-conjunctive (cf. Remark 3.28 with j = 0), in which case C is ∧-conjunctive, and so is any extension of
it, in view of Proposition 2.18] we have:

Claim 4.46. Let C ′ be an inductive extension of C (in particular, C ′ = C). Then, any [∧-conjunctive truth-non-empty]
Σ-matrix B is a model of C ′ [if and] only if C ′(φ) ⊆ CnB(φ), for all φ ∈ FmΣ.

Corollary 4.47. Let C ′ be an inductive extension of C and B a consistent ∨-disjunctive model of C ′. Suppose C ′ has the
Property of Weak Contraposition with respect to ∼. Then,

←−
B ∈ Mod(C ′).

Proof. In that case, by (3.13) and (3.15),
←−
B is truth-non-empty and ∧-conjunctive. Consider any φ ∈ Fmω

Σ, any ψ ∈ C ′(φ),
in which case ∼φ ∈ C ′(∼ψ), and so ∼φ ∈ CnωB(∼ψ), and any h ∈ hom(Fmω

Σ,B). Suppose h(φ) ∈ D
←−
B , in which case

h(∼φ) = ∼Bh(φ) 6∈ DB, and so ∼Bh(ψ) = h(∼ψ) 6∈ DB, in which case h(ψ) ∈ D
←−
B , and so ψ ∈ Cnω←−B (φ), as required, in view

of Claim 4.46. �

In this way, (ii)⇒(iii) is by Remarks 3.12, 3.28 with j = 0 and Claim 4.47.
Now, assume (iii) holds. Then,

←−−
A 6n/ 6b ∈ Mod(CEM×R), being finite, is finitely-generated, is consistent, in view of (3.13) true

in A, for A 6n/ 6b is truth-non-empty, and, being a submatrix of
←−
A , is both simple and ∨-disjunctive, by Lemmas 3.4, 3.6 and

Remarks 3.12 and 3.28 with j = 1. Hence, by Lemma 2.19, there are some finite set I, some C ∈ S({A 6n,A 6b})I , some subdirect
product D of it and some g ∈ homS

S(D,
←−−
A 6n/ 6b), in which case, by (2.5) and Remark 3.12, D is both consistent and ∨-disjunctive.

Moreover, by Lemmas 3.4, 3.6 and Remarks 3.12 and 3.28 with j = 0, every Ci, where i ∈ I, is both simple and ∨-disjunctive.
Therefore, by Corollary 3.13, there is some i ∈ I such that h , (πi�D) ∈ homS

S(D, Ci), in which case, by Proposition 2.15 and
Corollary 2.16, we have (kerh) = h−1[∆Ci ] = a(D) = g−1[∆A 6n/ 6b ] = (ker g), and so, by Proposition 2.14, e , (h ◦ g−1) is an

embedding of
←−−
A 6n/ 6b into Ci, and so into either A 6n or A 6b. On the other hand,

←−−
A 6n/ 6b, A 6n and A 6b are all three-valued. Therefore,

e is an isomorphism from
←−−
A 6n/ 6b onto either A 6n or A 6b. Finally,

←−−
A 6n/ 6b is truth/false-singular, while A 6n/ 6b is not so, in which case

they are not isomorphic, and so (iv) holds.
Further, (vi)⇔(v) is by the following claim:
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Claim 4.48. Any embedding e of a submatrix B of
←−
A into A is equal to µ�B.

Proof. Then, since (∼Aa = a) ⇔ (a ∈ {n, b}), for all a ∈ A, we have both e[{n, b} ∩ B] ⊆ {n, b} and, by the injectivity of
e, e[{f, t} ∩ B] ⊆ {f, t}. Moreover, as n, t ∈ D

←−
A 63 b, f, while ({n, b} ∩DA) = {b}, whereas ({f, t} ∩DA) = {t}, we then get

e(n) = b, if n ∈ B, e(t) = t, if t ∈ B, e(b) = n, if b ∈ B, and e(f) = f, if f ∈ B, as required. �

Corollary 4.49. Any injective homomorphism from
←−
A to A is specular.

Proof. Consider any injective e ∈ hom(
←−
A ,A), in which case e[D

←−
A ] ⊆ DA, and so e[D

←−
A ] = DA, for e is injective, while

|D
←−
A | = 2 = |DA|. Hence, e, being injective, is an embedding of

←−
A into A. In this way, Claim 4.48 completes the argument. �

Furthermore, we use the fact that A6n/ 6b�Σ+ is the three-element chain distributive lattice with f 6A6n/ 6b (b/n) 6A6n/ 6b t tacitly.
Then, (vi)⇔(viii) is by the following immediate consequence of it:

Claim 4.50. Any isomorphism from A6n onto A6b is equal to µ�A6n.

Finally, (v)⇔(vi) is immediate, while (iv)⇒(vii) is by (2.5), whereas (vii)⇒(ix) is by the Prime Ideal Theorem and the fact
D
←−−
A6n/ 6b = ({t}/{n, t}) and DA6n/ 6b = ({b, t}/{t}) are exactly all prime filters of A6n/ 6b�Σ+. In addition, (x|xii) is a particular case

of (ix|xi), respectively, while (xi|x)⇒(xi|xii) is by the semilattice identities for ∧, whereas (xii)⇒(i) is immediate. After all,
(xi) yields IV(CEM×R) = V(A6n/ 6b), as required. �

Further, by the congruence-distributivity of lattice expansions, Lemma 3.29 and Corollary 2.5, we have:

Lemma 4.51. Si(V(A)) = IS>1A.

Note that (DM4�{f, t}) ∈ BL 63 (DM4�{f, (n/b), t}) ∈ KL 63 DM4. In this way, by Remark 2.3 and Lemma 4.51, we
immediately get:

Corollary 4.52. Let a ∈ {n, b}. Suppose {f, t} forms a subalgebra of A, and {f, a, t} does not form [resp., forms] a subalgebra
of A. Then, there is no non-trivial proper subvariety of V(A) other than V(A�{f, t}) relatively axiomatized by (3.17) [and
V(A�{f, a, t}) relatively axiomatized by (3.16)].

After all, combining Proposition 2.17, Remarks 2.8, 2.9, 3.28 with j = 0, Theorems 4.23, 4.24, 4.29, 4.44, Lemma 4.14,
Corollaries 4.43, 4.52 and Example 2.11, we eventually get:

Theorem 4.53. Suppose C is hereditary (as well as purely inferential), while CEM×R is self-extensional. Then, there is
no inferentially consistent proper self-extensional (non-pseudo-axiomatic/purely-inferential) extension of CEM×R other than
CPC

(/+0), being, in its turn, both so and inductive.

On the other hand, any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic. Therefore, by Remarks 2.8,
2.10, 3.28 with j = 0, 3.12, Corollaries 3.14, 4.43 and Theorems 3.21, 4.23, 4.44 and 4.53, we also get the following interesting
non-trivial consequence:

Corollary 4.54. Suppose C is hereditary, and CEM×R is self-extensional. Then, any extension of CEM×R is ∨-disjunctive,
whenever it is self-extensional.

4.5.2. Miscellaneous extensions. By C [EM+]NP we denote the least non-∼-paraconsistent extension of C [EM], viz., that which
is relatively axiomatized by the Ex Contradictione Quodlibet rule:

(4.19) {x0,∼x0} ` x1.

Likewise, by C [EM+]MP we denote the extension of C [EM] relatively axiomatized by the rule:

(4.20) {x0,∼x0 ∨ x1} ` x1,

being nothing but Modus Ponens for the material implication ∼x0∨x1. (Clearly, it is a/an sublogic/extension of C [EM+](R/NP),
in view of (3.3) held in C by its ∨-disjunctivity (cf. Corollary 3.14 and Remark 3.28 with j = 0).) An extension of C is said
to be Kleene, whenever it satisfies the rule (4.18).

Lemma 4.55. Let I be a finite set, C ∈ {A,
←−
A ,
−→
A}I , and B a consistent non-∼-paraconsistent submatrix of

∏
i∈I Ci. Then,

hom(B,
−→
A) 6= ∅.

Proof. Consider the following complementary cases:
(1) B is truth-empty.

Take any i ∈ I 6= ∅, for B is consistent. Then, h , (πi�B) ∈ hom(B,A). Moreover, DB = ∅ ⊆ h−1[{t}]. Hence,
h ∈ hom(B,

−→
A).

(2) B is not truth-empty.
Then, B ⊆ AI is finite, for both I and A are so, and so is DB ⊆ B. Hence, n , |DB| ∈ (ω \ 1). Take any
bijection b̄ : n → DB. Then, by the ∧-conjunctivity of B, a , (∧Bb̄) ∈ DB. Therefore, as B is consistent but not ∼-
paraconsistent, ∼Ba 6∈ DB. Then, there is some i ∈ I, in which case h , (πi�B) ∈ hom(B, Ci), such that h(∼Ba) 6∈ DCi .
If there was some j ∈ n such that h(bj) 6= t, we would have Ci ∈ {A,

←−
A} and ({b, n}∩DCi) 3 h(bj) 6A h(a) 6A h(bj), in

which case we would get h(a) = h(bj), and so h(∼Ba) = ∼Ah(a) = ∼Ah(bj) = h(bj) ∈ DCi . Thus, h ∈ hom(B,
−→
A). �
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Corollary 4.56. Let I be a finite set , C ∈ {A,
←−
A ,
−→
A}I , and B a consistent non-∼-paraconsistent non-paracomplete submatrix

of
∏
i∈I Ci. Then, {f, t} forms a subalgebra of A and hom(B,A�{f, t}) 6= ∅.

Proof. Then, by Lemma 4.55, there is some h ∈ hom(B,
−→
A) 6= ∅, in which case D , (img h) forms a subalgebra of A, and

so h ∈ homS(B,D), where D , (
−→
A�D). Hence, by (2.6), D is not paracomplete. Therefore, as x0 ∨ ∼x0 is not true in

−→
A

under [x0/(b/n)], we have (D ∩ {b, n}) = ∅. On the other hand, D, being non-paracomplete, is truth-non-empty, for D 6= ∅.
Therefore, t ∈ D, in which case f = ∼At ∈ D, and so D = {f, t}, in which case D = (A�D), as required. �

Theorem 4.57. Suppose C is [not] maximally ∼-paraconsistent. Then, CEM+NP is consistent iff C is ∼-subclassical, in which
case CEM+NP is defined by [A 6n×]A 6n6b.

Proof. First, assume CEM+NP is consistent, in which case x0 6∈ T , CEM+NP(∅), while, by the structurality of CEM+NP,
〈Fmω

Σ, T 〉 is a model of CEM+NP (in particular, of C), and so is its consistent finitely-generated submatrix B , 〈Fm1
Σ, T ∩ Fm1

Σ〉,
in view of (2.5). Hence, by Lemma 2.19, there are some finite set I, some C ∈ S(A)I , some subdirect product D of it, in which
case this is a submatrix of AI , and some h ∈ homS

S(D,<(B)), in which case, by (2.5), D is a consistent model of CEM+NP, so
it is neither ∼-paraconsistent nor paracomplete. Thus, by Corollary 4.56 and Theorem 4.23, C is ∼-subclassical.

Conversely, assume C is ∼-subclassical. Consider the following complementary cases:
· C is maximally ∼-paraconsistent.
Then, by Theorems 4.23 and 4.29(i)⇒(v,xiii) CEM+NP = CEM = CPC is defined by the consistent A 6n6b, and so, in particular,
is consistent, as required.
· C is not maximally ∼-paraconsistent.
Then, by Theorem 4.29(iii/iv)⇒(i), CEM is defined by A−n = A 6n. Moreover, by Theorem 4.23, {f, t} forms a subalgebra of
A, and so of A6n, in which case A 6n6b is a submatrix of A 6n, and so, by (2.5), B , (A 6n × A 6n6b) is a model of CEM. Moreover,
{a,∼Aa} ⊆ {t}, for no a ∈ {f, t}. Therefore, B is not ∼-paraconsistent, so it is a model of CEM+NP. Conversely, consider any
finite set I, any C ∈ S(A 6n)I and any subdirect product D ∈ Mod(CEM+NP) of C, in which case D is a non-∼-paraconsistent
non-paracomplete submatrix of AI . Put J , hom(D,B). Consider any a ∈ (D\DD), in which case D is consistent, and so, by
Corollary 4.56, there is some g ∈ hom(D,A 6n6b) 6= ∅. Moreover, there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A 6n),
such that f(a) 6∈ DA6n . Then, h , (f × g) ∈ J and h(a) 6∈ DB. In this way, (

∏
∆J) ∈ homS(D,BJ). Thus, by (2.5) and

Theorem 2.20, CEM+NP is finitely-defined by the consistent six-valued B, and so is consistent and, being finitary, for the
four-valued C is so, is defined by B, as required. �

Remark 4.58. Let C ′ be a Kleene extension of C (in particular, a non-paracomplete one, in view of (3.3)). Then, we have
{x0 ∨ x1,∼x0 ∨ x1} `C′ (∼(x0 ∨ x1) ∨ x1). Therefore, in view of (3.3), C ′ satisfies (4.9) iff it satisfies (4.20). In particular,
CEM+MP = CEM+R. �

Lemma 4.59. Let C ′ be an extension of C. Suppose C is not maximally ∼-paraconsistent, (4.18) is satisfied in C ′ (in
particular, C ′ is not paracomplete, in view of (3.3)), (4.20) is not satisfied in C ′ and, for every ς ∈ Σ, ςA6n is either regular or
both b-idempotent and no more than binary. Then, C ′ is a sublogic of CEM+NP.

Proof. The case, when CEM+NP is inconsistent, is evident. Otherwise, by Theorems 4.23, 4.29(iv)⇒(i) and 4.57, A6n = {f, b, t}
and {f, t} form subalgebras of A, CEM+NP being defined by the submatrix B , (A 6n × (A�{f, t})) of A2, and so it suffices
to prove that B ∈ Mod(C ′). Then, by Theorem 2.20, there are some set I, some C ∈ S(A)I and some subdirect product
D ∈ Mod(C ′) ⊆ Mod(C) of it not being a model of (4.20), in which case it is ∧-conjunctive, for A is so (cf. Remark 3.28
with j = 0), while (D�Σ0) ∈ DML, for DML 3 DM4 is a variety. Therefore, there are some a ∈ DD ⊆ {b, t}I , in which case
∼Da 6D a, and some b ∈ (D \DA) such that (∼Da ∨D b) ∈ DA. Hence, by (4.18), (b ∨D ∼Db) = ((b ∨D ∼Db) ∨D b) ∈ DA, in
which case b ∈ {f, b, t}I . Put J , {i ∈ I | πi(a) = b} ⊇ K , {i ∈ I | πi(b) = f} 6= ∅, for (∼Da ∨D b) ∈ DA and b 6∈ DA, and
L , {i ∈ I | πi(b) = t}, Then, given any ~a ∈ A5, set (a0|a1|a2|a3|a4) , ((((I \ (L ∪K)) ∩ J)× {a0}) ∪ ((I \ (L ∪ J))× {a1}) ∪
((L \ J)× {a2}) ∪ ((L ∩ J)× {a3}) ∪ (K × {a4})) ∈ AI . In this way, a = (b|t|t|b|b) and b = (b|b|t|t|f). Therefore, we have:

D 3 e , (a ∧D b) = (b|b|t|b|f),(4.21)

D 3 ∼De = (b|b|f|b|t),(4.22)

D 3 c , (e ∨D ∼Db) = (b|b|t|b|t),(4.23)

D 3 ∼Dc = (b|b|f|b|f),(4.24)

D 3 d , (e ∨D ∼Da) = (b|b|t|b|b),(4.25)

D 3 ∼Dd = (b|b|f|b|b).(4.26)

Consider the following complementary cases:
(1) L ⊆ J .

Then, given any ~a ∈ A4, set (a0|a1|a2|a3) , ((((I\(L∪K))∩J)×{a0})∪((I\J)×{a1})∪(L×{a2})∪(K×{a3})) ∈ AI . In
this way, by (4.21), (4.23) and (4.25), we have e = (b|b|b|f) ∈ D, c = (b|b|b|t) ∈ D and d = (b|b|b|b) ∈ D, respectively.
Consider the following complementary subcases:
(a) {b} forms a subalgebra of A6n.

Then, as K 6= ∅, {〈x, (b|b|b|x)〉 | x ∈ A6n} is an embedding of A 6n into D.
(b) {b} does not form a subalgebra of A6n.

Then, there is some ϕ ∈ Fm1
Σ such that ϕA(b) ∈ {f, t}, in which case φA(b) = f and ψA(b) = t, where φ , (ϕ∧∼ϕ)
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and ψ , (ϕ ∨ ∼ϕ), and so both D 3 φD(d) = (f|f|f|f) and D 3 ψD(d) = (t|t|t|t). Hence, as I ⊇ K 6= ∅,
{〈x, (x|x|x|x)〉 | x ∈ A6n} is an embedding of A 6n into D.

Thus, anyway, A 6n is embeddable into D, in which case, by (2.5), it is a model of C ′, and so is B, for {f, t} forms a
subalgebra of A6n.

(2) L * J .
Consider the following complementary subcases:
(a) either {b} forms a subalgebra of A6n or (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) = ∅.

Then, taking (4.21), (4.22), (4.23), (4.24), (4.25) and (4.26) into account, as K 6= ∅ 6= (L\J), {〈〈x, y〉, (b|b|y|b|x)〉 |
〈x, y〉 ∈ B} is an embedding of B into D, and so, by (2.5), B is a model of C ′.

(b) {b} does not form a subalgebra of A6n and (((I \ (L ∪K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) ∈ {f, t}, in which case ϕA[A6n] ⊆ {f, t}, for {f, t} forms a subalgebra
of A, and so φA[A6n] = {f} and ψA[A6n] = {t}, where φ , (ϕ ∧ ∼ϕ) and ψ , (ϕ ∨ ∼ϕ). In this way,

D 3 φD(a) = (f|f|f|f|f),(4.27)

D 3 ψD(a) = (f|t|t|t|t).(4.28)

Consider the following complementary subsubcases:
(i) A6n is not regular.

Then, there are some ς ∈ Σ of arity n ∈ ω, some ~̄g ∈ (An6n )2 and some i ∈ 2 such that gij v g1−i
j , for all

j ∈ n, but ςA(ḡi) 6v ςA(ḡ1−i), in which case w , ςA(ḡi) 6= x , ςA(ḡ1−i) ∈ {f, t}, and so ḡi 6= ḡ1−i, in which
case y , gij ∈ {f, t} and g1−i

j = b, for some j ∈ n. Moreover, as ςA is not regular, it is b-idempotent, in
which case ḡ1−i 6= (n × {b}), while n 6 2, and so n = 2 and z , g1−i

1−j 6= b. Therefore, gi1−j = z ∈ {f, t},
in which case (z|z|z|z|z) ∈ D, in view of (4.27) and (4.28). Moreover, by (4.25) and (4.26), we also have
(b|b|y|b|b) ∈ D. In this way, D 3 f , ςD({〈j, (b|b|y|b|b)〉, 〈1− j, (z|z|z|z|z)〉}) = (x|x|w|x|x). Consider the
following complementary subsubsubcases:
(A) w = b.

Then, taking (4.26) into account, we have D 3 ((f ∧D ∼Df) ∨D ∼Dd) = (b|b|b|b|b). Hence, as
I ⊇ K 6= ∅, by (4.27) and (4.28), we see that {〈u, (u|u|u|u|u)〉 | u ∈ A6n} is an embedding of A 6n into
D. Therefore, by (2.5), A 6n is a model of C ′, and so is B, for {f, t} forms a subalgebra of A6n.

(B) w 6= b.
Then, w ∈ {f, t} 3 x, so D ⊇ {f,∼Df} = {(f|f|t|f|f), (t|t|f|t|t)}. Hence, as K 6= ∅ 6= (L \ J), by (4.25),
(4.26), (4.27) and (4.28), we see that {〈〈u, v〉, (u|u|v|u|u)〉 | 〈u, v〉 ∈ B} is an embedding of B into D.
Therefore, by (2.5), B is a model of C ′.

(ii) A6n is regular.
Then, Lemma 4.2, used tacitly throughout the rest of the proof, is well-applicable to B. In this way, as
(((I \ (L ∪ K)) ∩ J) ∪ (I \ (L ∪ J)) ∪ (L ∩ J)) 6= ∅ 6∈ {K,L \ J}, by (4.21), (4.22), (4.23), (4.24), (4.25),
(4.26), (4.27) and (4.28), we see that {〈〈t, u, v〉, (v|v|u|v|t)〉 | 〈t, u, v〉 ∈ (B u 2)} is an embedding of B u 2
into D, in which case, by (2.5), it is a model of C ′, and so is its strict surjective homomorphic image B.

This completes the argument. �

Ii is remarkable that it is the gentle operation-wise condition that makes Lemma 4.59 well-applicable to the purely-implicative
expansion of CBB despite of the fact that, in that case, A is neither regular nor b-idempotent. This equally concerns the
following quite important result:

Theorem 4.60 (cf. [21] for the case Σ = Σ0). Suppose C is both ∼-subclassical and not maximally ∼-paraconsistent, while,
for every ς ∈ Σ, ςA6n is either regular or both b-idempotent and no more than binary (in particular, Σ = Σ0[1]). Then, proper
consistent extensions of CEM = C 6n form the two-valued chain CEM+NP ( CPC = CEM+(R/MP). Moreover, in case A6n is
regular (in particular, Σ = Σ0[1]), both proper consistent extensions satisfy same axioms as CEM do, and so are not axiomatic.

Proof. With using Theorems 4.23, 4.24, 4.29(iii|iv|vi)⇒(i), 4.32, 4.57, Lemma 4.59 and Remark 4.58. First of all, (4.20) is not
true in the consistent truth-non-empty Σ-matrix B , (A 6n × (A�{f, t})) under [x0/〈b, t〉, x1/〈f, t〉].

Finally, assume A6n is regular. Then, by Lemma 4.37, we have D , 〈B�Kb
4 ,K

b
4 ∩ π−1

1 [{t}]〉, in which case both (π1�Kb
4) ∈

homS(D,A�{f, t}) and (π0�Kb
4) ∈ homS(D,A 6n), and so (2.5) and (2.6) complete the argument. �

In view of Lemma 4.30, Theorem 4.60 shows that (C ∩ Fmω
Σ) ∪ (σ+1[C \ Fmω

Σ] Y x0) cannot be replaced by C in the item
(ii)b) of Theorem 3.21, when taking M = {A6n} and C = {(4.19)}, and so the reservations “positive” and “axiomatic” cannot
be omitted in its item (iii). In addition, the particular case of Theorem 4.60 with Σ = Σ01 provides the “bounded” extension
of [26] void of the rather unnatural restriction by merely non-empty sequents. This point, being essentially beyond the scopes
of the present study, is going to be discussed in detail elsewhere.
4.5.2.1. Modus ponens versus truth-singularity.

Lemma 4.61. Let B be a truth-singular ∧-conjunctive Σ-matrix. Suppose (B�Σ0) ∈ DML. Then, any b ∈ DB is a unit of
B�Σ+, in which case ∼Bb is a zero of it, and so B is a model of (4.20).

Proof. In that case, B�Σ+ is a distributive lattice and DB is a filter of it. Then, for any a ∈ B, we have b 6B (a ∨B b), in
which case we get (a ∨B b) ∈ DB, and so (a ∨B b) = b, as required. �
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As the truth-singularity is preserved under <, by the ∧-conjunctivity of A (cf. Remark 3.28 with j = 0), (2.5), Lemmas
4.61, 3.5 and Corollary 2.16, we immediately get:

Corollary 4.62. Any truth-singular model of C is a model of CMP.

Lemma 4.63. Υ0 , {∼ix0 ∨ x1 | i ∈ 2} is a unitary congruence determinant for any ∧-conjunctive Σ0-matrix B such that
B ∈ DML.

Proof. Using the distributivity of B�Σ+, the ∧-conjunctivity of B as well as the identities (3.13), (3.14) and (3.15), it is routine
checking that θ , θBεΥ0

∈ Con(B). Finally, consider any 〈a, b〉 ∈ θ. Then, B |= (
∧
εΥ0)[x0/a, x1/b, x2/(a ∧B b)], being a

consequence of B |= (∀ω\2
∧
εΥ0)[x0/a, x1/b], implies (a ∈ DB)⇔ (b ∈ DB), as required. �

Next, combining Lemmas 2.2, 3.29, 4.51, Remark 2.3 and Corollary 2.7, by the congruence-distributivity of lattice expansions,
we get the following quite important non-trivial algebraic inheritance result:

Corollary 4.64. Let B ∈ V(A). Then, Con(B) = Con(B�Σ0).

In particular, by (2.5), Lemmas 3.6, 3.5, 4.63, Corollaries 2.16, 4.64 and the ∧-conjunctivity of A (cf. Remark 3.28 with
j = 0), we also have:

Corollary 4.65. Υ0 is a unitary congruence[equality] determinant for Mod[∗](C).

Note that the following rules are satisfied in CMP, in view of (3.3) and (3.4) held in C by its ∨-disjunctivity (cf. Corollary
3.14 and Remark 3.28 with j = 0):

(4.29) {x0, x1,∼ix0 ∨ x2} ` (∼ix1 ∨ x2),

where i ∈ 2. In this way, by Corollary 4.65, we get:

Corollary 4.66. Any B ∈ Mod∗(CMP) is truth-singular.

Theorem 4.67. CMP is defined by S , (Mod(C) ∩PSD(S∗∗(
−→
A))), and so by the class of all truth-singular models of C.

Proof. As
−→
A is truth-singular, while the truth-singularity is preserved under both P and S, by Corollary 4.62, we have

S ⊆ Mod(CMP). Conversely, consider any B ∈ (Mod∗(CMP) ∩ <(PSD(S∗(A)))), in which case B ∈ Mod(C), while, by
Corollary 4.66, B is truth-singular, whereas (B�Σ0) ∈ DML, and so, by the ∧-conjunctivity of A (cf. Remark 3.28 with j = 0)
and Lemma 4.61, DB = {b}, whereas b is a unit of B�Σ+. Moreover, B ∈ V(A), in which case, by Remark 2.3 and Lemma
4.51, B is isomorphic to a subdirect product of some C ∈ (S>1A)I , where I is a set, and so there is some embedding e of
B into

∏
i∈I Ci such that, for each i ∈ I, hi , (πi ◦ e) ∈ hom(B,Ci) is surjective, in which case Ci, being non-one-element,

contains both t and f, and so, by Lemma 3.27, hi(b) = t. And what is more, for every a ∈ B distinct from b, by the injectivity
of e, there is some i ∈ I such that hi(a) 6= hi(b) = t. In this way, e is an isomorphism from B onto the subdirect product
(
∏
i∈I〈Ci, {t}〉)�(img e) of 〈〈Ci, {t}〉〉i∈I ∈ S∗∗(

−→
A)I . Hence, by (2.5), we get B ∈ I(S). Then, Theorem 2.20, Corollary 4.62 and

(2.5) complete the argument. �

4.6. Self-extensionality.

Theorem 4.68. The following are equivalent:
(i) C is self-extensional;
(ii) C has the property of Weak Contraposition with respect to ∼;
(iii)

←−
A is a model of C;

(iv) C is defined by {A,
←−
A};

(v) (ψ ∈ C(φ))⇔ (A |= (φ / ψ)), for all φ, ψ ∈ Fmω
Σ;

(vi) there is some class K of Σ-algebras satisfying semilattice identities for ∧ such that (ψ ∈ C(φ))⇔ (K |= (φ / ψ)), for
all φ, ψ ∈ Fmω

Σ;
(vii) (ψ ≡C φ)⇔ (A |= (φ ≈ ψ)), for all φ, ψ ∈ Fmω

Σ;
(viii) there is some class K of Σ-algebras such that (ψ ≡C φ)⇔ (K |= (φ ≈ ψ)), for all φ, ψ ∈ Fmω

Σ;
(ix) there is an injective homomorphism from

←−
A to A;

(x) A is specular;
(xi) µ is an isomorphism from

←−
A onto A;

(xii)
←−
A is isomorphic to A;

(xiii) C is defined by
←−
A ;

(xiv)
−→
A is a model of C;

(xv) any ∧-conjunctive truth-non-empty Σ-matrix B such that B ∈ V(A) is a model of C;
in which case IV(C) = V(A).

Proof. First, (i)⇒(ii) is by Claim 4.45. Next, (v)⇒(xv) is by Claim 4.46, while (ii)⇒(iii) is by Corollary 4.47 and Remark 3.28
with j = 1.

Likewise, assume (xiv) holds. Consider any φ ∈ Fmω
Σ, any ψ ∈ C(φ), and any h ∈ hom(Fmω

Σ,A) such that h(φ) ∈ D
←−
A .

Then, by the structurality of C, Corollary 3.14(3.9) and Remark 3.28 with j = 0, (σ+1(ψ) ∨ x0) ∈ C(σ+1(φ) ∨ x0). Let
g ∈ hom(Fmω

Σ,A) extend [x0/b;xi+1/h(xi)]i∈ω, in which case (g ◦ σ+1) = h, and so we have g(σ+1(φ) ∨ x0) = (h(φ) ∨A b) = t.
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Hence, by (xiv), we get (h(ψ) ∨A b) = g(σ+1(ψ) ∨ x0) = t. Therefore, we eventually get h(ψ) ∈ D
←−
A . Thus, by Claim 4.46 and

Remark 3.28 with j = 1, (iii) holds.
On the other hand, DA and D

←−
A are exactly all non-empty proper prime filters of A�Σ+ (cf. Remark 3.28). Therefore,

(iv)⇒(v) is by the Prime Ideal Theorem for distributive lattices (in particular, for (A�Σ+) = D2
2). In addition, both (v)⇒(vii)

and (vi)⇒(viii) are by the semilattice identities for ∧ that are true in A, while (vi/viii) is a particular case of (v/vii), respectively,
whereas (viii)⇒(i) is immediate.

Now, assume (iii) holds.
In that case, (iv) is evident.
Moreover,

←−
A is consistent and, being finite, is finitely generated. In addition, by Lemma 3.4 and Remark 3.28 with j = 1,←−

A is simple and ∨-disjunctive. Then, by Lemma 2.19, there is some finite set I, some I-tuple C of submatrices of A, some
subdirect product D of C and some g ∈ homS

S(D,
←−
A), in which case, by Remark 3.12 and (2.5), D is consistent and ∨-

disjunctive, and so, by Corollary 3.13, there is some i ∈ I such that h , (πi�D) ∈ homS
S(D, Ci). Moreover, by Lemmas 3.4, 3.6

and Remark 3.28 with j = 0, Ci is simple. Hence, by Proposition 2.15, (kerh) = a(D) = (ker g). Therefore, by Proposition
2.14, e , (h ◦ g−1) ∈ homS(

←−
A , Ci) ⊆ hom(

←−
A ,A) is injective, and so (ix) holds.

Furthermore, (ix)⇒(x) is by Corollary 4.49.
Finally, (x)⇒(xi) is immediate, while (xii/iii/xiv) is a particular case of (xi/xiii/xv), respectively, whereas (xii)⇒(xiii) is by

(2.5). After all, (vii) implies IV(C) = V(A), as required. �

As a first immediate generic consequence of Theorems 4.23, 4.68(i)⇒(x) and Lemma 4.38 with B = {b, n} applicable to all
bilattice expansions at once (cf. Subsubsection 6.1.2), we have:

Corollary 4.69. Suppose {f, t} does not form a subalgebra of A. Then, C is not self-extensional. In particular, C is
∼-subclassical, whenever it is self-extensional.

Corollary 4.70. Suppose C is self-extensional. Then, {n(, f, t)} forms a subalgebra of A iff {b(, f, t)} does so. In particular,
the following hold:

(i) the following are equivalent:
a) C satisfies Relevance Principle;
b) C is purely inferential;
c) C has no inconsistent formula;
d) {n} forms a subalgebra of A;
e) {b} forms a subalgebra of A;
f) there is no ψ ∈ Fm1

Σ such that ψA[A] = {t};
g) there is no φ ∈ Fm1

Σ such that φA[A] = {f}.
(ii) [providing C is not purely inferential] CEM is{ maximally} ∼-paraconsistent iff CR is [non-]inferentially paracomplete,

in which case, when A6b is regular (in particular, Σ = Σ0[1]), CR is maximally [non-]inferentially paracomplete, while
any extension of C is both ∼-paraconsistent and [non-]inferentially paracomplete iff it is a sublogic of CEM ∩ CR, in
its turn, being an axpansion of LP ∩K3.

Proof. Since µ[{n(, f, t)}] = {b(, f, t)}, in view of Theorems 4.16(i)⇔(iii), 4.29, 4.39, 4.40, 4.68(i)⇒(x), Lemmas 4.14, 4.15 and
Corollary 4.27, it only remains to prove the equivalence of the subitems f) and g) to others within (i).

First, f) is a particular case of b). Next, f)⇔g) is by the fact ∼A(f/t) = (t/f).
Finally, assume {b} does not form a subalgebra of A. Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which
case ϕA(n) = µ(ϕA(b)) and ϕA[{f, t}] ⊆ {f, t}, by Lemma 4.38 and Theorem 4.68(i)⇒(x), and so ψA[A] = {t}, where
ψ , (x0 ∨ (ϕ ∨ ∼ϕ)) ∈ Fm1

Σ. Thus, f)⇒e) holds, as required. �

Corollary 4.70(i)b)⇐f)⇔g) collectively with Theorem 4.8 imply:

Corollary 4.71. Any self-extensional four-valued expansion of CB is not purely inferential iff it is definitionally equivalent to
an expansion of CBB.

This clarifies the meaning of the bounded version CBB of CB (a much deeper justification of it is provided by Corollary 6.4
below). Subsubsection 6.1.3 shows that the condition of self-extensionality cannot be omitted in the formulations of Corollaries
4.70 and 4.71. As for Corollary 4.70(ii) (in case A6b is regular), it clarifies the meaning of the self-extensional (in view of
Theorems 4.68 and 4.44) meet CEM ∩ CR to be studied far more in Paragraph 6.1.4.1.

4.6.1. Self-extensional extensions. After all, combining Propositions 2.17, 2.18, Remarks 2.8, 2.9, 3.28 with j = 0, Theorems
4.23, 4.24, 4.29, 4.44, 4.68, Lemma 4.14, Corollaries 4.43, 4.69, 4.52 and Example 2.11, we eventually get:

Theorem 4.72. Suppose C is self-extensional and [not] maximally ∼-paraconsistent (as well as purely inferential). Then,
there is no inferentially consistent proper self-extensional (non-pseudo-axiomatic/purely-inferential) extension of C other than
CPC

(/+0) [and CEM∩CR], being, in its[their] turn, both so and inductive [while the former being a proper extension of the latter].

On the other hand, any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic. Therefore, by Remarks 2.8,
2.10, 3.28 with j = 0, 3.12, Corollaries 3.14, 4.43, 4.69, 4.70 and Theorems 3.21, 4.23, 4.44 and 4.72, we also get the following
interesting non-trivial consequence:

Corollary 4.73. Suppose C is self-extensional [and maximally ∼-paraconsistent]. Then, any extension of C is ∨-disjunctive
if[f ] it is self-extensional.



28 A. P. PYNKO

4.6.2. Semantics of miscellaneous extensions versus self-extensionality. By Theorems 4.67, 4.68(i)⇔(xiv) and (2.5), we first
get:

Corollary 4.74. C is self-extensional iff CMP is defined by
−→
A .

Likewise, we also have the following one more characterization of the self-extensionality of C:

Theorem 4.75. C is self-extensional iff CNP is defined by A×
−→
A .

Proof. We use Theorem 4.68(i)⇔(xiv) tacitly. First, ∆A×∆A is an embedding of
−→
A into A×

−→
A . In this way, (2.5) yields the

“if” part. Conversely, assume C is self-extensional. Then, A ×
−→
A is a model of C. Moreover, {a,∼Aa} ⊆ {t}, for no a ∈ A.

Therefore, A×
−→
A is not ∼-paraconsistent, so it is a model of CNP. Finally, consider any finite set I, any C ∈ S(A)I and any

subdirect product D ∈ Mod(C ′) of C, in which case D is a non-∼-paraconsistent submatrix of AI . Put J , hom(D,A×
−→
A).

Consider any a ∈ (D\DD), in which case D is consistent, and so, by Lemma 4.55, there is some g ∈ hom(D,
−→
A) 6= ∅. Moreover,

there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A), such that f(a) 6∈ DA. Then, h , (f × g) ∈ J and h(a) 6∈ DA×
−→
A .

In this way, (
∏

∆J) ∈ homS(D, (A ×
−→
A)J). Thus, by (2.5) and Theorem 2.20, CNP is finitely-defined by A ×

−→
A . Then, the

finiteness of A completes the argument. �

4.7. Axiomatic extensions.

Lemma 4.76. Suppose A is regular and {f, t} forms a subalgebra of it. Then, so does {f, b, t}.

Proof. By contradiction. For suppose {f, b, t} does not form a subalgebra of A, in which case there is some ϕ ∈ Fm3
Σ such

that A 3 ϕA(f, b, t) 6∈ {f, b, t} = (A \ {n}), and so we have ϕA(f, b, t) = n. Therefore, as t v b, by the regularity of A and the
reflexivity of v, we get ϕA(f, t, t) v n. Hence, ϕA(f, t, t) = n 6∈ {f, t}. This contradicts to the assumption that {f, t} forms a
subalgebra of A, as required. �

By Theorems 4.23, 4.29(i)⇒(iv), Corollary 4.69 and Lemma 4.76, we first have:

Corollary 4.77. Suppose C is ∼-subclassical (in particular, self-extensional) and maximally ∼-paraconsistent. Then, A is
not regular.

Lemma 4.78. Let B ∈ S(A). Suppose B ∪ {b} forms a regular subalgebra of A. Then, CnωB(∅) ⊆ CnωA�(B∪{b})(∅).

Proof. Consider any ϕ ∈ (Fmω
Σ \CnωA�(B∪{b})(∅)), in which case there is some h ∈ hom(Fmω

Σ,A�(B ∪ {b})) such that h(ϕ) ∈
{f, n}. Take any b ∈ B 6= ∅. Define a g : Vω → B by setting:

g(xi) ,

{
b if h(xi) = b,

h(xi) otherwise,

for all i ∈ ω. Let e ∈ hom(Fmω
Σ,B) extend g. Then, e(xi) = g(xi) v h(xi), for all i ∈ ω, in which case, by the regularity of

A�(B ∪ {b}), we have e(ϕ) v h(ϕ), and so we eventually get e(ϕ) ∈ {f, n}, as required. �

Theorem 4.79. [Providing A is regular/has no three-element subalgebra] C has a proper consistent axiomatic extension if[f ]
{f, b, t}/{f, t} forms a subalgebra of A [in which case the logic of A 6n/ 6n6b is the only proper consistent axiomatic extension of C
and is relatively axiomatized by (4.8)].

Proof. The “if” part is by Lemma 4.28. [Conversely, consider any A ⊆ FmΣ such that the axiomatic extension C ′ of C
relatively axiomatized by A is both proper and consistent, in which case A 6= ∅, while, by Corollary 2.21, C ′ is the logic
of S , (Mod(A) ∩ S∗(A)), so A 6∈ S 6= ∅. Take any B ∈ S, in which case it is both consistent and, as A 6= ∅, truth-non-
empty. Hence, by Lemma 4.19, {f, t} ⊆ B. Therefore, if n was in B, then (B ∪ {b}) would be equal to A/B would belong to
{{f, n, t}, A}, in which case, by Lemma 4.78/the fact that {f, n, t}, being three-element, does not form a subalgebra of A, A
would belong to S. Thus, B ∈ {{f, t}, {f, b, t}}. Then, by Lemma 4.76/the fact that {f, b, t}, being three-element, does not
form a subalgebra of A, we conclude that {f, b, t}/{f, t} forms a subalgebra of A. And what is more, in that case, by Lemma
4.78/the fact that {f, b, t}, being three-element, does not form a subalgebra of A, we have A 6n/ 6n6b ∈ S ⊆ S∗(A 6n/ 6n6b), and so C ′ is
equal to the logic of A 6n/ 6n6b, in view of (2.5). In this way, Lemma 4.28 completes the argument.] �

Subsubsection 6.1.3 collectively with the respective part of the paragraph following Theorem 6.10 show that the optional
precondition cannot, generally speaking, be omitted in the formulation of Theorem 4.79.

5. Paraconsistent finitely-many-valued logics

The present section collectively with Subsection 6.2 exemplifying the former incorporates the material prepared by and
announced in 1995 (cf. the paragraph after Theorem 2.1 in [17] and the reference [Pyn 95b] therein).

5.1. Three-valued paraconsistent logics with subclassical negation. Fix any unary connective o of Σ.
A Σ-matrix A is said to be o-superclassical, provided A = {f, b, t}, DA = {b, t}, oAt = f, oAf = t and oAb ∈ DA, in which case

it is three-valued, both consistent and false-singular with `A = f as well as o-paraconsistent, while {f, t} forms a subalgebra of
A�{o}, in which case o is clearly a subclassical negation for the logic of A, in view of (2.5). In this way, we have argued the
routine part (viz., (ii)⇒(i)) of the following preliminary marking the framework of the present subsection:

Proposition 5.1. Let C be a Σ-logic. Then, the following are equivalent:
(i) C is both three-valued and o-paraconsistent, while o is a subclassical negation for C;
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(ii) C is defined by a o-superclassical Σ-matrix.

Proof. Assume (i) holds. Let B be any three-valued Σ-matrix defining C. Define an e : {f, b, t} → B as follows. In that case, B
is ∼-paraconsistent, so there are some e(b) ∈ DB such that ∼Be(b) ∈ DB and some e(f) ∈ (B \DB), in which case e(f) 6= e(b).
Next, by (2.7) with m = 1 and n = 0, there is some e(t) ∈ DB such that ∼Be(t) 6∈ DB, in which case e(f) 6= e(t) 6= e(b). In
this way, e : {f, b, t} → B is injective, and so bijective, for |B| = 3. Hence, it is an isomorphism from A , 〈e−1[B], {b, t}〉
onto B. Therefore, by (2.5), C is defined by A. Furthermore, ∼Ab ∈ DA, while ∼At 6∈ DA, in which case ∼At = f, and so it
only remains to show that ∼Af = t. We do it by contradiction. For suppose ∼Af 6= t, in which case we have the following two
exhaustive cases:

(1) ∼Af = f.
This contradicts to (2.7) with m = 0 and n = 1.

(2) ∼Af = b.
As ∼Ab ∈ {b, t}, we then have the following two exhaustive subcases:
(a) ∼Ab = b.

Then, ∼A∼A∼Aa = b ∈ DA, for each a ∈ DA. This contradicts to (2.7) with m = 3 and n = 0.
(b) ∼Ab = t.

Then, ∼A∼A∼Af = f. This contradicts to (2.7) with m = 0 and n = 3.
Thus, in any case, we come to a contradiction, as required. �

Proposition 5.2. Any three-valued o-paraconsistent Σ-logic C with subclassical negation o is minimally three-valued.

Proof. By contradiction. For supposed C is defined by a Σ-matrix A such that |A| < 3, in which case it is o-paraconsistent,
and so both consistent and truth-non-empty. Therefore, there is some a ∈ A such that DA = {a}. Hence, ∼Aa = a. This
contradicts to (2.7) with m = 1 and n = 0, as required. �

Remark 5.3. By Example 3.3 with j = 0 and ~k = ∆2, Υo is a unary unitary equality determinant for any o-superclassical
Σ-matrix A. �

Unless otherwise specified, fix any o-superclassical Σ-matrix A. Let C be the logic of A.

5.1.1. Maximal paraconsistency of three-valued paraconsistent logics with subclassical negation. Then, a ternary b-relative (weak
classical) conjunction for A is any ϕ ∈ Fm3

Σ such that both ϕA(b, f, t) = f and ϕA(b, t, f) 6= t.
We start from proving the following key lemma “killing two birds (both the sufficiency part of the characterization of

the maximal o-paraconsistency of three-valued o-paraconsistent logics with subclassical negation o and the uniqueness of a
o-superclassical matrix defining any given maximally o-paraconsistent three-valued logic with subclassical negation o) with one
stone”:

Lemma 5.4 (Three-Valued Key Lemma). Let B a (simple) finitely-generated o-paraconsistent model of C. Suppose either A
has a ternary b-relative conjunction or {b} does not form a subalgebra of A. Then, A is embeddable into B/a(B) (resp., into
B).

Proof. Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.19 with M = {A}, there are some set I, some I-tuple C constituted
by submatrices of A, some subdirect product D of C and some g ∈ homS

S(D, E), in which case, by (2.5), D is o-paraconsistent,
and so there are some a ∈ DD such that ∼Da ∈ DD and some b ∈ (D \ DD). Then, by Lemma 4.1, D 3 a = (I × {b}).
Consider the following complementary cases:

(1) {b} forms a subalgebra of A.
Then, A has a ternary b-relative conjunction ϕ ∈ Fm3

Σ. Put c , ϕD(a, b, oDb) ∈ D, d , oDc ∈ D, J , {i ∈ I | πi(b) = t}
and K , {i ∈ I | πi(b) = f} 6= ∅, for b 6∈ DD. Given any ~a ∈ A3, set (a0|a1|a2) , ((J ×{a0})∪ (K ×{a1})∪ ((I \ (J ∪
K))× {a2})) ∈ AI . Then, a = (b|b|b) and b = (t|f|b). Consider the following complementary subcases:
(a) ϕA(b, t, f) = f.

In that case, we have c = (f|f|b) and d = (t|t|b). Then, since K 6= ∅, while {b} forms a subalgebra of A,
{〈e, (e|e|b)〉 | e ∈ A} is an embedding of A into D.

(b) ϕA(b, t, f) 6= f,
in which case we have ϕA(b, t, f) = b, and so we get c = (b|f|b) and d = (b|t|b). Then, since K 6= ∅, while {b}
forms a subalgebra of A, {〈e, (b|e|b)〉 | e ∈ A} is an embedding of A into D.

(2) {b} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm1

Σ such that ϕA(b) 6= b, in which case {b, ϕA(b), oAϕA(b)} = A, and so D ⊇ {a, ϕD(a),
oDϕD(a)} = {I × {e} | e ∈ A}. Therefore, as I 6= ∅, for b 6∈ DD, {〈e, I × {e}〉 | e ∈ A} is an embedding of A into D.

Thus, anyway, there is a f ∈ homS(A,D), in which case (g ◦ f) ∈ homS(A, E), and so Corollary 2.13, Lemma 3.4 and Remark
5.3 complete the argument. �

Lemma 5.5. Suppose A has no ternary b-relative conjunction, while {b} forms a subalgebra of A [whereas C is ∼-subclassical].
Then, C has a proper o-paraconsistent [ o-subclassical] extension [in which case o is a subclassical negation for this].

Proof. In that case oAb = b. Let B be the submatrix of A2 generated by D , {〈b, b〉, 〈f, t〉, 〈t, f〉}. If 〈f, f〉 was in B, then there
would be some ϕ ∈ Fm3

Σ such that ϕA(b, f, t) = f = ϕA(b, t, f), in which case it would be a ternary b-relative conjunction for
A. Likewise, if either 〈b, f〉 or 〈f, b〉 was in B, then there would be some ϕ ∈ Fm3

Σ such that ϕA(b, f, t) = f and ϕA(b, t, f) = b,
in which case it would be a ternary b-relative conjunction for A. Therefore, as oAt = f and oAb = b, we conclude that
({〈f, b〉, 〈t, b〉, 〈b, t〉, 〈b, f〉, 〈f, f〉, 〈t, t〉} ∩ B) = ∅. Thus, B = D, in which case DB = {〈b, b〉} 6= B, and so, as oAb = b, B is
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∼-paraconsistent, while the rule x0 ` ox0 is true in B, and so is its logical consequence {x0, x1, ox1} ` ox0, not being true in
A under [x0/t, x1/b] [but true in any o-classical model C′ of C, for C′ is not o-paraconsistent]. In this way, taking (2.5) into
account, the logic of {B[, C′]} is a proper o-paraconsistent [o-subclassical] extension of C, as required. �

Theorem 5.6. [Providing C is o-subclassical] C has no proper o-paraconsistent [ o-subclassical] extension iff either A has a
ternary b-relative conjunction or {b} does not form a subalgebra of A.

Proof. Assume either A has a ternary b-relative conjunction or {b} does not form a subalgebra of A. Consider any o-
paraconsistent extension C ′ of C, in which case x1 6∈ T , C ′({x0, ox0}) ⊇ {x0, ox0}, while, by the structurality of C ′, 〈Fmω

Σ, T 〉
is a model of C ′ (in particular, of C), and so is its finitely-generated o-paraconsistent submatrix B , 〈Fm2

Σ, T ∩ Fm2
Σ〉, in view

of (2.5). Then, by Lemma 5.4, A is embeddable into B/a(B), in which case, by (2.5), it is a model of C ′, and so C ′ = C.
Thus, C is maximally o-paraconsistent. In this way, Lemma 5.5 completes the argument. �

On the other hand, Subsubsections 6.1.1 and 6.1.2 definitely show that the maximal paraconsistency is not at all a prerogative
of merely three-valued logics. And what is more, as it is shown in the next subsection, there is no limit of the number of truth
values, for which minimally many-valued maximally paraconsistent logics exist.

Lemma 5.7. Let A and B be two o-superclassical Σ-matrices and e ∈ homS(A,B). Then, e is diagonal. In particular, A = B.

Proof. In that case, (A�{o}) = (B�{o}) is o-superclassical and e ∈ homS(A�{o},B�{o}). Therefore, by Lemma 3.7 and Remark
5.3, e is diagonal, and so A = B, for A = B, as required. �

After all, the second “bird” is as follows:

Theorem 5.8. Let B be a o-superclassical Σ-matrix. Suppose B is a model of C (in particular, C is defined by B) and C is
maximally o-paraconsistent. Then, B = A.

Proof. Then, by Lemma 3.4 and Remark 5.3, B is a simple finite (and so finitely-generated) o-paraconsistent model of C.
Hence, by Lemma 5.4 and Theorem 5.6, A is embeddable into B. In this way, Lemma 5.7 completes the argument. �

In view of Proposition 5.1 and Theorem 5.8, the unique o-superclassical Σ-matrix defining a given three-valued maximally
o-paraconsistent Σ-logic C with subclassical negation o is said to be characteristic for/of C.

Corollary 5.9. Let Σ′ ⊇ Σ be a signature and C ′ a three-valued Σ′-expansion of C. Suppose C is maximally o-paraconsistent.
Then, C ′ is defined by a unique Σ′-expansion of A and is maximally o-paraconsistent.

Proof. In that case, C ′ is o-paraconsistent, while o is a subclassical negation for C ′. Hence, by Proposition 5.1, C ′ is defined by
a o-superclassical Σ′-matrix A′, in which case C is defined by the o-superclassical Σ-matrix A′�Σ, and so (A′�Σ) = A, in view
of Theorem 5.8. Finally, Theorems 5.6 and 5.8 complete the argument. �

Finally, we have the following negative instance:

Example 5.10. Suppose Σ = {o} and oAb = b, in which case {b} forms a subalgebra of A. Then, it is routine checking that
no element of Fm3

Σ = {onxi | n ∈ ω, i ∈ 3} is a ternary b-relative conjunction for A, in which case, by Theorem 5.6, C is not
maximally o-paraconsistent. �

5.1.2. Weakly conjunctive three-valued paraconsistent logics with subclassical negation. Fix (in addition to o) any (possibly,
secondary) binary connective � of Σ.

Remark 5.11. Suppose either A is weakly �-conjunctive or both {0, 2} forms a subalgebra of A and A�{0, 2} is weakly �-
conjunctive. Then, (x1 � x2) is a ternary b-relative conjunction for A. �

By Proposition 5.1, Theorems 5.6, 5.8 and Remark 5.11, we immediately get:

Corollary 5.12. Any three-valued o-paraconsistent weakly �-conjunctive Σ-logic C with subclassical negation o is maximally
o-paraconsistent.

Corollary 5.13. Let B be a o-superclassical Σ-matrix. Suppose B is a model of C (in particular, C is defined by B) and C is
weakly �-conjunctive. Then, B = A.

Since the three-valued submatrix arising in the formulation of the following corollary is both ∧-conjunctive and ∼-supercla-
ssical, Proposition 5.1 and Corollary 5.12 yield a supplementary generic insight into the following particular case of Corollary
4.27:

Corollary 5.14. Let A be as in Section 4. Suppose {f, b, t} forms a subalgebra of A. Then, the logic of A 6n is maximally
∼-paraconsistent.

5.1.2.1. Subclassical three-valued paraconsistent weakly conjunctive logics.

Lemma 5.15. Let B a (simple) finitely generated consistent model of C. Suppose A is weakly �-conjunctive. Then, the
following hold:

(i) B is o-paraconsistent, if {f, t} does not form a subalgebra of A;
(ii) providing {f, t} forms a subalgebra of A, A�{f, t} is embeddable into B/a(B) (resp., into B itself).
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Proof. Put E , (B/a(B)) (resp., E , B). Then, by Lemma 2.19 with M = {A}, there are some n ∈ ω, some n-tuple C
constituted by consistent submatrices of A, some subdirect product D of C and some g ∈ homS

S(D, E), in which case, by (2.5),
D is consistent, and so, in particular, n 6= 0. Hence, by Lemma 3.8, D 3 a , (n×{f}), in which case D 3 b , ∼Da = (n×{t}}).
Consider the following respective cases:

(i) {f, t} does not form a subalgebra of A.
Then, there is some ϕ ∈ Fm2

Σ such that ϕA(f, t) = b. Then, D 3 c , ϕD(a, b) = (I × {b}), in which case oDc ∈ DD,
and so D, being consistent, is o-paraconsistent, and so is B, in view of (2.5), as required.

(ii) {f, t} forms a subalgebra of A.
Then, F , (A�{f, t}) is o-classical, in which case it is simple, in view of Example 3.2 and Lemma 3.4. Finally, as
{n × {d} | d ∈ F} ⊆ D and n 6= 0, e , {〈d, n× {d}〉 | d ∈ F} is an embedding of F into D, in which case,
(g ◦ e) ∈ homS(F , E), and so Corollary 2.13 completes the argument. �

Theorem 5.16. Suppose A is weakly �-conjunctive. Then, C is o-subclassical iff {f, t} forms a subalgebra of A, in which case
any o-classical model of C is isomorphic to A�{f, t}, and so its logic is the only o-classical extension of C.

Proof. Let B be a o-classical model of C, in which case it is two-valued, and so finite (in particular, finitely generated), consistent
and simple (cf. Example 3.2 and Lemma 3.4), but not ∼-paraconsistent.

First, by Lemma 5.15(i), {f, t} forms a subalgebra of A.
Conversely, assume {f, t} forms a subalgebra of A, in which case D , (A�{f, t}) is a o-classical model of C, by (2.5), and is

embeddable into B, by Lemma 5.15(ii), and so is isomorphic to it, for they are both two-valued. In this way, (2.5) completes
the argument. �

In view of Theorem 5.16, the unique o-classical extension of C (if any) is referred to as characteristic for/of C and is denoted
by CPC, the maximality nature of which is as follows:

Theorem 5.17. Let C ′ be a consistent extension of C. Suppose {f, t} forms a subalgebra of A. Then, A�{f, t} is a model of
C ′.

Proof. Then, x0 6∈ C ′(∅), while, by the structurality of C ′, 〈Fmω
Σ, C

′(∅)〉 is a model of C ′ (in particular, of C), and so is its
consistent finitely generated submatrix 〈Fm1

Σ,Fm1
Σ ∩C ′(∅)〉, in view of (2.5). In this way, (2.5) and Lemma 5.15(ii) complete

the argument. �

5.1.3. Disjunctive three-valued paraconsistent logics with subclassical negation. Fix (in addition to o) a (possibly, secondary)
binary connective Y of Σ. Then, by Corollary 3.15, we first have:

Corollary 5.18. C is [weakly] Y-disjunctive iff A is so.

Corollary 5.19. Any o-classical extension of C is [weakly] Y-disjunctive, whenever C is so.

Theorem 5.20. Let B be a o-superclassical Σ-matrix. Suppose B is a model of C (in particular, C is defined by B) and C is
Y-disjunctive. Then, B = A.

Proof. In that case, by Corollary 3.15, Lemma 3.4 and Remark 5.3, B is a Y-disjunctive simple o-paraconsistent finite (in
particular, finitely-generated) model of C. Hence, by Lemma 2.19 with M = {A}, there are some finite set I, some I-tuple C
of consistent submatrices of A, some subdirect product D of C and some g ∈ homS

S(D,B). Then, by Remark 3.12 and (2.5),
D is Y-disjunctive and o-paraconsistent, in which case it is consistent, and so, by Corollary 3.13, there is some i ∈ I such that
h , (πi�D) ∈ homS

S(D, Ci). Moreover, as Ci is consistent, we have f ∈ Ci, and so t = oAf ∈ Ci. And what is more, since D is
o-paraconsistent, there is some a ∈ DD such that oDa ∈ DD, in which case, by Lemma 4.1, Ci 3 πi(a) = b, and so Ci = A. On
the other hand, by Lemma 3.4 and Remark 5.3, A is simple. Therefore, by Proposition 2.15, we have (kerh) = a(D) = (ker g).
In this way, by Proposition 2.14, we eventually conclude that g ◦ h−1 is an isomorphism from A onto B, in which case Lemma
5.7 completes the argument. �

5.1.3.1. Subclassical three-valued paraconsistent disjunctive logics. Note that S∗(A) \ {A} is either the singleton {A�{f, t}},
if {f, t} forms a subalgebra of A, or empty, otherwise. In this way, the fact that o-[super]classical matrices are not [resp., are]
o-paraconsistent, by Corollary 5.18, Lemma 4.30 and Theorem 3.21, we then get:

Theorem 5.21. Suppose C is Y-disjunctive and {f, t} does not form [resp., forms] a subalgebra of A. Then, there is no [resp.,
a unique] proper consistent Y-disjunctive extension of C [in which case it is defined by A�{f, t} and relatively axiomatized by
(4.11)].

Recall that (4.11) is nothing but the Resolution rule. Since any o-classical Σ-logic is consistent but not o-paraconsistent, as
opposed to C, by (2.5), Corollary 5.19 and Theorem 5.21, we eventually get the following “disjunctive” analogue of Theorem
5.16:

Corollary 5.22. [Providing C is Y-disjunctive] C is o-subclassical if[f ] {f, t} forms a subalgebra of A, in which case the logic
of A�{f, t} is a [unique] o-classical extension of C.

Remark 5.23. Suppose {f, t} forms a subalgebra of A and A�{f, t} is weakly Y-disjunctive. Then, o(ox1 Y ox2) is clearly a ternary
b-relative conjunction for A. �

Combining Corollaries 5.18, 5.22, Remarks 3.12, 5.23, Propositions 3.23, 5.1 and Theorem 5.6, we eventually get:

Theorem 5.24. Any either Y-disjunctive or having DDT o-subclassical three-valued o-paraconsistent Σ-logic is maximally
o-paraconsistent.
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5.1.4. Three-valued paraconsistent logics with subclassical negation and lattice conjunction and disjunction. Fix (in addition to
o) binary (possibly, secondary) connectives Z and Y of Σ and a o-superclassical Σ-matrix A. Let C be the logic of A.

A Σ-algebra B is said to be a (Z,Y)-lattice, provided 〈B,ZB,YB〉 is a lattice (in the standard algebraic sense; cf. [3]), whose
partial ordering is denoted by ≤B.

Here, it is supposed that A is a (Z,Y)-lattice, in which case 〈A,≤A〉 is a chain poset for |A| = 3, while A is Z-conjunctive,
in which case f is the least element of the poset involved, and so A is Y-disjunctive.

Now, we explore the least non-o-paraconsistent extension CNP of C, viz., that which is relatively axiomatized by the Ex
Contradictione Quodlibet rule:

(5.1) {x0, ox0} ` x1.

Lemma 5.25. Let I be a finite set and B a consistent non-o-paraconsistent submatrix of AI . Suppose oAb ≤A b. Then, {f, t}
forms a subalgebra of A and hom(B,A�{f, t}) 6= ∅.

Proof. In general, b(≤ / ≥)At. Moreover, B is a (Z,Y)-lattice, for A is so. On the other hand, since A is Y-disjunctive,
the Σ-axiom x0 Y ox0 is true in it, and so in B. In particular, DB 6= ∅, for B 6= ∅. After all, B ⊆ AI is finite, for
both A and I are so, and so is DB ⊆ B. Therefore, this has a least/greatest element a with respect to ≤B, because B is
Z-conjunctive, for A is so. Then, as B is not o-paraconsistent but is consistent, oBa 6∈ DB. Hence, there is some i ∈ I,
in which case h , (πi�B) ∈ hom(B,A), and so D , (img h) forms a subalgebra of A, while h ∈ hom(B,A�D), such that
oAh(a) = h(oBa) 6∈ DA, in which case oAh(a) = f, and so h(a) = t. Let us prove, by contradiction, that b 6∈ D. For suppose
b ∈ D, in which case there is some b ∈ B such that h(b) = b. Then, c , (b YB oBb) ∈ DB, in which case a(≤ / ≥)Bc, and so
t = h(a)(≤ / ≥)Ah(c) = (b YA oAb) = b, in which case t = b. This contradiction shows that b 6∈ D, in which case D ⊆ {f, t},
and so D = {f, t}, for t = h(a) ∈ D, in which case f = oAt ∈ D, as required. �

Theorem 5.26. Suppose oAb ≤A b. Then, CNP is consistent iff C is ∼-subclassical, in which case {f, t} forms a subalgebra
of A and CNP is defined by A× (A�{f, t}).

Proof. First, assume CNP is consistent, in which case x0 6∈ T , CNP(∅), while, by the structurality of CNP, 〈Fmω
Σ, T 〉 is a

model of CNP (in particular, of C), and so is its consistent finitely-generated submatrix B , 〈Fm1
Σ, T ∩ Fm1

Σ〉, in view of (2.5).
Hence, by Lemma 2.19, there are some finite set I, some C ∈ S∗(A)I , some subdirect product D of it, in which case this is
a submatrix of AI , and some h ∈ homS

S(D,B/a(B)), in which case, by (2.5), D is a consistent model of CNP, so it is not
∼-paraconsistent. Thus, by Lemma 5.25 and Theorem 5.16, C is ∼-subclassical.

Conversely, assume C is ∼-subclassical.
Then, any ∼-classical extension of C is both consistent and non-∼-paraconsistent extension of C, and so a consistent

extension of CNP, in which case this is consistent too.
Moreover, by Theorem 5.16, {f, t} forms a subalgebra of A, in which case we have the Σ-matrix B , (A × (A�{f, t})).

Consider any finite set I, any C ∈ S∗(A)I and any subdirect product D ∈ Mod(CNP) of C, in which case D is a non-∼-
paraconsistent submatrix of AI . Put J , hom(D,B). Consider any a ∈ (D \DD), in which case D is consistent, and so, by
Lemma 5.25, there is some g ∈ hom(D,A�{f, t}) 6= ∅. Moreover, there is some i ∈ I, in which case f , (πi�D) ∈ hom(D,A),
such that f(a) 6∈ DA. Then, h , (f × g) ∈ J and h(a) 6∈ DB. In this way, (

∏
∆J) ∈ homS(D,BJ). Thus, by (2.5) and

Theorem 2.20, CNP is finitely-defined by the six-valued B, and so, being finitary, for the three-valued C is so, is defined by B,
as required. �

5.2. Minimally n-valued maximally paraconsistent subclassical logics versus the logic of paradox. Fix any n ∈
(ω \ 3). Put Kn , 〈Kn, n \ 1〉.

Then, the logic of paradox LP [14], being defined by the ∧-conjunctive ∼-superclassical Σ0-matrix DM4, 6n, is equally defined
by K3 (cf., e.g., [17]), in view of (2.5), for e3,1 is an isomorphism from the latter onto the former, in which case, by Proposition
5.1 and Corollary 5.12, LP is maximally ∼-paraconsistent that has been proved ad hoc in Theorem 2.1 of [17].

Let Σ[+] , ([Σ+∪]{⊃,∼}∪ {∇i | i ∈ ((n− 1) \ 1)}), where ⊃ is binary, while other connectives [beyond Σ+] are unary, A[+]

the Σ[+]-matrix such that A[+] , n, DA[+] , (n \ 1), ∼A[+] , ∼Kn [while (A[+]�Σ+) , Dn], whereas

∇A[+]
i (a) ,

{
a if a ∈ {0, n− 1},
i otherwise,

for all i ∈ ((n− 1) \ 1) and all a ∈ n, and

(a ⊃A[+] b) ,

{
n− 1 if a 6 b,

0 otherwise,

for all a, b ∈ n, and C[+] the logic of A[+], in which case it is ∼-paraconsistent [and both ∧-conjunctive and ∨-disjunctive], for
A[+] is so [in view of Corollary 3.14]. Note that A[+]�{0, n − 1} is ∼-classical, in which case, by (2.5), C[+] is ∼-subclassical,
so, in particular, ∼ is a subclassical negation for C[+].

The following key result “kills two birds (both minimal n-valuedness and maximal paraconsistency of C[+]) with one stone”:

Lemma 5.27 (Many-Valued Key Lemma). Let B be a ∼-paraconsistent model of C[+]. Then, there is a submatrix D of B
such that A[+] is embeddable into D/a(D).

Proof. In that case, there are some a ∈ DB such that ∼Ba ∈ DB and some b ∈ (B \ DB). Let D be the subalgebra of B

generated by {a, b}. Then, in view of (2.5), the submatrix D , (B�D) of B is a finitely-generated ∼-paraconsistent model of
C[+]. Therefore, by Lemma 2.19 with M = {A[+]}, there are some set I, some I-tuple C constituted by submatrices of A[+],
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some subdirect product E of C and some g ∈ homS
S(E ,D/a(D)), in which case, by (2.5), E is ∼-paraconsistent (in particular,

consistent), and so I 6= ∅. Take any c ∈ DE such that ∼Ec ∈ DE . Then, by Lemma 4.1, c ∈ ((n − 1) \ 1)I . Hence, for every
j ∈ ((n − 1) \ 1), we have E 3 ∇E

j c = (I × {j}). Moreover, E 3 (c ⊃E c) = (I × {n − 1}) and E 3 ∼E(c ⊃E c) = (I × {0}).
Thus, {I × {k} | k ∈ n} ⊆ E, in which case, as I 6= ∅, e , {〈k, I × {k}〉 | k ∈ n} is an embedding of A[+] into E , and so
(g ◦ e) ∈ homS(A[+],D/a(D)). Moreover, {x0 ⊃ x1, x1 ⊃ x0} is clearly a binary equality determinant for A[+]. In this way,
Corollary 2.13 and Lemma 3.4 complete the argument. �

Theorem 5.28. C[+] is maximally ∼-paraconsistent.

Proof. Consider any ∼-paraconsistent extension C ′ of C[+], in which case x1 6∈ T , C ′({x0,∼x0}), and so, by the structurality
of C ′, 〈Fmω

Σ, T 〉 is a ∼-paraconsistent model of C ′, and so of C[+]. Then, by Lemma 5.27 and (2.5), A[+] is a model of C ′, as
required. �

Theorem 5.29. Let M be a class of Σ[+]-matrices. Suppose C[+] is defined by M. Then, there is some B ∈ M such that
n 6 |B|. In particular, C[+] is minimally n-valued.

Proof. As C[+] is ∼-paraconsistent, there must be some ∼-paraconsistent B ∈ M, in which case it is a model of C[+], and so,
by Lemma 5.27, there is some submatrix D of B such that A[+] is embeddable into D/a(D). Thus, n = |A[+]| 6 |D/a(D)| 6
|D| 6 |B|, as required. �

On the other hand, we have:

Proposition 5.30. Let Σ′[+] , (Σ[+] \ {⊃}). Then, the Σ′[+]-fragment of C[+] is defined by a [both ∧-conjunctive and ∨-
disjunctive] ∼-superclassical Σ′[+]-matrix [being a definitional expansion of DM4, 6n, and so the fragment is a definitional
expansion of LP ]. In particular, it is not minimally n-valued, unless n = 3.

Proof. Let S[+] be the [both ∧-conjunctive and ∨-disjunctive] ∼-superclassical Σ′[+]-matrix given by ∼S[+]b , b [while

(S[+]�Σ+) , (D2
2�{f, b, t})], whereas∇S[+]

i (a) , a, for all a ∈ {f, b, t} and all i ∈ ((n−1)\1) [in which case S+ is an expansion of
DM4, 6n by diagonal operations, and so a definitional one]. Then, ({〈n− 1, t〉, 〈0, f〉}∪(((n−1)\1)×{b})) ∈ homS

S(A[+]�Σ′[+],S[+]).
In this way, (2.5) completes the argument. �

This highlights the special role of involving the implication connective ⊃ and shows that the implication-less fragment of
C[+] yields nothing else that the logic of paradox had done in this connection. More precisely, LP , being defined by K3, is
equally defined by Kn, in view of (2.5), for ~n ∈ homS

S(Kn,K3), in which case, in particular, since A+ is an expansion of
Kn (actually arisen by proper expanding Kn with providing both minimal n-valuedness and maximal ∼-paraconsistency of
C+), C+ is an expansion of LP , C being its fragment. Thus, LP is an n-valued maximally ∼-paraconsistent logic but is not
minimally n-valued, unless n = 3, as opposed to C[+]. This highlights the particular meaning of the present subsection.

6. Applications and Examples

6.1. Four-valued expansions of Belnap’s logic. Here, we consider applications of Theorems 4.13, 4.16, 4.20, 4.23, 4.29,
4.68(i)⇔ (x), 4.79, Lemmas 4.14, 4.15 and Corollaries 4.69 and 4.70 normally not mentioning them explicitly and implicitly
following the conventions adopted in Section 4.

6.1.1. Fragments of the classical expansion. Here, we deal with the basic signature Σ , (Σ01∪{¬}), where ¬ (classical negation)
is unary, and its subsignature Σ′ ⊇ Σ0. Put ¬A~a , 〈1− ai〉i∈2, for all ~a ∈ 22. Then, µ ∈ hom(A,A). Moreover, {f, b, t} forms
a subalgebra of A�Σ′ iff ¬ 6∈ Σ′. Likewise, {n} forms a subalgebra of A�Σ′ iff Σ′ = Σ0. In this way, we have:

Corollary 6.1. Let Σ0 ⊆ Σ′ ⊆ Σ. Then, the logic of A�Σ′:
(i) is self-extensional, and so ∼-subclassical;
(ii) is maximally ∼-paraconsistent iff ¬ ∈ Σ′;
(iii) is purely inferential iff it has no consistent formula iff it satisfies Relevance Principle iff Σ′ = Σ0.

In this way, the classical expansion of CB becomes a first instance of a minimally four -valued maximally paraconsistent
subclassical logic (further but non-subclassical ones are provided by the next subsubsection). In this connection, we should
like to highlight that, as opposed to the generic examples provided by Subsection 5.2, the four-valued ones provided by this
and the next subsubsections are not definable by false-singular matrices (cf. Corollary 4.6).
6.1.1.1. Specular functional completeness. As usual, Boolean algebras are supposed to be of the signature Σ− , (Σ \ {∼}), the
ordinary one over 2 being denoted by B2.

Lemma 6.2. Let n ∈ ω and f : 2n → 2. [Suppose f is 6-monotonic.] (Suppose f is 2-idempotent, in which case n > 0.)
Then, there is some ϑ ∈ Fmn

Σ−[\{¬}](\{⊥,>}) such that g = ϑB2 .

Proof. Then, by the functional completeness of B2, there is some ϑ ∈ Fmn
Σ− such that g = ϑB2(6∈ {2n × {i} | i ∈ 2}), in

which case, without loss of generality, one can assume that ϑ = (∧〈~ϕ,>〉), where, for each m ∈ ` , (dom ~ϕ) ∈ (ω(\1)),
ϕm = (∨〈(¬ ◦ ~φm) ∗ ~ψm,⊥〉), for some ~φm ∈ V km

n , some ~ψm ∈ V lmn and some km, lm ∈ ω such that ((img ~φm)∩ (img ~ψm)) = ∅
(and (km + lm) > 0, so g = ϑ′B2 , where ϑ′ , (∧~ϕ′), whereas, for each m ∈ (dom ~ϕ′) , `, ϕ′m , (∨((¬ ◦ ~φm) ∗ ~ψm))).
[Respectively, set ϑ′′ , (∧〈~ϕ′′,>〉), where, for each m ∈ (dom ~ϕ′′) , `, ϕ′′m , (∨〈~ψm,⊥〉). Consider any ā ∈ An and the
following exhaustive cases:
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(1) g(ā) = 0,
in which case we have ϑ′′B2 [xj/aj ]j∈n 6 ϑB2 [xj/aj ]j∈n = 0, and so we get ϑ′′B2 [xj/aj ]j∈n = 0.

(2) g(ā) = 1,
in which case, for every m ∈ `, as ā 6 b̄ , ((ā�(n \N))∪ (N × {1})) ∈ An, where N , {j ∈ n | xj ∈ (img ~φm)}, by the
6-monotonicity of g, we have 1 6 g(b̄) 6 ϕB2

m [xj/bj ]j∈n = ϕ′′B2
m [xj/aj ]j∈n, and so we get ϑ′′B2 [xj/aj ]j∈n = 1.

Thus, g = ϑ′′B2 . (And what is more, since, in that case, ` > 0 and lm > 0, for each m ∈ `, we also have g = ϑ′′′B2 , where
ϑ′′′ , (∧~ϕ′′′), whereas, for each m ∈ (dom ~ϕ′′′) , `, ϕ′′′m , (∨~ψm).)] This completes the argument. �

Theorem 6.3. Let n ∈ (ω(\1)) and f : An → A. Then, f is specular [and regular] (as well as {n, b}-idempotent) iff there is
some τ ∈ Fmn

Σ[\{¬}](\{⊥,>}) such that f = τA.

Proof. The “if” part is immediate. Conversely, assume f is specular [and regular] (as well as {n, b}-idempotent). Then,
g : 22·n → 2, ā 7→ π0(f(〈〈a2·j , 1− a(2·j)+1〉〉j∈n)) [is 6-monotonic (and)] (is 2-idempotent). Therefore, by Lemma 6.2, there is
some ϑ ∈ Fm2·n

Σ−[\{¬}](\{⊥,>}) such that g = ϑB2 . Put τ , (ϑ[x2·j/xj , x(2·j)+1/(∼xj)]j∈n) ∈ Fmn
Σ[\{¬}](\{⊥,>}). Consider any

c̄ ∈ An. Then, since, for each i ∈ 2, we have πi ∈ hom(A�Σ−,B2), we get π0(τA[xj/cj ]j∈n) = ϑB2 [x2·j/π0(cj), x(2·j)+1/(1 −
π1(cj))]j∈n = π0(f(c̄)) and, likewise, as f is specular, π1(τA[xj/cj ]j∈n) = ϑB2 [x2·j/π1(cj), x(2·j)+1/(1− π0(cj))]j∈n = π0(f(µ ◦
c̄)) = π0(µ(f(c̄))) = π1(f(c̄)), as required. �

As an immediate consequence of Theorems 4.68(i)⇔(x), 6.3 and Corollary 4.70(i), we eventually get:

Corollary 6.4. A four-valued expansion of CB is self-extensional iff it is a fragment of a definitional copy of C. Moreover,
[non-]purely-inferential regular self-extensional expansions of CB are exactly definitional copies of C[B]B.

This definitely justifies both CBB and its classical expansion C. And what is more, it essentially shows that C[B]B actually
exhaust all regular self-extensional expansions of CB.

6.1.2. Bilattice expansions. Here, it is supposed that {u,t} ⊆ Σ, where u and t are binary (knowledge conjunction and
disjunction, respectively), while (〈a, b〉uA 〈c, d〉) = 〈min(a, c),max(b, d)〉, for all a, b, c, d ∈ 2, in which case (fuA t) = n, whereas
(〈a, b〉 tA 〈c, d〉) = 〈max(a, c),min(b, d)〉, for all a, b, c, d ∈ 2, in which case (f tA t) = b. In that case, neither {f, b, t} nor {f, t}
forms a subalgebra of A. And what is more, {b} and {n} are exactly all proper subalgebras of A in the purely-bilattice case
Σ = (Σ0 ∪ {u,t}), A�{n} being the only proper consistent submatrix of A, in that case. Hence, we immediately obtain the
following universal negative and positive results, respectively:

Corollary 6.5. Any bilattice expansion of CB is not ∼-subclassical, and so not self-extensional.

Corollary 6.6. Any [purely-]bilattice expansion of CB [satisfies Relevance Principle and] is inferentially maximal, and so both
is maximally ∼-paraconsistent and has no proper consistent axiomatic extensions.

And what is more, in case Σ01 ⊆ Σ, A has no proper submatrix at all. Thus, by Theorem 4.20 and Lemma 4.14, we also
get:

Corollary 6.7. C is maximal iff it is not purely inferential if Σ01 ⊆ Σ.

6.1.3. Implicative expansions. Here, it is supposed that Σ contains a binary ⊃ (implication) such that

(a ⊃A b) =

{
b if π0(a) = 1,
t otherwise,

for all a, b ∈ 22 (cf. [19]), in which case A is ⊃-implicative. Then, (n ⊃A n) = t 6= b = (b ⊃A b), so µ 6∈ hom(A,A), in which
case we immediately get:

Corollary 6.8. The logic of A is neither self-extensional nor purely-inferential, ad so does not satisfy Relevance Principle.

It is remarkable that, as opposed to bilattice expansions, implicative ones are not, generally speaking, covered by Corollary
4.69 because {f(, b/n), t} does form a subalgebra of B[01] , (A�(Σ0[1] ∪ {⊃})), in which case, by Theorem(s) 4.23 (and 4.29),
C is ∼-subclassical (and is not maximally ∼-paraconsistent), whenever Σ ⊆ (Σ01 ∪ {⊃}). It is also remarkable that {b} does
[not] form a subalgebra of B[01]( 6n), while {n} does not form a subalgebra of B[01]. On the other hand, ⊃B01( 6n) , being the only
non-regular operation of B01( 6n), for DM4,01 is regular, and so is DM4,01, 6n, while (f ⊃A f) = t 6v f = (b ⊃A f), whereas f v b,
is both binary and b-idempotent. This is why Theorem 4.60 has proved equally applicable to both bounded and unbounded
purely-implicational cases that have been due to [27] (collectively with both [18] and [21]) ad hoc.

6.1.4. Disjunctive extensions of expansions of Belnap’s logic. In view of Corollary 4.43, C is hereditary iff (under identification
of submatrices of A with the underlying algebras of their carriers)

S∗∗(A) ⊇ S01 , S(DM4,01) = {{f, t, b, n}, {f, t, n}, {f, t, b}, {f, t}}

(the inverse inclusion always holds), in which case CEM[+R][= CPC] is defined by A 6n[ 6b], in view of Theorem[s] 4.29 [resp.,
4.23 and 4.32], while C(EM×)R is defined by {A 6b}(∪{A 6n}), in view of Corollary 4.35 (resp., 4.43). In particular, (the purely-
implicative expansion of) B4[01] is hereditary (cf. Subsubsection 6.1.3). In this connection, note that, in view of Theorem 4.1
of [16], ∨-disjunctive extensions of B4 are exactly De Morgan logics in the sense of the reference [Pyn 95a] of [17]. In this way,
the present subsection incorporates the material announced therein advancing it much towards (mainly but not exclusively,
hereditary) expansions. Set S , S∗(DM4) = (S01 ∪ {{n}}).
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Figure 1. The lattice of ∨-disjunctive/Kleene extensions of hereditary/strongly hereditary C|B4{01} with
solely large/non-lowest circles.

Remark 6.9. The mappings C 7→ CO
S[01]

and C 7→ (C ∩ S[∗]
∗ (A)) form a dual Galois retraction between the posets of all lower

cones of S[∗]
∗ (A) and those of S[01], the former/latter mapping preserving generating subsets/relative axiomatizations. �

There are exactly nine [six] lower cones of S[01] [but those containing {n}, viz., including C1, i.e., the last three ones]:

C4[01] , {{f, t, b, n}}OS[01]
, Cb

3[01] , {{f, t, b}}OS[01]
, Cn

3[01] , {{f, t, n}}OS[01]
,

C3[01] , (Cb
3[01] ∪ Cn

3[01]), C2 , {{f, t}}, C0 , ∅,

C1 , {{n}}, Cb
3d1 , (Cb

3 ∪ C1), C2d1 , (C2 ∪ C1).

Those eight [five] ones, which are proper (viz., distinct from S[01] = C4[01]) are relatively axiomatized by the following Σ∼-
calculi (actually arisen according to the constructive proof of Lemma 3.24, and so demonstrating its practical applicability),
respectively:

(4.8),(6.1)

(4.19),(6.2)

{x0,∼x0} `(x1 ∨ ∼x1),(6.3)

{(4.8), (4.19)},(6.4)

x0,(6.5)

x0 `x1,(6.6)

x0 `(x1 ∨ ∼x1),(6.7)

{(4.19), (6.7)}.(6.8)

And what is more, σ+1(6.6) ∨ x0 is equivalent to (6.6) under (3.3) and (3.5). Likewise, σ+1(6.7) ∨ x0 is equivalent to (6.7)
under (3.3), (3.4) and (3.5). By IC we denote the inconsistent Σ-logic. Moreover, put PC[01] , BPC

4[01]. In this way, taking
Remarks 2.8, 2.10, 6.9, Proposition 2.18, Lemma 4.14, Theorems 3.21, 3.25 and Lemma 4.30 into account, we eventually get:

Theorem 6.10. Suppose C is (not) hereditary and has a/no theorem. Then, ∨-disjunctive [non-pseudo-axiomatic] extensions
of C form (a Galois retract — in particular, a sublattice — of) the six/nine[six]-element non-chain distributive lattice depicted
at Figure 1 (with not necessarily distinct nodes) with solely solid circles/[with solely solid circles]. Moreover, those of them,
whose relative axiomatizations are not given by upper indices, are axiomatized relatively to C by the following calculi:

CEM ∩ CR : (4.18),(6.9)
IC : (6.5),(6.10)

IC+0 : (6.6),(6.11)

CEM
+0 : (6.7),(6.12)

CEM+R
+0 : {(6.7), (4.9)}.(6.13)

In view of Theorems 3.21, 3.25 and Remark 6.9, Theorem 6.10, being immediately applicable to hereditary four-valued
expansions of B4 (in particular, to implcative ones — cf. Subsubsection 6.1.3 — whose ∨-disjunctive extensions are exactly
axiomatic ones; cf. Remark 3.22, constructively providing, in particular, their finite axiomatic relative axiomatizations), is
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equally well-applicable to non-hereditary ones, in which case the lattice depicted at Figure 1 is properly degenerated under the
corresponding dual Galois retraction. For instance, when dealing with any classically-negative (viz., Boolean) expansion CB4

(cf. Subsubsection 6.1.1), S∗(A) becomes equal to {A}[∪{{f, t}}], in which case ∨-disjunctive (viz., axiomatic; cf. Remark
3.22, for A is (¬x0 ∨ x1)-implicative in that case) extensions of CB4 form the two[three]-element chain CB4 ( CB

EM(+R)
4 =

CBR
4 = [CBPC

4 (]IC. Likewise, given any bilattice expansion BL4 (cf. Subsubsection 6.1.2), S∗(A) becomes equal to
{A}[∪{{n}}], in which case ∨-disjunctive extensions of BL4 form the two-[three-]element chain BL4[( IC+0] ( IC = BLEM

4

with IC[+0] = BLR
4 , exhausting all extensions of BL4, in view of its inferential maximality proved in Corollary 6.6.

It is remarkable that, in view of Theorem 5.2 of [16] providing an axiomatization of B4 given by Definition 5.1 therein,5

Theorem 6.10 yields axiomatizations of all ∨-disjunctive extensions of B4 (in particular, of K3 relatively axiomatized by the
Resolution rule (4.9)).

On the other hand, to find all extensions of C is a much more complicated problem, a first idea of which having been due
to Theorems 4.75, 4.39, 4.60 and Corollaries 4.4 and 4.74. A partial solution of it is presented below.
6.1.4.1. Kleene extensions. Next, C is said to be strongly hereditary, provided {f, n, t} forms a regular specular subalgebra of
A, in which case, since µ ◦ µ is diagonal, {f, b, t} = µ[{f, n, t}] forms a specular subalgebra of A as well, and so a regular one,
for µ is anti-regular, and so C is hereditary, in view of Corollary 4.43, according to which collectively with Theorem 4.44,
C is strongly hereditary iff it is hereditary, CEM×R is self-extensional and A 6b is regular. By symmetry between n and b, C
is strongly hereditary iff {f, b, t} forms a regular specular subalgebra of A, whenever A is both regular and specular, while
{f, (b/n), t} forms a subalgebra of A (in particular, Σ = Σ0[1]). According to the following example, equally showing that the
framework of strongly hereditary expansions of B4 is not at all exhausted by solely definitional copies of B4[01], “whenever”
cannot be replaced with “iff” in the previous sentence:
Example 6.11. If Σ , (Σ0[1] ∪ {]}), where ] is binary, and ]A , ((∨A�(A2

6n ∪ A2
6b)) ∪ {〈〈n, b〉, t〉, 〈〈b, n〉, f/b〉}), C is strongly

hereditary, and A is not specular, as opposed to DM4[01], and non-regular/regular. �

Throughout the rest of this paragraph, C is supposed to be strongly hereditary. First, as an immediate consequence of
Theorems 4.27, 4.29 and 4.39, we have:

Corollary 6.12. CEM ∩ CR is the greatest both inferentially paracomplete and ∼-paraconsistent extension of C.

Lemma 6.13. (A 6n ×A 6b) ∈ Mod(CEM+NP ∩ CR).

Proof. Since, by Theorem 4.57 and Corollary 4.35, CEM+NP ∩ CR is defined by {A 6b,A 6n × A 6n6b}, A 6n × (A 6b × A 6n6b), being
isomorphic to A 6b × (A 6n × A 6n6b), is a model of CEM+NP ∩ CR, in view of (2.5). Moreover, by Lemma 4.37, (A 6b × A 6n6b)�Kn

4

is a submatrix of A 6b × A 6n6b, in which case A 6n × ((A 6b × A 6n6b)�Kn
4) is a submatrix of A 6n × (A 6b × A 6n6b), and so it is a model

of CEM+NP ∩ CR, in view of (2.5). And what is more, h , (π0�Kn
4) ∈ homS((A 6b × A 6n6b)�Kn

4 ,A 6b) is surjective, and so is
g : (A6n ×Kn

4)→ (A6n ×A6b), 〈a, b〉 7→ 〈a, h(b)〉, belonging to homS(A 6n × ((A 6b ×A 6n6b)�Kn
4),A 6n ×A 6b), as required, by (2.5). �

Corollary 6.14. Let I be a finite set, C ∈ {A 6b,A 6n}I , and B a consistent non-∼-paraconsistent submatrix of
∏
i∈I Ci. Then,

hom(B,A 6b) 6= ∅.

Proof. In that case, by Lemma 4.55, there is some h ∈ hom(B, 〈A, {t}〉) 6= ∅, in which case D , (A�(img h)) satisfies (3.16) for
B does so, because both A6b and A6n do so, while h ∈ hom(B,D) is surjective. Hence, {n, b} * D, for otherwise, (3.16) would
not be true in D under [x0/n, x1/b]. Thus, D , (〈A, {t}〉�D) is a submatrix of 〈A, {t}〉�A6a, for some a ∈ {n, b}, in which case
h ∈ hom(B, 〈A, {t}〉�A6a), and so the fact that µ�A6n is an isomorphism from 〈A, {t}〉�A6n onto (〈A, {t}〉�A6b) = A 6b completes the
argument. �

Corollary 6.15. CEM+NP ∩ CR is axiomatized by (4.19) relatively to CEM ∩ CR.

Proof. By Corollary 4.35 and Theorem 4.29 [resp., 4.57], CEM[+NP] ∩ CR is defined by {A 6n[×A 6n6b],A 6b}. Consider any model
B ∈ S(Pω({A 6b,A 6n})) of (4.19), in which case there is some finite set I, some C ∈ {A 6b,A 6n}I such that B is a submatrix of∏
i∈I Ci. Put J , hom(B,A 6n ×A 6b) and K , hom(B,A 6b). Consider any a ∈ (B \DB), in which case B is consistent and there

is some i ∈ I such that πi(a) 6∈ DCi . Consider the following complementary cases:
(1) Ci = A 6n.

Then, by Corollary 6.14, there is some h ∈ hom(B,A 6b) 6= ∅, in which case g , ((πi�B)× h) ∈ J and g(a) 6∈ DA6n×A6b .
(2) Ci 6= A 6n, in which case Ci = A 6b, and so (πi�B) ∈ K.

In this way, f , ((
∏

∆J)× (
∏

∆K)) ∈ homS(B, (A 6n×A 6b)J ×AK6b ), and so (2.5), Theorem 2.20, Lemma 6.13 and the finiteness
of A complete the argument. �

By NP[01] we denote the extension of LP[01] relatively axiomatized by (4.19) (cf. [21]).

Theorem 6.16. Suppose C has a/no theorem. Then, Kleene [non-pseudo-axiomatic] extensions of C form the seven/ele-
ven[seven]-element non-chain distributive lattice depicted at Figure 1 with solely solid circles/[with solely solid circles], both
CEM+(NP|R) and {CEM+NP∩}CR/ as well as theorem-less proper ones being non-axiomatic extensions of both CEM ∩ CR and
C, and so CEM is the only proper axiomatic extension of CEM ∩ CR and, providing either A is regular or C has no theorem,
of C. Moreover, those of them, which are neither ∨-disjunctive nor equal to CEM+NP, are relatively axiomatized as follows:

CEM+NP ∩ CR by (4.19),

5In this connection, we should also like to take the opportunity to notice that Footnote 3 on p. 443 of [16] has proved absolutely irrelevant and

is to be disregarded, simply because Font did never find the Hilbert-style axiomatization of CB independently as he falsely claimed, but rather just
plagiarized it, being in the vantage position of learning it from me first.
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CEM+NP
+0 by {(4.19), (6.7)},

others inheriting the above axiomatizations relatively to C with possible relacing (4.9) by (4.20).

Proof. We use (2.5), Theorems 4.29, 4.32, 6.10, 4.57, 4.60, Propositions 2.18, 3.17, 4.14, Corollaries 4.35, 6.15, Lemma 4.78
with B = A 6b and Remarks 2.8 and 4.58 tacitly. First, as CEM is ∼-paraconsistent, (CEM+NP ∩ CR)/CEM+NP

+0 /CEM+NP is
distinct from (CEM ∩ CR)/CEM

+0 /C
EM, respectively. Likewise, since (4.20) is not true in A 6n × A 6n6b under [x0/〈b, t〉, x1/〈f, t〉],

(CEM+NP ∩CR)/CEM+NP
+0 /CEM+NP is distinct from CR/CEM+R

+0 /CEM+R, respectively. Finally, consider any [non-pseudo-axi-
omatic] extension C ′ of CEM ∩ CR and the following exhaustive cases [but (3) and (4)]:

(1) IC ⊆ C ′.
Then, C ′ = IC.

(2) CPC ⊆ C ′ but IC * C ′.
Then, C ′ is consistent, and so inferentially consistent, for (4.8), being satisfied in CPC, is so in its extension C ′, in
which case, by Theorem 4.23, C ′ = CPC.

(3) IC+0 ⊆ C ′ but CPC * C ′.
Then, IC, being an extension of CPC, is not a sublogic of C ′, so, by the following claim, C ′ has no theorem:

Claim 6.17. Let C ′′ and C ′′′ be Σ-logics. Suppose C ′′ * C ′′′ is non-pseudo-axiomatic and C ′′+0 ⊆ C ′′′. Then, C ′′′ has
no theorem.

Proof. By contradiction. For suppose C ′′′ has a theorem, in which case it is non-pseudo-axiomatic, and so, by Remark
2.8, we get C ′′ = (C ′′+0)−0 ⊆ C ′′′−0 = C ′′′. This contradiction completes the proof. �

In this way, as C ′−0 ⊆ IC, we have C ′ = (C ′−0)+0 ⊆ IC+0, and so we get C ′ = IC+0.
(4) CPC

+0 ⊆ C ′ but both CPC * C ′ and IC+0 * C ′.
Then, by Claim 6.17, C ′ has no theorem. Moreover, (6.7), being satisfied in CPC

+0 , is so in its extension C ′, in which
case, by the structurality of C ′, (x1 ∨ ∼x1) ∈ (

⋂
k∈ω C

′(xk)) = C ′−0(∅), and so CPC ⊆ C ′−0. On the other hand,
IC = (IC+0)−0 * C ′−0, so C ′−0 is consistent, and so inferentially consistent, for it satisfies (4.8). Hence, by Theorem
4.23, C ′−0 = CPC. In this way, C ′ = (C ′−0)+0 = CPC

+0 .
(5) (CPC

+0 [∪CPC]) * C ′ but CR ⊆ C ′.
Then, [(4.8), and so, in view of the non-pseudo-axiomaticity of C ′] (6.7) is not satisfied in C ′, in which case, by Theorem
4.39, C ′ = CR.

(6) CR * C ′.
Then, (4.20) is not satisfied in C ′, in which case, by Lemma 4.59, C ′ ⊆ CEM+NP, and so we have the following
exhaustive subcases [but (c) and (d)]:
(a) CEM+NP ⊆ C ′.

Then, C ′ = CEM+NP.
(b) CEM+NP * C ′ but CEM ⊆ C ′.

Then, C ′ is ∼-paraconsistent, so, by Theorem 4.27, C ′ = CEM.
(c) CEM+NP

+0 ⊆ C ′ but CEM * C ′.
Then, CEM+NP * C ′, so, by Claim 6.17, C ′ has no theorem. Therefore, CEM+NP = (CEM+NP

+0 )−0 ⊆ C ′−0,
(CEM∩CR) = (CEM∩CR)−0 ⊆ C ′−0 and CR * C ′−0, for, otherwise, we would have CR = (CR)+0 ⊆ (C ′−0)+0 = C ′.
Hence, by Lemma 4.59, we have C ′−0 ⊆ CEM+NP, in which case we get C ′ = (C ′−0)+0 ⊆ CEM+NP

+0 , and so
C ′ = CEM+NP

+0 .
(d) CEM

+0 ⊆ C ′ but both CEM * C and CEM+NP
+0 * C ′.

Then, by Claim 6.17, C ′ has no theorem. Moreover, (6.7), being satisfied in CEM
+0 , is so in C ′, in which case,

by the structurality of C ′, (x1 ∨ ∼x1) ∈ (
⋂
k∈ω C

′(xk)) = C ′−0(∅), and so CEM ⊆ C ′−0, while (CEM ∩ CR) =
(CEM ∩ CR)−0 ⊆ C ′−0. Also, CEM+NP = (CEM+NP

+0 )−0 * C ′−0, so C ′−0 is ∼-paraconsistent. Hence, by Theorem
4.27, C ′−0 = CEM. In this way, C ′ = (C ′−0)+0 = CEM

+0 .
(e) (CEM+NP ∩ CR) ⊆ C ′ but (CEM+NP

+0 [∪CEM+NP]) * C ′.
Then, [(4.8), and so, in view of the non-pseudo-axiomaticity of C ′] (6.7) is not satisfied in C ′, in which case, by
Theorem 4.39, C ′ = (CEM+NP ∩ CR).

(f) (CEM+NP ∩ CR) * C ′ and (CEM
+0 [∪CEM]) * C ′.

Then, C ′ is both ∼-paraconsistent and inferentially paracomplete [in view of the non-pseudo-axiomaticity of C ′],
and so, by Corollary 6.12, C ′ = (CEM ∩ CR). �

As an immediate consequence of Theorems 6.10 and 6.16, as opposed to both CEM[∩CR] and C, we have:

Corollary 6.18. All extensions of CR are ∨-disjunctive.

Concluding this discussion, we should like to highlight that the technique elaborated here has proved well-applicable to
finding all extensions of LP that has been done in [17] with using an advanced algebraic method based upon finding the lattice
of all subprevarieties of KL going back to finding that of ones of DML being due to [20]. However, the mentioned method is
not applicable to K3 (as well as to both LP[01] ∩K3[01] and C[B]B) at all. This highlights the special value of the technique
elaborated here.
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6.1.4.1.1. Some proper non-Kleene extensions. Finally, we explore some of proper non-Kleene (and so non-∨-disjunctive, in
view of Theorem 6.10) extensions of C to be assumed self-extensional. First of all, notice that (4.18) is not true in

−→
A under

[x0/n, x1/b, x2/n]. Therefore, by Theorems 4.60 and 4.74, CMP and CNP become first distinct examples of such a kind. (In
particular, this shows that Remark 4.58 is not inherited by non-Kleene extensions of C). Moreover, by Theorem 4.60, we get
two more distinct proper non-Kleene extensions CEM[+NP] ∩ CMP, for CEM ∩ CMP is ∼-paraconsistent (cf. Theorem 4.29),
while CEM+NP ∩ CMP is an extension of CNP. Then, a one more example of such a kind is as follows:

Theorem 6.19. CEM[∩CR] ∩ CNP is the proper extension of C relatively axiomatized by the rule (4.1).

Proof. Let C ′ be the extension of C relatively axiomatized by the rule (4.1). Since (4.1) is a logical consequence of (4.19) and
is true in C3, CEM ∩ CR ∩ CNP is an extension of C ′. Conversely, consider any B ∈ (Mod(C ′) ∩ K), where K , PSD(S∗(A)).
Assume, (4.19) is not true in B, in which case there is some a ∈ DB such that ∼Aa ∈ DB, and so, by (4.1) [and (3.3)],
(x0 ∨ ∼x0)[∨x1] is true in A [and so is the rule (4.18)]. Thus, (Mod(C ′) ∩ K) ⊆ ((Mod(CNP) ∩ K) ∪ (Mod(CEM[∩CR]) ∩ K)).
Hence, by Theorem 2.20, we eventually conclude that C ′ = (CEM[∩CR] ∩ CNP ). Finally, recall that (4.1) is not true in A
under [x0/b, x1/n], as required. �

And what is more, we also have:

Theorem 6.20. The extension of CEM∩CMP relatively axiomatized by (4.19), i.e., the join of CEM∩CMP and CNP is defined
by {
−→
A ,A 6n ×

−→
A}.

Proof. By Theorem[s 4.29 and] 4.74, [CEM∩]CMP is defined by {
−→
A [,A 6n]}. In particular,

−→
A is a model of (4.19). Moreover, by

(2.5) and Theorem 4.75, A 6n×
−→
A , being a submatrix of A×

−→
A , is a model of (4.19) too. Conversely, consider any finite set I, any

C ∈ S∗({
−→
A ,A 6n})I and any subdirect product D of it being a model of (4.19). Put J , hom(D,A 6n×

−→
A) and K , hom(D,

−→
A).

Consider any a ∈ (D \ DD), in which case D is consistent and there is some i ∈ I, in which case h , (πi�D) ∈ hom(D, Ci),
such that h(a) 6∈ DCi . Consider the following exhaustive cases:

(1) Ci = A 6n.
Then, by Lemma 4.55, there is some g ∈ hom(D,

−→
A) 6= ∅, in which case f , (h× g) ∈ J and f(a) 6∈ DA6n×

−→
A .

(2) Ci =
−→
A .

Then, h ∈ K.

In this way, ((
∏

∆J)× (
∏

∆K)) ∈ homS(D, (A 6n ×
−→
A)J ×

−→
AK). Hence, by (2.5) and Theorem 2.20, the extension involved is

finitely-defined by {
−→
A ,A 6n ×

−→
A}. Then, the finiteness of A completes the argument. �

Finally, note that the rule:

(6.14) {x0,∼x0 ∨ x2} ` ((∼x1 ∨ x1) ∨ x2),

being satisfied in CEM ∩ CMP, in view of (3.3) and (3.4), is not true in A×
−→
A under [x0/〈b, t〉, x1/〈n, t〉, x2/〈f, t〉]. Therefore,

by Theorem 4.75, we get:

Corollary 6.21. CEM[+NP] ∩ CR/MP is a proper extension of (CEM ∩ CR ∩ CNP)[∪CNP].

6.2. Three-valued paraconsistent logics. Here, we follow Subsection 5.1 supposing that o , ∼ ∈ Σ.

6.2.1. Three-valued expansions of the logic of paradox. Here, it is supposed that Σ0 ⊆ Σ and (A�Σ0) = DM4, 6n (in which case
A is ∧-conjunctive) that defines LP , so C is an expansion of LP . This covers both the logic of antinomies LA [2] and J3 [5],
the maximal ∼-paraconsistency of both of which having been due to [27] collectively with the general part of [21], proved ad
hoc therein. And what is more, this exhausts all three-valued expansions of LP , as it ensues from Corollaries 5.9 and 5.12,
also yielding the following universal result subsuming Theorem 2.1 of [17]:

Corollary 6.22. Any three-valued expansion of LP is maximally ∼-paraconsistent.

Finally, A is clearly a (∧,∨)-lattice, so Subsection 5.1.4 is well-applicable to C, subsuming some results obtained in [21] and
[27] ad hoc.

6.2.2. Three-valued expansions of Sette’s logic. Let {⊃,∼} ⊆ Σ, where ⊃ (implication) is binary, and A a ∼-superclassical
Σ-matrix such that ∼Ab , t, in which case {b} does not form a subalgebra of A, and

(a ⊃A b) ,

{
t if (a 6= f)⇒ (b 6= f),
f otherwise,

for all a, b ∈ {f, b, t}. In this way, this exhaust all three-valued expansions of the logic P 1 [28] of S ′3 , (A�{⊃,∼}), as it ensues
from Theorem 5.6 and Corollary 5.9, also yielding the following one more universal result:

Corollary 6.23. Any three-valued expansion of P 1 is maximally ∼-paraconsistent.

This subsumes the maximality result of [28], according to which P 1 itself has no proper∼-paraconsistent axiomatic extension,
properly strengthened in [15] by proving the fact that the ∼-classical logic of S ′2 , (S ′3�{f, t}) is the only proper axiomatic
extension of P1, equally ensuing from Corollary 2.21 and the fact S ′2 is the only proper submatrix of S ′3 and is a model of the
axiom x0 ⊃ ∼∼x0, not being true in S′3 under [x0/b], in which case the classical logic involved is axiomatized by the axiom
involved relatively to P1.

And what is more, A is Z-conjunctive, where (x0 Z x1) , ∼(x0 ⊃ (x1 ⊃ ∼(x0 ⊃ x0))), so this case is equally covered by
Corollary 5.12.
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6.2.3. Three-valued expansions of Ha lkowska-Zajac’ logic. Let Σ0 ⊆ Σ and A a ∼-superclassical Σ-matrix such that ∼Ab = b,
while ∧A and ∨A are defined as min and max, respectively, but with respect to rather the chain partial ordering 5 given by
b 5 f 5 t than the partial ordering given point-wise by the natural one 6 on 2, as in the case of the logic of paradox. Then,
{0, 2} forms a subalgebra of the underlying algebra of HZ , (A�Σ0), while HZ�{0, 2} is ∧-conjunctive. In this way, this
exhausts all three-valued expansions of the logic HZ [7] of HZ, as it ensues from Theorem 5.6, Corollary 5.9 and Remark 5.11,
also yielding the following one more universal result:

Corollary 6.24. Any three-valued expansion of HZ is maximally ∼-paraconsistent.

This subsumes the maximality result of [22] concerning HZ alone and proved ad hoc therein.
Finally, though A is a (∧,∨)-lattice, A is neither ∧-conjunctive nor ∨-disjunctive, because (f ∧HZ b) = b and (f ∨HZ b) = f.

Nevertheless, A is a (Z,Y)-lattice, where

(x0 Y x1) , ∼(∼x0 ∧ ∼x1),

(x0 Z x1) , ∼(∼x0 ∨ ∼x1),

because these secondary connectives correspond to min and max, respectively, with regard to the chain partial ordering .
given by f . t . b, while A is Z-conjunctive, and so Y-disjunctive. In particular, this case is equally covered by Corollary 5.12.
And what is more, Subsection 5.1.4 is well-applicable to C, yielding some results obtained in [22] and [27] ad hoc.

7. Conclusions

Aside from the quite non-trivial general results and their numerous illustrative applications, the present paper demonstrates
the special value of the conception of congruence/equality determinant, initially suggested in [23] just for the sake of construction
of two-side sequent calculi (like those found in [16] and [19]) for many-valued logics.
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(1988), 41–49.

8. S. C. Kleene, Introduction to metamathematics, D. Van Nostrand Company, New York, 1952.
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