

Four-Valued Expansions of Belnap's Logic: Inheriting Basic Peculiarities

Alexej Pynko

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

FOUR-VALUED EXPANSIONS OF BELNAP'S LOGIC: INHERITING BASIC PECULIARITIES

ALEXEJ P. PYNKO

ABSTRACT. The main results of the paper are that:

- (1) any four-valued expansion L_4 of Belnap's four-valued logic B_4 (cf. [4]):
 - (a) is defined by a unique expansion \mathcal{M}_4 of the four-valued matrix $\mathcal{D}\mathcal{M}_4$ over the De Morgan truth lattice diamond $\{f, n, b, t\}$ defining B_4 as such;
 - (b) satisfies Relevance Principle iff it is has neither a theorem nor an inconsistent formula;
 - (c) has no proper extension satisfying Relevance Principle;
 - (d) is minimally four-valued;
 - (e) is defined by no truth/false-singular matrix;
 - (f) has an extension defined by an expansion of a consistent submatrix \mathcal{B} of \mathcal{DM}_4 iff the underlying algebra of \mathcal{B} is a subalgebra of the underlying algebra \mathfrak{A}_4 of \mathcal{M}_4 ;
 - (g) is subclassical iff $\{f,t\}$ forms a subalgebra of \mathfrak{A}_4 , in which case the logic of $\mathcal{M}_4 \upharpoonright \{f,t\}$ defines a unique classical extension of L_4 being also an extension of any inferentially consistent extension of L_4 ;
 - (h) is [inferentially] maximal iff \mathcal{M}_4 has no proper consistent [truth-non-empty] submatrix;
 - (i) is maximally paraconsistent iff $\{f, b, t\}$ does not form a subalgebra of \mathfrak{A}_4 iff the proper axiomatic extension L_4^{EM} of L_4 relatively axiomatized by the Excluded Middle law axiom is either classical, if L_4 is subclassical, or inconsistent, otherwise, iff L_4^{EM} is not (maximally) paraconsistent iff L_4^{EM} is not an expansion of the logic of paradox $LP = B_4^{\mathrm{EM}}$ and, otherwise, providing L_4 is subclassical and every primary operation of \mathfrak{A}_4 is either regular or both b-idempotent and no more than binary, L_4^{EM} has exactly two proper consistent extensions forming a chain, the greatest one being classical and relatively axiomatized by the Modus ponens rule for material implication, the least one being relatively axiomatized by the Ex Contradictione Quodlibet rule, both ones having same theorems as L_4^{EM} has, and so being non-axiomatic, while L_4^{EM} being the only proper consistent axiomatic extension of L_4 , whenever \mathfrak{A}_4 is regular;
 - (j) has no theorem/inconsistent formula iff $\{n/b\}$ forms a subalgebra of \mathfrak{A}_4 ;
 - (k) [providing L_4 has a/no theorem] L_4 has the distributive lattice of its disjunctive [arbitrary/merely non-pseudo-axiomatic] extensions being dual isomorphic to the one of all lower cones of the set of all [truth-non-empty] consistent submatrices of \mathcal{M}_4 (in particular, to be found effectively, whenever the expanded signature is finite) and is a sublattice of the nine[six]-element non-chain distributive lattice of all disjunctive [non-pseudo-axiomatic] extensions of B_4 ;
 - (l) has its proper disjunctive extension $L_4^{\rm R}$ relatively axiomatized by the Resolution rule that:
 - (i) is paracomplete iff the carrier of the subalgebra of \mathfrak{A}_4 generated by $\{n\}$ does not contain b;
 - (ii) is not inferentially paracomplete iff it is inferentially either classical, if L_4 is subclassical, or inconsistent, otherwise, iff $\{f, n, t\}$ does not form a subalgebra of \mathfrak{A}_4 iff L_4^R is not an expansion of Kleene's three-valued logic $K_3 = B_4^R$;
 - (m) has the entailment relation equal to the set of all inequalities identically true in \mathfrak{A}_4 iff L_4 is self-extensional iff it has the Property of Weak Contraposition iff the specular permutation on $\{f, n, b, t\}$ retaining both f and t but permuting n and b is an endomorphism of \mathfrak{A}_4 iff the extension of L_4 relatively axiomatized by the *Modus Ponens*[Ex Contradictione Quodlibet] rule is defined by [the direct product of \mathcal{M}_4 and] $\langle \mathfrak{A}_4, \{t\} \rangle$, in which case:
 - (i) L_4 is subclassical;
 - (ii) there is either no, if L_4 is maximally paraconsistent, or exactly one, otherwise, non-pseudo-axiomatic consistent non-classical proper self-extensional extension of L_4 , any self-extensional extension of L_4 being disjunctive;
 - (iii) $\{n[,f,t]\}$ forms a subalgebra of \mathfrak{A}_4 iff $\{b[,f,t]\}$ does so, in which case:
 - (A) L_4 satisfies Relevance Principle iff it has no theorem/inconsistent formula;
 - (B) $L_4^{\rm EM}$ is (maximally) paraconsistent iff $L_4^{\rm R}$ is inferentially paracomplete, in which case, providing \mathfrak{A}_4 is regular, $L_4^{\rm R}$ is maximally inferentially paracomplete, while any extension of L_4 is both paraconsistent and inferentially paracomplete iff it is a sublogic of $L_4^{\rm EM} \cap L_4^{\rm R}$;
 - (C) [providing L_4 has a/no theorem] disjunctive [arbitrary/merely non-pseudo-axiomatic] extensions of L_4 form the nine[six]-element non-chain distributive lattice isomorphic to that of B_4 ;
 - (D) providing \mathfrak{A}_4 is regular [and L_4 has a/no theorem], [arbitrary/merely non-pseudo-axiomatic] extensions of $L_4^{\mathrm{EM}} \cap L_4^{\mathrm{R}}$ form the eleven[seven]-element non-chain distributive lattice, those of L_4^{R} being all disjunctive, proper ones being inferentially either classical or inconsistent, and so not inferentially paracomplete, in which case L_4^{R} is maximally (inferentially) paracomplete, as opposed to its implicative expansions;
- (2) any three-valued (disjunctive/conjunctive) paraconsistent logic L_3 with subclassical negation:
 - (a) is defined by a (unique disjunctive/conjunctive) superclassical matrix over {f, b, t}, referred to as characteristic one of L₃;
 - (b) is maximally paraconsistent iff either {b} does not form a subalgebra of the underlying algebra $\mathfrak A$ of any characteristic matrix of L_3 or there is a ternary b-relative weak conjunction for $\mathfrak A$, viz., a ternary formula φ such that $\varphi^{\mathfrak A}(\mathsf{b},\mathsf{f},\mathsf{t}) = \mathsf{f}$ and $\varphi^{\mathfrak A}(\mathsf{b},\mathsf{t},\mathsf{f}) \neq \mathsf{t}$, in which case a characteristic matrix of L_3 is unique(;
 - (c) has no proper paraconsistent disjunctive/conjunctive extension/, in which case it is maximally paraconsistent);
 - (d) is minimally three-valued;
 - (e) is subclassical if(f) $\{f, t\}$ forms a subalgebra of the underlying algebra of its characteristic matrix, in which case (L_3) is maximally paraconsistent, while)the logic of the restriction of its characteristic matrix on $\{f, t\}$ defines a (unique) classical extension of L_3 (/, being also an extension of any consistent extension of L_3);
- (3) for every n > 2, there is a minimally n-valued maximally paraconsistent subclassical [both conjunctive and disjunctive] logic.

2000 Mathematics Subject Classification. 03B50, 03B99, 03C05, 03G10, 06B10, 06D05, 06A15, 06D30, 08B05, 08B10, 08B15, 08B26. Key words and phrases. propositional logic/calculus, [axiomatic] extension, self-extensional logic, matrix, para-complete/-consistent logic|matrix, Belnap's four-valued logic, expansion, [bounded] distributive/De Morgan/Kleene/Boolean lattice, conjunctive/disjunctive logic|matrix, congruence/equality determinant, [dual] Galois connection/retraction.

1. Introduction

Perhaps, the principal value of *universal* mathematical investigations consists in discovering uniform transparent points behind particular results originally proved *ad hoc* as well as in providing powerful generic tools enabling one "to kill as much as possible birds with as less as possible stones". This thesis is the main paradigm of the present study.

Belnap's "useful" four-valued logic (cf. [4]) arising as the logic of *first-degree entailment* in relevance logic R (FDE, for short) has been naturally expanded by additional connectives in [19]. The present paper pursues the study of such expansions with regard to certain *generic* aspects in addition to those of functional completeness and both sequential and equational axiomatizations comprehensively explored therein collectively with Paragraph 6.1.1.1 here and [23], respectively.

More precisely, we study how four-valued expansions of FDE (as well as their extensions) inherit certain *remarkable* features of FDE as such. This marks the *primary* framework of the paper. On the other hand, it is closely related to certain more (secondary) issues additionally studied here (especially because this study uses the generic tools initially elaborated for solving exactly the secondary tasks alone and only then applied to primary ones).

First of all, FDE satisfies Relevance Principle (viz., Variable Sharing Property; cf. [1]) in the sense that it satisfies the entailment $\phi \to \psi$ only if ϕ and ψ have a common propositional variable. This clarifies the items (1b,1c,1j) of the Abstract.

Moreover, the four-valued matrix defining FDE has four proper consistent submatrices, each defining a consistent proper extension of FDE. This explains the item (1f) of the Abstract.

In particular, FDE is subclassical in the sense that a definitional clone (viz., copy) of the classical logic is an extension of it. When exploring this peculiarity within the framework of expansions of FDE, we inevitably deal with formally miscellaneous classical logics as those which are defined by classical matrices, that is, consistent two-valued matrices with classical negation. In case such is conjunctive with respect to any (possibly, secondary) binary connective (in particular, is a model of an expansion of FDE), the logic defined by such a matrix is nothing but a definitional copy of the standard classical logic, because any two-valued operation is definable via the classical negation and conjunction. We equally follow this paradigm, when studying three-valued and n-valued paraconsistent logics. This clarifies the items (1g) and (2e) of the Abstract.

The four-valuedness typical of FDE and its expansions also implies their both [inferential] paracompleteness (viz., refuting the [inferential version of] Excluded Middle law axiom) and paraconsistency (viz., refuting the Ex Contradictione Quodlibet rule). It is this joint peculiarity of FDE that has predetermined its profound applications to Computer Science and Artificial Intelligence. This inevitably raises the issue of exploring how extensions of (four-valued expansions of) FDE retain such peculiarities (cf. the items (1i,1l) of the Abstract).

In this connection, the issue of strong [inferential] maximality typical of the classical logic in the sense of having no proper [inferentially] consistent extension becomes equally acute as for four-valued expansions of FDE. The thing is that [purely-]bilattice expansions of FDE with[out] truth and falsehood constant are [inferentially] maximal, as it ensues from the general characterization of the maximality (cf. the item (1h) of the Abstract). Taking [21] into account, particular cases of such maximality have actually been proved in [19] ad hoc.

And what is more, four-valued expansions of FDE normally (but not at all generally) have three-valued paraconsistent/paracomplete extensions, defined by three-valued submatrices of characteristic four-valued matrices (cf. the items (1f,1i/1) of the Abstract), shown here to be relatively axiomatized by the Excluded Middle law axiom/ the Resolution rule in that case. Then, their defining three-valued paraconsistent submatrices appear to be conjunctive and superclassical in the sense of the reference [Pyn 95b] of [17], according to which any logic defined by such a matrix is maximally paraconsistent in the sense of having no proper paraconsistent extension (cf. the items (2b,2c) of the Abstract and historically the paragraph after Theorem 2.1 of [17]). Particular cases of such three-valued maximal paraconsistency have been proved ad hoc in [17], [22] as well as in [27] taking [21] into account. On the other hand, as it follows from our characterization of the maximal paraconsistency (cf. the item (1i) of the Abstract), any (including constant-free purely) bilattice expansion is maximally paraconsistent, though is not subclassical, in view the item (1g) of the Abstract, as opposed to the expansion by classical (viz., Boolean) negation.

In this way, we conclude that the maximal paraconsistency is not at all a prerogative of three-valued logics. As a matter of fact, we argue that, for every n > 2, there is a minimally n-valued (in the sense of not being defined by a matrix with less than n values; cf. the items (1d,2d) of the Abstract in this connection) maximally paraconsistent subclassical logic (cf. the item (3) of the Abstract). In this connection, it is remarkable that existence of non-minimally n-valued maximally paraconsistent subclassical logic has been actually due to [17], because the logic of paradox [14] is equally defined by an n-valued matrix. Among other things, such generic minimally n-valued example is defined by a false-singular matrix, as opposed to four-valued expansions of FDE (cf. the item (1e) of the Abstract).

Furthermore, FDE is disjunctive. This raises the problem of finding all disjunctive extensions of (four-valued expansions of) FDE (cf. the item (1k) of the Abstract). (Although, likewise, FDE is conjunctive, the conjunctivity is immediately inherited by extensions, so this point is just taken for granted.)

After all, a one more quite remarkable peculiarity of FDE is that its entailment relation is defined (semi)lattice-wise in the sense that FDE satisfies the entailment $\phi \to \psi$ iff the inequality $\phi \lesssim \psi$ (viz., the equality $(\phi \land \psi) \approx \phi$) is identically true in the diamond non-Boolean De Morgan lattice, i.e, in the variety of De Morgan lattices. Within the framework of four-valued expansions of FDE, this property appears to be equivalent to the so-called *self-extensionality* (cf. Theorem 4.68(i) \Leftrightarrow (v)), profound study of which has been due to [18] that has provided a generic algebraic (more specifically, lattice-theoretic) approach to conjunctive non-pseudo-axiomatic self-extensional logics (cf. Section 4.1 therein) properly enhanced here by omitting the stipulation "non-pseudo-axiomatic". Recall that a propositional logic is said to be *self-extensional*, provided its interderivability

¹Though being prepared and announced by 1995, the fundamental material of the both references [Pyn 95a] and [Pyn 95b] of [17] has never been published for a quarter of century, while certain quirky kleptomaniacs all over the world (like Avron & Co.; Tribus, Skura, at al.; Font, Jansana & Co. — including Prenosil, Albuquerque, Rivieccio et al.) have succeeded in plagiarizing it as well as other contributions announced in [17]. This is why we take the opportunity to eventually present them here.

relation is a congruence of the formula algebra, in which case any fragment of it is self-extensional as well (cf. [18]), while the converse is far from being generally valid. Any axiomatic extension of the intuitionistic logic as well as any inferentially consistent two-valued logic (including the classical one and its fragments) is self-extensional. This explains the meaning of the item (1m) of the Abstract.

The rest of the paper is as follows. The exposition of the material of the paper is entirely self-contained (of course, modulo very basic issues concerning Set Theory, Lattice Theory, Universal Algebra, Model Theory and Mathematical Logic not specified here explicitly, to be found, e.g., in [3], [6], [8], [11] and [12]). Section 2 is a concise summary of basic issues underlying the paper, most of which have actually become a part of logical and algebraic folklore. Section 3 is devoted to certain key preliminary issues concerning false-singular matrices, disjunctivity, equality determinants and De Morgan lattices. In Section 4 we formulate and prove main results of the paper concerning solely four-valued expansions of FDE. Section 5 is entirely devoted to the issue of (especially, maximal) paraconsistency within both three-valued and generic n-valued framework. Then, in Section 6, we exemplify the previous three sections by applying them to three general classes of expansions, including those introduced in [19], with providing quick argumentations/refutations of their properties under consideration and finding all disjunctive extensions of (first of all, self-extensional non-maximally paraconsistent) expansions of FDE as well as all extensions of the unique proper non-classical self-extensional non-pseudo-axiomatic extension of any regular self-extensional non-maximally paraconsistent expansion of FDE (in particular, FDE itself), as well as to certain well-known three-valued paraconsistent logics. Finally, Section 7 is a brief summary of principal contributions of the paper.

2. Basic issues

Notations like img, dom, ker, hom, π_i and Con and related notions are supposed to be clear.

2.1. **Set-theoretical background.** We follow the standard set-theoretical convention, according to which natural numbers (including 0) are treated as finite ordinals (viz., sets of lesser natural numbers), the ordinal of all them being denoted by ω . The proper class of all ordinals is denoted by ∞ .

Likewise, functions are viewed as binary relations, the left/right components of their elements being treated as their arguments/values, respectively. Then, to retain both the conventional prefix writing of functions and the fact that $(f \circ g)(a) = f(g(a))$, we have just preferred to invert the conventional order of relation composition components. In particular, given two binary relations R and Q, we put $R[Q] \triangleq (R \circ Q \circ R^{-1})$.

In addition, singletons are often identified with their unique elements, unless any confusion is possible.

Given a set S, the set of all subsets of S [of cardinality $\in K \subseteq \infty$] is denoted by $\wp_{[K]}(S)$. A subset $T \subseteq S$ is said to be proper, if $T \neq S$. Further, given any equivalence relation θ on S, as usual, by ν_{θ} we denote the function with domain S defined by $\nu_{\theta}(a) \triangleq [a]_{\theta} \triangleq \theta[\{a\}]$, for all $a \in S$, in which case $\ker \nu_{\theta} = \theta$, whereas we set $(T/\theta) \triangleq \nu_{\theta}[T]$, for every $T \subseteq S$. Next, S-tuples (viz., functions with domain S) are often written in either sequence \bar{t} or vector \bar{t} forms, its s-th component (viz., the value under argument s), where $s \in S$, being written as either t_s or t^s . Given two more sets A and B, any relation $R \subseteq (A \times B)$ (in particular, a mapping $R: A \to B$) determines the equally-denoted relation $R \subseteq (A^S \times B^S)$ (resp., mapping $R: A^S \to B^S$) point-wise, that is, $R \triangleq \{\langle \bar{a}, \bar{b} \rangle \in (A^S \times B^S) \mid \forall s \in S: a_s \ R \ b_s\}$. Likewise, given a set A, an S-tuple \overline{B} of sets and any $\overline{f} \in (\prod_{s \in S} B_s^A)$, put $(\prod \overline{f}): A \to (\prod \overline{B}), a \mapsto \langle f_s(a) \rangle_{s \in S}$. (In case I = 2, $f_0 \times f_1$ stands for $(\prod \overline{f})$.) Further, set $\Delta_S \triangleq \{\langle a, a \rangle | a \in S\}$, relations of such a kind being referred to as diagonal, and $S^+ \triangleq \bigcup_{i \in (\omega \setminus 1)} S^i$, elements of $S^* \triangleq (S^0 \cup S^+)$ being identified with ordinary finite tuples, the binary concatenation operation on which being denoted by *, as usual. In addition, any binary operation \diamond on S determines the equally-denoted mapping $\diamond: S^+ \to S$ as follows: by induction on the length $l = (\operatorname{dom} \bar{a})$ of any $\bar{a} \in S^+$, put:

$$\diamond \bar{a} \triangleq \begin{cases} a_0 & \text{if } l = 1, \\ (\diamond (\bar{a} \upharpoonright (l-1))) \diamond a_{l-1} & \text{otherwise.} \end{cases}$$

Given any $f: S \to S$, by induction on any $n \in \omega$, define $f^n: S \to S$, by setting:

$$f^{n}(a) \triangleq \begin{cases} a & \text{if } n = 0, \\ f(f^{n-1}(a)) & \text{otherwise.} \end{cases}$$

for all $a \in S$. Finally, given any $R \subseteq S^2$, $\operatorname{Tr}(R) \triangleq \{\langle \pi_0(\pi_0(\bar{r})), \pi_1(\pi_{l-1}(\bar{r})) \rangle | \bar{r} \in R^l, l \in (\omega \setminus 1) \}$ is the least transitive binary relation on S including R, referred to as the transitive closure of R. After all, given any $T \subseteq S/f : S \to S/R \subseteq S^2$, an n-ary operation g on S, where $n \in \omega$, is said to be T-idempotent/f-preserving/R-monotonic, provided, for all $b \in T/\bar{a} \in A^n/\bar{b}, \bar{c} \in A^n$ such that \bar{b} R \bar{c} , it holds that $g(n \times \{b\}) = b/f(g(\bar{a})) = g(f \circ \bar{a})/g(\bar{b}) R g(\bar{c})$, respectively.

In general, we use the following standard notations going back to [4]:

$$\begin{split} \mathbf{t} &\triangleq \langle 1, 1 \rangle, & \qquad \qquad \mathbf{f} \triangleq \langle 0, 0 \rangle, \\ \mathbf{b} &\triangleq \langle 1, 0 \rangle, & \qquad \qquad \mathbf{n} \triangleq \langle 0, 1 \rangle. \end{split}$$

In addition, the mapping $\mu: 2^2 \to 2^2$, $\langle a, b \rangle \mapsto \langle b, a \rangle$ is said to be mirror/specular, in which case $\mu^{-1} = \mu$, so μ is bijective, i.e., a permutation on 2^2 . Moreover, by \sqsubseteq we denote the partial ordering on 2^2 defined by $(\vec{a} \sqsubseteq \vec{b}) \stackrel{\text{def}}{\iff} ((a_0 \leqslant b_0) \& (b_1 \leqslant a_1))$, for all $\vec{a}, \vec{b} \in 2^2$. Then, given any $B \subseteq 2^2$, $(\mu \upharpoonright B)$ -preserving/ $(\sqsubseteq \cap B^2)$ -monotonic n-ary operations on B, where $n \in \omega$, are referred to as specular/regular, respectively.

Let A be a set. An anti-chain of any $S \subseteq \wp(A)$ is any $N \subseteq S$ such that $\max(N) = N$. Likewise, a lower cone of S is any $L \subseteq S$ such that, for each $X \in L$, $(\wp(X) \cap S) \subseteq L$. This is said to be generated by a $G \subseteq L$, whenever $L = (G)_S^{\nabla} \triangleq (S \cap \bigcup \{\wp(X) \mid X \in G\})$. (Clearly, in case S — in particular, A — is finite, the mappings $N \mapsto (N)_S^{\nabla}$ and $L \mapsto \max(L)$ are

inverse to one another bijections between the sets of all anti-chains and lower cones of S.) A $U \subseteq \wp(A)$ is said to be upward-directed, provided, for every $S \in \wp_{\omega}(U)$, there is some $T \in U$ such that $(\bigcup S) \subseteq T$. A subset of $\wp(A)$ is said to be inductive, whenever it is closed under unions of upward-directed subsets. Further, any $X \in T \subseteq \wp(A)$ is said to be K-meet-irreducible $(in/of\ T)$, where $K \subseteq \infty$, provided it belongs to every $U \in \wp_K(T)$ such that $(A \cap \bigcap U) = X$ (in which case $X \ne A$, whenever $0 \in K$), the set of all them being denoted by $\operatorname{MI}^K(T)$. A closure system over A is any $C \subseteq \wp(A)$ such that, for every $S \subseteq C$, it holds that $(A \cap \bigcap S) \in C$, in which case the poset $\langle C, \subseteq \cap C^2 \rangle$ to be identified with C alone is a complete lattice with meet $A \cap \bigcap$. In that case, any $B \subseteq C$ is called a (closure) basis of C, provided $C = \{A \cap \bigcap S \mid S \subseteq B\}$. An operator over A is any unary operation O on $\wp(A)$. This is said to be (monotonic) [idempotent] $\{transitive\}$ $\langle inductive/finitary/compact \rangle$, provided, for all $(B, D) \in \wp(A)$ $\langle resp.$, any upward-directed $U \subseteq \wp(A) \rangle$, it holds that $(O(B))[D]\{O(O(D)\} \subseteq O(D) \ \langle resp.$, $O(\bigcup U) \subseteq \bigcup O[U] \rangle$. A closure operator over A is any monotonic idempotent transitive operator C over A, in which case img C is a closure system over A, determining C uniquely, because, for every closure basis B of img C (including img C itself) and each $X \subseteq A$, it holds that $C(X) = (A \cap \bigcap \{Y \in B \mid X \subseteq Y\})$, called dual to C and vice versa. (Clearly, C is inductive iff img C is so.)

Remark 2.1. As a consequence of Zorn's Lemma, according to which any inductive non-empty set has a maximal element, given any inductive closure system \mathcal{C} , $\mathrm{MI}(\mathcal{C})$ is a closure basis of \mathcal{C} , and so is $\mathrm{MI}^K(\mathcal{C}) \supseteq \mathrm{MI}(\mathcal{C})$, where $K \subseteq \infty$.

A [dual] Galois retraction between posets $\langle P, \leqq \rangle$ and $\langle Q, \lesssim \rangle$ is any couple $\langle f, g \rangle$ of anti-monotonic [resp., monotonic] mappings $f: P \to Q$ and $g: Q \to P$ such that $(g \circ f) = \Delta_P$ and $(f \circ g) \subseteq \lesssim^{[-1]}$, in which case case the former poset is said to be a [dual] Galois retract of the latter, while f is a dual embedding [resp., an embedding] of the former into the latter. (Galois retractions are exactly Galois connections with injective/surjective left/right component; cf. [21] and [27]. Moreover, dual Galois retractions between $\langle P, \leqq \rangle$ and $\langle Q, \lesssim \rangle$ are exactly Galois retractions between $\langle P, \leqq \rangle$ and $\langle Q, \lesssim \rangle$ are exactly Galois retractions between $\langle P, \leqq \rangle$ and $\langle Q, \lesssim^{-1} \rangle$.)

2.2. **Algebraic background.** Unless otherwise specified, abstract algebras are denoted by Fraktur letters (possibly, with indices/prefixes/suffixes), their carriers (viz., underlying sets) being denoted by corresponding Italic letters (with same indices/prefixes/suffixes, if any).

Let \mathfrak{A} be an algebra. Then, $\operatorname{Con}(\mathfrak{A})$ is an inductive closure system over A^2 , in which case \mathfrak{A} is said to be *simple/congruence-distributive*, whenever the lattice $\operatorname{Con}(\mathfrak{A})$ is two-element/distributive. Next, \mathfrak{A} is said to be *subdirectly irreducible*, provided $\Delta_A \in \operatorname{MI}(\operatorname{Con}(\mathfrak{A}))$, in which case |A| > 1. (Clearly, any simple algebra is subdirectly irreducible.)

A (propositional) language/signature is any algebraic (viz., functional) signature Σ (to be dealt with by default throughout the paper) constituted by function (viz., operation) symbols of finite arity to be treated as (propositional) connectives. Given any $\alpha \in \wp_{\infty[\backslash 1]}(\omega)$ [in case Σ has no nullary symbol], put $V_{\alpha} \triangleq \{x_{\beta} | \beta \in \alpha\}$ and $(\forall_{\alpha}) \triangleq (\forall V_{\alpha})$. Then, we have the absolutely-free Σ -algebra $\mathfrak{Fm}^{\alpha}_{\Sigma}$ freely-generated by the set V_{α} , elements of which being viewed as (propositional) variables of rank α , referred to as the formula Σ -algebra of rank α , its endomorphisms/elements of its carrier $\operatorname{Fm}^{\alpha}_{\Sigma}$ (viz., Σ -terms of rank α) being called (propositional) Σ -substitutions/-formulas of rank α . A Σ -equation/identity of rank α is then any couple of the form $\phi \approx \psi$, where $\phi, \psi \in \operatorname{Fm}^{\alpha}_{\Sigma}$, to be identified with the ordered pair $\langle \phi, \psi \rangle$, the set of all them being denoted by $\operatorname{Eq}^{\alpha}_{\Sigma}$. (In general, the reservation "of rank α " is normally omitted, whenever $\alpha = \omega$.) Given any $[m, n] \in \omega$, by $\sigma_{[m:]+n}$ we denote the Σ -substitution extending $[x_i/x_{i+n}]_{i\in(\omega[\backslash m])}$.

The variety axiomatized by a given $\mathfrak{I} \subseteq \operatorname{Eq}_{\Sigma}^{\omega}$ is the class of all Σ -algebras satisfying each identity in \mathfrak{I} . A $\theta \in \operatorname{Con}(\mathfrak{Fm}_{\Sigma}^{\omega})$ is said to be fully invariant, provided $\sigma[\theta] \subseteq \theta$, for every Σ -substitution σ , in which case θ is the set of all Σ -identities satisfied in the variety axiomatized by θ . Conversely, the set θ_{V} of all Σ -identities satisfied in a variety V (clearly, axiomatized by θ_{V}) is a fully invariant congruence of $\mathfrak{Fm}_{\Sigma}^{\omega}$. In this way, the closure system of all fully invariant congruences of $\mathfrak{Fm}_{\Sigma}^{\omega}$ is dual isomorphic to the lattice of all varieties of Σ -algebras (cf. [6]).

A class K of Σ -algebras is said to be *congruence-distributive*, whenever every member of it is so. In general, the class of all [non-one-element] subalgebras/homomorphic images/isomorphic copies of members of K is denoted by $(\mathbf{S}/\mathbf{H}/\mathbf{I})_{[>1]}\mathsf{K}$, respectively. Likewise, the class of all subdirectly irreducible members of K is denoted by Si(K). Finally, the variety *generated* by K (viz., the least one including K), being clearly axiomatized by the set of all Σ -identities true in K, is denoted by $\mathbf{V}(\mathsf{K})$. The variety $\mathbf{V}(\varnothing)$, constituted by all one-element Σ -algebras, is said to be *trivial*.

Let I be a set, $\overline{\mathfrak{A}}$ an I-tuple of Σ -algebras and \mathfrak{B} a subalgebra of $\mathfrak{C} \triangleq \prod_{i \in I} \mathfrak{A}_i$. Given any [prime] filter \mathfrak{F} on I (viz., a non-empty [proper prime] filter of the lattice $\langle \wp(I), \cap, \cup \rangle$), we then have $\theta_{\mathfrak{F}}^B \triangleq \{\langle \bar{a}, \bar{b} \rangle \in B^2 \mid \{i \in I \mid a_i = b_i\} \in \mathfrak{F}\} \in \mathrm{Con}(\mathfrak{B})$, congruences of such a kind being referred to as [prime] filtral [in which case:

$$(\mathfrak{C}/\theta_{\mathfrak{F}}^C) \in \mathbf{I}(\operatorname{img}\overline{\mathfrak{A}}),$$

whenever both $\operatorname{img} \overline{\mathfrak{A}}$ and all members of it are finite].

Recall the following useful well-known facts:

Lemma 2.2. Let \mathfrak{A} and \mathfrak{B} be Σ -algebras and $h \in \text{hom}(\mathfrak{A}, \mathfrak{B})$. (Suppose (img h) = B.) Then, for every $\vartheta \in \text{Con}(\mathfrak{B})$, $h^{-1}[\vartheta] \in \{\theta \in \text{Con}(\mathfrak{A}) \mid (\text{ker } h) \subseteq \theta\}$ (whereas $h[h^{-1}[\vartheta]] = \vartheta$, while, conversely, for every $\theta \in \text{Con}(\mathfrak{A})$ such that $(\text{ker } h) \subseteq \theta$, $h[\theta] \in \text{Con}(\mathfrak{B})$, whereas $h^{-1}[h[\theta]] = \theta$).

Remark 2.3 (cf., e.g., Theorem 1.3 of [13]). In view of Remark 2.1, given any member $\mathfrak A$ of a variety $V, \Theta \triangleq \operatorname{MI}(\operatorname{Con}(\mathfrak A))$ is a basis of the inductive closure system $\operatorname{Con}(\mathfrak A)$ over A^2 , each $(\mathfrak A/\theta) \in V$, where $\theta \in \Theta$, being subdirectly irreducible, in view of Lemma 2.2, in which case $\Delta_A = (A^2 \cap \bigcap \Theta)$, so $e \triangleq (\prod_{\theta \in \Theta} \nu_\theta) : A \to (\prod_{\theta \in \Theta} (A/\theta))$ is an embedding of $\mathfrak A$ into $\prod_{\theta \in \Theta} (\mathfrak A/\theta)$, and so is an isomorphism from $\mathfrak A$ onto the subdirect product $(\prod_{\theta \in \Theta} (\mathfrak A/\theta)) \upharpoonright (\operatorname{img} e)$ of the tuple $\langle \mathfrak A/\theta \rangle_{\theta \in \Theta}$ constituted by subdirectly irreducible members of V. In particular, $V = V(\operatorname{Si}(V))$.

²In general, any mention of K is normally omitted, whenever $K = \infty$. Likewise, "finitely-/pairwise-" means " ω -/{2}-", respectively.

Lemma 2.4 (cf., e.g., the proof of Theorem 2.6 of [13]). Let I be a set, $\overline{\mathfrak{A}}$ an I-tuple of Σ -algebras, \mathfrak{B} a congruence-distributive subalgebra of $\prod_{i \in I} \mathfrak{A}_i$ and $\theta \in \mathrm{MI}(\mathrm{Con}(\mathfrak{B}))$. Then, there is some prime filter \mathfrak{F} on I such that $\theta^B_{\mathfrak{F}} \subseteq \theta$.

Then, combining (2.1), Lemmas 2.2, 2.4 and the Algebra Homomorphism Theorem, we get:

Corollary 2.5 (cf., e.g., Theorem 2.6 of [13]). Let K be a finite class of finite Σ -algebras. Suppose $V \triangleq V(K)$ is congruence-distributive. Then, $Si(V) \subseteq \mathbf{H}_{>1}\mathbf{S}_{>1}K$. In particular, $Si(V) = \mathbf{IS}_{>1}K$, whenever every member of $\mathbf{S}_{>1}K$ is simple, in which case every member of Si(V) is simple.

And what is more, we also have:

Corollary 2.6 (Congruence filtrality). Let K be a finite class of finite Σ -algebras, I a set, $\overline{\mathfrak{A}} \in \mathsf{K}^I$ and \mathfrak{B} a congruence-distributive subalgebra of $\mathfrak{C} \triangleq \prod_{i \in I} \mathfrak{A}_i$. Suppose every member of $\mathbf{S}_{>1}\mathsf{K}$ is simple. Then, each element of $\mathrm{Con}(\mathfrak{B})$ is filtral.

Proof. Consider any $\theta \in \mathrm{MI}(\mathrm{Con}(\mathfrak{B}))$, in which case $\theta \neq B^2$. Then, by Lemma 2.4, there is some prime filter \mathfrak{F} on I such that $\mathrm{Con}(\mathfrak{B}) \ni \vartheta \triangleq \theta^B_{\mathfrak{F}} \subseteq \theta$, in which case we have $\eta \triangleq \theta^C_{\mathfrak{F}} \in \mathrm{Con}(\mathfrak{C})$, while $B^2 \neq \vartheta = (B^2 \cap \eta) = \ker(\nu_{\eta} \upharpoonright \Delta_B)$, and so, by the Algebra Homomorphism Theorem and (2.1), we get $(\mathfrak{B}/\vartheta) \in \mathrm{IS}_{>1}(\mathfrak{C}/\eta) \subseteq \mathrm{IS}_{>1}\mathrm{IK} \subseteq \mathrm{IS}_{>1}\mathrm{K}$. Hence, by Lemma 2.2, we eventually get $\theta = \vartheta$. Thus, each element of $\mathrm{MI}(\mathrm{Con}(\mathfrak{B}))$ is filtral. In this way, Remark 2.1 and the fact that the set of all filters on I is a closure system over $\wp(I)$, while the mapping $\mathfrak{F} \mapsto \theta^B_{\mathfrak{F}}$ preserves intersections, complete the argument. \square

By Corollary 2.6, we then immediately get:

Corollary 2.7 (Congruence inheritance). Let $\Sigma' \subseteq \Sigma$, K a finite class of finite Σ -algebras, I a set, $\overline{\mathfrak{A}} \in K^I$ and \mathfrak{B} a subalgebra of $\prod_{i \in I} \mathfrak{A}_i$. Suppose every member of $\mathbf{S}_{>1}(K \upharpoonright \Sigma')$ is simple and $\mathfrak{B} \upharpoonright \Sigma'$ is congruence-distributive. Then, $\operatorname{Con}(\mathfrak{B}) = \operatorname{Con}(\mathfrak{B} \upharpoonright \Sigma')$.

2.3. Propositional logics and matrices. A Σ -rule is any couple $\langle \Gamma, \varphi \rangle$, where $(\Gamma \cup \{\varphi\}) \in \wp_{\omega}(\operatorname{Fm}_{\Sigma}^{\omega})$, normally written in the standard sequent form $\Gamma \vdash \varphi$, φ /any element of Γ being referred to as the/a conclusion/premise of it. A (substitutional) Σ -instance of it is then any Σ -rule of the form $\sigma(\Gamma \vdash \varphi) \triangleq (\sigma[\Gamma] \vdash \sigma(\varphi))$, where σ is a Σ -substitution. As usual, Σ -rules without premises are called Σ -axioms and are identified with their conclusions. A[n] [axiomatic] Σ -calculus is any set \mathbb{C} of Σ -rules [without premises], the set of all Σ -instances of its elements being denoted by $\operatorname{SI}_{\Sigma}(\mathbb{C})$. Then, $\Gamma \vdash \varphi$ is said to be derivable in \mathbb{C} , if there is a \mathbb{C} -derivation of it, i.e., a proof of φ (in the conventional proof-theoretical sense) by means of axioms and rules in $\Gamma \cup \operatorname{SI}_{\Sigma}(\mathbb{C})$.

A (propositional) Σ -logic is any closure operator C over $\operatorname{Fm}_{\Sigma}^{\omega}$ that is structural in the sense that $\sigma[C(X)] \subseteq C(\sigma[X])$, for all $X \subseteq \operatorname{Fm}_{\Sigma}^{\omega}$ and all $\sigma \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{Fm}_{\Sigma}^{\omega})$, or, equivalently, $\operatorname{im} C$ is closed under inverse Σ -substitutions (we sometimes write $X \vdash_C Y$ for $C(X) \supseteq Y$). A(n) (in)-consistent set of C is any $X \subseteq \operatorname{Fm}_{\Sigma}^{\omega}$ such that $C(X) \neq (=)\operatorname{Fm}_{\Sigma}^{\omega}$. Then, C is said to be $[\inf Frentially]$ (in)-consistent, provided $\varnothing[\cup\{x_0\}]$ is a(n in)-consistent set of C or, equivalently, in view of the structurality of C, $x_1 \notin (\in)C(\varnothing[\cup\{x_0\}])$. A Σ -rule $\Gamma \vdash \varphi$ is said to be satisfied in C, provided $\varphi \in C(\Gamma)$, Σ -axioms satisfied in C being referred to as its theorems. A [proper]-extension of C is any Σ -logic $C' \supseteq C$ [distinct from C], in which case C is said to be a [proper]-sublogic of C'. Then, an extension C' of C is said to be [proper]-extension of C satisfying each rule of C. The extension $C \cap C$ of the diagonal C-logic relatively axiomatized by C is said to be C-curve and satisfies any C-rule iff this is derivable in C. (Conversely, any inductive C-logic is axiomatized by the set of all C-rules satisfied in it.) An extension C' of C is said to be C-calculus C-calculus

$$(2.2) C'(X) = C(X \cup \operatorname{SI}_{\Sigma}(A)).$$

Next, C is said to be [inferentially] maximal, whenever it is [inferentially] consistent and has no proper [inferentially] consistent extension. Further, C is said to be [weakly] \diamond -conjunctive (cf. [18]), where \diamond is a (possibly, secondary) binary connective of Σ , provided $C(\phi \diamond \psi)[\supseteq] = C(\{\phi, \psi\})$, for all $\phi, \psi \in \operatorname{Fm}_{\Sigma}^{\omega}$. Next, C is said to have the Property of Weak Contraposition with respect to a unary connective \wr of Σ (cf. [16]), provided $(\psi \in C(\phi)) \Rightarrow (\wr \phi \in C(\wr \psi))$, for all $\phi, \psi \in \operatorname{Fm}_{\Sigma}^{\omega}$. Likewise, C is said to be [maximally] \wr -paraconsistent, provided $x_1 \notin C(\{x_0, \wr x_0\})$ [and C has no proper \wr -paraconsistent extension]. Furthermore, C is said to be non-pseudo-axiomatic (cf. [18]), provided $\bigcap_{k \in \omega} C(x_k) \subseteq C(\varnothing)$ (the converse inclusion always holds by the monotonicity of C). Likewise, it is said to be purely-inferential/theorem-less, provided $C(\varnothing) = \varnothing$ or, equivalently, $\varnothing \in (\operatorname{img} C)$. In addition, Relevance Principle (viz., Variable Sharing Property; cf. [1]) is said to hold/satisfied in C, provided, for every $\alpha \in (\omega \setminus 1)$, all $\phi \in \operatorname{Fm}_{\Sigma}^{\alpha}$ and all $\psi \in \operatorname{Fm}_{\Sigma}^{\omega \setminus \alpha}$, $\psi \notin C(\phi)$, in which case C has neither a theorem nor an inconsistent formula. Finally, C is said to be self-extensional (cf. [18]), provided $\exists_C \triangleq (\operatorname{Eq}_{\Sigma}^{\omega} \cap (\ker C)) \in \operatorname{Con}(\mathfrak{Fm}_{\Sigma}^{\omega})$, in which case, by the sructurality of C, \exists_C is fully invariant, the corresponding variety being called the intrinsic variety of C and denoted by $\operatorname{IV}(C)$.

Remark 2.8. Given a Σ -logic C, we have the Σ -logic $C_{+/-0}$, defined by $C_{+/-0}(X) \triangleq C(X)$, for all non-empty $X \subseteq \operatorname{Fm}_{\Sigma}^{\omega}$, and $C_{+/-0}(\varnothing) \triangleq (\varnothing/(\bigcap_{k \in \omega} C(x_k)))$, being the greatest/least purely-inferential/non-pseudo-axiomatic sublogic/extension of C, called the purely-inferential/non-pseudo-axiomatic version of C, in which case $\equiv_C = \equiv_{C_{+/-0}}$. Then, the mappings $C \mapsto C_{+0}$ and $C \mapsto C_{-0}$ are inverse to one another isomorphisms between the posets of all non-pseudo-axiomatic and of all purely-inferential Σ -logics ordered by \subseteq .

Remark 2.9 (cf. Theorem 4.8 of [18] for the "non-pseudo-axiomatic" case). Since any inductive non-pseudo-axiomatic conjunctive logic C'' is uniquely determined by $\equiv_{C''}$, while the conjunctivity is retained by extensions, in view of Remark 2.8, we conclude that, given any inductive non-pseudo-axiomatic/purely-inferential conjunctive self-extensional Σ -logic C, the mapping $C' \mapsto \mathrm{IV}(C')$ is a dual embedding of the poset of all inductive non-pseudo-axiomatic/purely-inferential self-extensional extensions of C into the lattice of all subvarieties of $\mathrm{IV}(C)$.

Since any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic, Remark 2.9 actually enhances Theorem 4.8 of [18] beyond non-pseudo-axiomatic logics.

A (propositional) Σ -matrix (cf. [9]) is any couple of the form $\mathcal{A} = \langle \mathfrak{A}, D^{\mathcal{A}} \rangle$, where \mathfrak{A} is a Σ -algebra, called the underlying algebra of \mathcal{A} , while $D^{\mathcal{A}} \subseteq A$ is called the truth predicate of \mathcal{A} , elements of which being referred to as distinguished values of \mathcal{A} . (In general, matrices are denoted by Calligraphic letters (possibly, with indices/prefixes/suffixes), their underlying algebras being denoted by corresponding Fraktur letters (with same indices/prefixes/suffixes, if any).) This is said to be n-valued/truth[-non]-empty/(in)consistent/false-singular/ truth-singular, where $n \in \omega$, provided $|A| = n/D^{\mathcal{A}} = [\neq] \varnothing / D^{\mathcal{A}} \neq (=) A/|A \setminus D^{\mathcal{A}}| \in 2/|D^{\mathcal{A}}| \in 2$. Next, given any $\Sigma' \subseteq \Sigma$, \mathcal{A} is said to be a $(\Sigma$ -)expansion of $(\mathcal{A} \upharpoonright \Sigma') \triangleq \langle \mathfrak{A} \upharpoonright \Sigma', D^{\mathcal{A}} \rangle$. (Any notation, being specified for single matrices, is supposed to be extended to classes of matrices member-wise.) Finally, the Σ -matrix $\mathbb{C}(\mathcal{A}) \triangleq \langle \mathfrak{A}, A \setminus D^{\mathcal{A}} \rangle$ is refereed to as complementary to/of \mathcal{A} .

A Σ -matrix \mathcal{A} is said to be *finite/generated by* a $B \subseteq A$, whenever \mathfrak{A} is so. Then, it is said to be K-generated, where $K \subseteq \infty$, whenever it is generated by some $B \in \wp_K(A)$.

As usual, Σ -matrices are treated as first-order model structures (viz., algebraic systems; cf. [11]) of the first-order signature $\Sigma \cup \{D\}$ with unary predicate D, any Σ -rule $\Gamma \vdash \phi$ being viewed as the basic [or universal, depending upon the context] first-order Horn formula $[\forall_{\omega}]((\bigwedge \Gamma) \to \phi)$ under the standard identification of any propositional Σ -formula ψ with the first-order atomic formula $D(\psi)$.

Given any $\alpha \in \wp_{\infty \setminus 1}(\omega)$ and any class M of Σ -matrices, we have the closure operator $\operatorname{Cn}_{\mathsf{M}}^{\alpha}$ over $\operatorname{Fm}_{\Sigma}^{\alpha}$ defined by $\operatorname{Cn}_{\mathsf{M}}^{\alpha}(X) \triangleq (\operatorname{Fm}_{\Sigma}^{\alpha} \cap \bigcap \{h^{-1}[D^{\mathcal{A}}] | \mathcal{A} \in \mathsf{M}, h \in \hom(\mathfrak{Fm}_{\Sigma}^{\alpha}, \mathfrak{A}), h[X] \subseteq D^{\mathcal{A}}\}$, for all $X \subseteq \operatorname{Fm}_{\Sigma}^{\alpha}$, in which case we have:

$$\operatorname{Cn}_{\mathsf{M}}^{\alpha}(X) = (\operatorname{Fm}_{\Sigma}^{\alpha} \cap \operatorname{Cn}_{\mathsf{M}}^{\omega}(X)),$$

because hom $(\mathfrak{Fm}_{\Sigma}^{\alpha},\mathfrak{A}) = \{h \mid \operatorname{Fm}_{\Sigma}^{\alpha} \mid h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\infty},\mathfrak{A})\}$, for any Σ -algebra \mathfrak{A} , as $A \neq \emptyset$. (Note that $\operatorname{Cn}_{\mathsf{M}}^{\alpha}(\emptyset) = \emptyset$, whenever M has a truth-empty member. Moreover, using either the ultra-product technique (cf. [11]) or the topological one (cf. [9]), $\operatorname{Cn}_{\mathsf{M}}^{\alpha}$ is shown to be inductive, whenever both M and all members of it are finite.) Then, $\operatorname{Cn}_{\mathsf{M}}^{\omega}$ is a Σ -logic called the one of M . A Σ -logic C is said to be K-defined by M , where $K \subseteq \infty$, provided $C(X) = \operatorname{Cn}_{\mathsf{M}}^{\omega}(X)$, for all $X \in \wp_K(\operatorname{Fm}_{\Sigma}^{\omega})$. A Σ -logic is said to be [minimally] n-valued, where $n \in \omega$, whenever it is defined by an n-valued Σ -matrix [but by no m-valued one with $m \in n$]. A Σ -matrix A is said to be ℓ -paraconsistent, where ℓ is a unary connective of Σ , whenever the logic of A is so. (Clearly, the logic of any class of matrices is [inferentially] consistent iff the class contains a consistent [truth-non-empty] member.)

Remark 2.10. Since any rule with[out] premises is [not] true in any truth-empty matrix, given any class M of Σ -matrices and any non-empty class S of truth-empty Σ -matrices, the logic of S \cup M is the purely-inferential version of the logic of M.

Example 2.11. Let \mathcal{A} be a two-valued consistent truth-non-empty Σ -matrix and C the logic of \mathcal{A} . Then, \equiv_C is the set of all Σ -identities true in \mathfrak{A} , i.e., in $\mathbf{V}(\mathfrak{A})$, in which case C is self-extensional, while $\mathrm{IV}(C) = \mathbf{V}(\mathfrak{A})$.

A Σ -matrix \mathcal{A} is said to be a *model of* a Σ -logic C, provided $C \subseteq \operatorname{Cn}_{\mathcal{A}}^{\omega}$, the class of all them being denoted by $\operatorname{Mod}(C)$. Next, \mathcal{A} is said to be $[weakly] \diamond$ -conjunctive, where \diamond is a (possibly, secondary) binary connective of Σ , provided $(\{a,b\} \subseteq D^{\mathcal{A}})[\Leftarrow] \Leftrightarrow ((a \diamond^{\mathfrak{A}} b) \in D^{\mathcal{A}})$, for all $a, b \in \mathcal{A}$, that is, $\operatorname{Cn}_{\mathcal{A}}^{\omega}$ is $[weakly] \diamond$ -conjunctive. Then, \mathcal{A} is said to be $[weakly] \diamond$ -disjunctive, whenever $\mathcal{C}(\mathcal{A})$ is $[weakly] \diamond$ -conjunctive.

Given any [axiomatic] Σ -calculus \mathcal{C} , members of $\operatorname{Mod}(\mathcal{C}) \triangleq \operatorname{Mod}(\operatorname{Cn}_{\mathcal{C}})$ are called its *models* as well. This fits well the above model-theoretic conventions, according to which, in particular, given a class M of Σ -matrices, $M \cap \operatorname{Mod}(\mathcal{C})$ is referred to as the relative (equality-free first-order strict) [positive] universal Horn model subclass of M relatively axiomatized by \mathcal{C} .

Let \mathcal{A} and \mathcal{B} be two Σ -matrices. A (strict) [surjective] homomorphism from \mathcal{A} [on]to \mathcal{B} is any $h \in \text{hom}(\mathfrak{A}, \mathfrak{B})$ such that [h[A] = B and] $D^{\mathcal{A}} \subseteq (=)h^{-1}[D^{\mathcal{B}}]$, the set of all them being denoted by $\text{hom}_{(S)}^{[S]}(\mathcal{A}, \mathcal{B})$. Note that:

(2.4)
$$\hom_{S}(\mathcal{A}, \mathcal{B}) = \hom_{S}(\mathcal{C}(\mathcal{A}), \mathcal{C}(\mathcal{B})).$$

And what is more, we have $(\forall h \in \text{hom}(\mathfrak{A},\mathfrak{B}) : [((\text{img }h) = B) \Rightarrow](\text{hom}(\mathfrak{Fm}^{\alpha}_{\Sigma},\mathfrak{B}) \supseteq [=]\{h \circ g | g \in \text{hom}(\mathfrak{Fm}^{\alpha}_{\Sigma},\mathfrak{A})\})$, so we get:

$$(2.5) \qquad (\exists h \in \hom_{\mathbf{S}}^{[\mathbf{S}]}(\mathcal{A}, \mathcal{B})) \Rightarrow (\operatorname{Cn}_{\mathcal{B}}^{\alpha} \subseteq [=] \operatorname{Cn}_{\mathcal{A}}^{\alpha}),$$

$$(2.6) \qquad (\exists h \in \text{hom}^{S}(\mathcal{A}, \mathcal{B})) \Rightarrow (\text{Cn}_{\mathcal{A}}^{\alpha}(\varnothing) \subseteq \text{Cn}_{\mathcal{B}}^{\alpha}(\varnothing)),$$

for all $\alpha \in \wp_{\infty \setminus 1}(\omega)$. Then, \mathcal{A} is said to be a [proper] submatrix of \mathcal{B} , whenever $\Delta_A \in \text{hom}_S(\mathcal{A}, \mathcal{B})$ [and $\mathcal{A} \neq \mathcal{B}$], in which case we set $(\mathcal{B} \upharpoonright A) \triangleq \mathcal{A}$. Injective/bijective strict homomorphisms from \mathcal{A} to \mathcal{B} are referred to as embeddings/isomorphisms of/from \mathcal{A} into/onto \mathcal{B} , in case of existence of which \mathcal{A} is said to be embeddable/isomorphic into/to \mathcal{B} .

Let \mathcal{A} be a Σ -matrix. Elements of $\operatorname{Con}(\mathcal{A}) \triangleq \{\theta \in \operatorname{Con}(\mathfrak{A}) | \theta[D^{\mathcal{A}}] \subseteq D^{\mathcal{A}}\} \ni \Delta_{\mathcal{A}}$ are called *congruences of* \mathcal{A} . Given any $\emptyset \neq \Theta \subseteq \operatorname{Con}(\mathcal{A}) \subseteq \operatorname{Con}(\mathfrak{A})$, $\operatorname{Tr}(\bigcup \Theta)$, being well-known to be a congruence of \mathfrak{A} , is then easily seen to be a congruence of \mathcal{A} . Therefore, $\partial(\mathcal{A}) \triangleq (\bigcup \operatorname{Con}(\mathcal{A})) \in \operatorname{Con}(\mathcal{A})$, in which case this is the greatest congruence of \mathcal{A} (it is this fact that justifies using the symbol ∂), while $\operatorname{Con}(\mathcal{A}) = \{\theta \in \operatorname{Con}(\mathfrak{A}) | \theta \subseteq \partial(\mathcal{A})\}$. Then, \mathcal{A} is said to be *simple*, provided $\partial(\mathcal{A}) = \Delta_{\mathcal{A}}$, the class of all simple models of a Σ -logic \mathcal{C} being denoted by $\operatorname{Mod}_*(\mathcal{C})$. Given any $\theta \in \operatorname{Con}(\mathfrak{A}[\mathcal{A}])$, we have the *quotient* Σ -matrix $(\mathcal{A}/\theta) \triangleq \langle \mathfrak{A}/\theta, \mathcal{D}^{\mathcal{A}}/\theta \rangle$, in which case $\nu_{\theta} \in \operatorname{hom}_{[S]}^{\mathbb{N}}(\mathcal{A}, \mathcal{A}/\theta)$. The quotient $\Re(\mathcal{A}) \triangleq (\mathcal{A}/\partial(\mathcal{A}))$ is called the *reduction of* \mathcal{A} .

Corollary 2.12. Let \mathcal{A} and \mathcal{B} be Σ -matrices and $h \in \text{hom}_{S}^{(S)}(\mathcal{A}, \mathcal{B})$. Then, for every $\vartheta \in \text{Con}(\mathcal{B})$, $h^{-1}[\vartheta] \in \{\theta \in \text{Con}(\mathcal{A}) \mid (\text{ker } h) \subseteq \theta\}$ (whereas $h[h^{-1}[\vartheta]] = \vartheta$, while, conversely, for every $\theta \in \text{Con}(\mathcal{A})$ such that $(\text{ker } h) \subseteq \theta$, $h[\theta] \in \text{Con}(\mathcal{B})$, whereas $h^{-1}[h[\theta]] = \theta$).

Proof. With using Lemma 2.2. First, consider any $\vartheta \in \text{Con}(\mathcal{B})$. Then, the fact that $h^{-1}[\vartheta][D^{\mathcal{A}}] \subseteq D^{\mathcal{A}}$ is by the fact that $\vartheta[D^{\mathcal{B}}] \subseteq D^{\mathcal{B}}$, while $D^{\mathcal{A}} = h^{-1}[D^{\mathcal{B}}]$. (Conversely, consider any $\theta \in \text{Con}(\mathcal{A})$ such that $\ker h \subseteq \theta$. Then, the fact that $(h[\theta])[D^{\mathcal{B}}] \subseteq D^{\mathcal{B}}$ is by the fact that $\theta[D^{\mathcal{A}}] \subseteq D^{\mathcal{A}}$, while $D^{\mathcal{A}} = h^{-1}[D^{\mathcal{B}}]$.)

By Corollary 2.12, we immediately have:

Corollary 2.13. Let \mathcal{A} and \mathcal{B} be Σ -matrices and $h \in \text{hom}_{S}(\mathcal{A}, \mathcal{B})$. Suppose \mathcal{A} is simple. Then, h is injective.

Proposition 2.14 (Matrix Homomorphism Theorem). Let \mathcal{A} , \mathcal{B} and \mathcal{C} be Σ -matrices, $f \in \text{hom}_{S}^{S}(\mathcal{A}, \mathcal{B})$ and $g \in \text{hom}_{[S]}^{(S)}(\mathcal{A}, \mathcal{C})$. Suppose $(\ker f) \subseteq (\ker g)$. Then, $h \triangleq (g \circ f^{-1}) \in \text{hom}_{[S]}^{(S)}(\mathcal{B}, \mathcal{C})$.

Proof. The fact that $h \in \text{hom}(\mathfrak{B},\mathfrak{C})$ (and h[B] = C) is well-known due to the Algebra Homomorphism Theorem. Finally, we also have $h^{-1}[D^{\mathcal{C}}] = f[g^{-1}[D^{\mathcal{C}}]] = f[D^{\mathcal{A}}] = f[f^{-1}[D^{\mathcal{B}}]] = D^{\mathcal{B}}$, for f[A] = B, as required.

Proposition 2.15. Let \mathcal{A} and \mathcal{B} be two Σ -matrices and $h \in \text{hom}_{S}^{S}(\mathcal{A}, \mathcal{B})$. Then, $\partial(\mathcal{A}) = h^{-1}[\partial(\mathcal{B})]$ and $\partial(\mathcal{B}) = h[\partial(\mathcal{A})]$.

Proof. As $\Delta_B \in \text{Con}(\mathcal{B})$, by Corollary 2.12, we have $\ker h = h^{-1}[\Delta_B] \in \text{Con}(\mathcal{A})$, and so $\ker h \subseteq \mathcal{D}(\mathcal{A})$, in which case, by Corollary 2.12, we get:

$$\begin{array}{rcl} h^{-1}[\Im(\mathcal{B})] & \subseteq & \Im(\mathcal{A}), \\ h[h^{-1}[\Im(\mathcal{B})]] & = & \Im(\mathcal{B}), \\ h[\Im(\mathcal{A})] & \subseteq & \Im(\mathcal{B}), \\ h^{-1}[h[\Im(\mathcal{A})]] & = & \Im(\mathcal{A}). \end{array}$$

These collectively imply the equalities to be proved, as required.

Since, for any equivalence θ on any set A, it holds that $\nu_{\theta}[\theta] = \Delta_{A/\theta}$, as an immediate consequence of Proposition 2.15, we also have:

Corollary 2.16. Let A be a Σ -matrix. Then, $\Re(A)$ is simple.

Proposition 2.17. Let C be a Σ -logic and M a finite class of finite Σ -matrices. Suppose C is finitely-defined by M. Then, C is defined by M. In particular, C is inductive.

Proof. In that case, $C' \triangleq \operatorname{Cn}_{\mathsf{M}}^{\omega} \subseteq C$, for C' is inductive, while $\equiv_{C} = \equiv_{C'}$. For proving the converse point-wise inclusion, it suffices to prove that $\mathsf{M} \subseteq \operatorname{Mod}(C)$. For consider any $\mathcal{A} \in \mathsf{M}$, any $\Gamma \subseteq \operatorname{Fm}_{\Sigma}^{\omega}$, any $\varphi \in C(\Gamma)$ and any $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$ such that $h[\Gamma] \subseteq D^{\mathcal{A}}$. Then, $\alpha \triangleq |A| \in (\wp_{\infty \setminus 1}(\omega) \cap \omega)$. Take any bijection $e : V_{\alpha} \to A$ to be extended to a $g \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$. Then, $e^{-1} \circ (h \upharpoonright V_{\omega})$ is extended to a Σ-substitution σ , in which case $\sigma(\varphi) \in C(\sigma[\Gamma])$, for C is structural, while $\sigma[\Gamma \cup \{\varphi\}] \subseteq \operatorname{Fm}_{\Sigma}^{\alpha}$. For every $\mathcal{B} \in \mathsf{M}$, we have the equivalence relation $\theta^{\mathcal{B}} \triangleq \{\langle a, b \rangle \in B^2 \mid (a \in D^{\mathcal{B}}) \Leftrightarrow (b \in D^{\mathcal{B}})\}$ on \mathcal{B} , in which case $\mathcal{B}/\theta^{\mathcal{B}}$ is finite, for \mathcal{B} is so. Moreover, as both α , \mathcal{M} and all members of it are finite, we have the finite set $I \triangleq \{\langle h', \mathcal{B} \rangle \mid \mathcal{B} \in \mathsf{M}, h' \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\alpha}, \mathfrak{B})\}$, in which case, for each $i \in I$, we set $h_i \triangleq \pi_0(i)$, $\mathcal{B}_i \triangleq \pi_1(i)$ and $\theta_i \triangleq \theta^{\mathcal{B}_i}$. Then, by (2.3), we have $\theta \triangleq (\equiv_{C'} \cap \operatorname{Eq}_{\Sigma}^{\alpha}) = (\operatorname{Eq}_{\Sigma}^{\alpha} \cap \bigcap_{i \in I} h_i^{-1}[\theta_i])$, in which case, for every $i \in I$, $\theta \subseteq h_i^{-1}[\theta_i] = \ker(\nu_{\theta_i} \circ h_i)$, and so $g_i \triangleq (\nu_{\theta_i} \circ h_i \circ \nu_{\theta}^{-1}) : (\operatorname{Fm}_{\Sigma}^{\alpha}/\theta) \to \mathcal{B}_i$. In this way, $f \triangleq (\prod_{i \in I} g_i) : (\operatorname{Fm}_{\Sigma}^{\alpha}/\theta) \to (\prod_{i \in I} B_i)$ is injective, for (\kappa f \mathbb{E}) = ((\mathbb{Em}_{\Sigma}^{\alpha}/\theta)^2 \cap \bigcap_{i \in I} (\ker g_i)) is diagonal. Hence, $\operatorname{Fm}_{\Sigma}^{\alpha}/\theta$ is finite, for $\prod_{i \in I} B_i$ is so, and so is $(\sigma[\Gamma]/\theta) \subseteq (\operatorname{Fm}_{\Sigma}^{\alpha}/\theta)$. For each $c \in (\sigma[\Gamma]/\theta)$, choose any $\phi_c \in (\sigma[\Gamma] \cap \nu_{\theta}^{-1}[\{c\}]) \neq \emptyset$. Put $\Delta \triangleq \{\phi_c \mid c \in (\sigma[\Gamma]/\theta)\} \in \wp_{\omega}(\sigma[\Gamma])$. Consider any $\psi \in \sigma[\Gamma]$. Then, $\Delta \ni \phi_{[\psi]_{\theta}} \equiv_{C} \psi$, in which case $\psi \in C(\Delta)$, and so $\sigma[\Gamma] \subseteq C(\Delta)$. In this way, $\sigma(\varphi) \in C(\Delta) = C'(\Delta)$, for $\Delta \in \wp_{\omega}(\operatorname{Fm}_{\Sigma}^{\omega})$, so, by (2.3), $\sigma(\varphi) \in \operatorname{Cn}_{\mathsf{M}}^{\alpha}(\Delta)$. Moreover, $g[\Delta] \subseteq g[\sigma[\Gamma]] = h[\Gamma] \subseteq D^{\mathcal{A}}$, and so $h(\varphi) = g(\sigma(\varphi)) \in D^{\mathcal{A}}$, as required.

Proposition 2.18. Let M be a class of truth-non-empty Σ -matrices. Then, the logic of M is non-pseudo-axiomatic.

Proof. Consider any $\varphi \in \bigcap_{k \in \omega} \operatorname{Cn}_{\mathsf{M}}^{\omega}(x_k)$, any $\mathcal{A} \in \mathsf{M}$ and any $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$. Then, $\varphi \in \operatorname{Fm}_{\Sigma}^{k}$, for some $k \in \omega$. Choose any $a \in D^{\mathcal{A}} \neq \emptyset$. Let $g \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$ extend $(h \upharpoonright (V_{\omega} \setminus \{x_k\})) \cup \{\langle x_k, a \rangle\}$. Then, $g(x_k) = a \in D^{\mathcal{A}}$, and so $h(\varphi) = g(\varphi) \in D^{\mathcal{A}}$. \square

Given a set I and an I-tuple $\overline{\mathcal{A}}$ of Σ -matrices, [any submatrix \mathcal{B} of] the Σ -matrix $(\prod_{i \in I} \mathcal{A}_i) \triangleq (\prod_{i \in I} \mathfrak{A}_i, (\prod_{i \in I} A_i) \cap \bigcap_{i \in I} \pi_i^{-1}[D^{\mathcal{A}_i}])$ is called the [a] $[sub]direct\ product\ of\ \overline{\mathcal{A}}$ [whenever, for each $i \in I$, $\pi_i[B] = A_i$]. As usual, when I = 2, $\mathcal{A}_0 \times \mathcal{A}_1$ stands for the direct product involved. Likewise, if $(img\ \overline{\mathcal{A}}) \subseteq \{\mathcal{A}\}$ (and I = 2), where \mathcal{A} is a Σ -matrix, $\mathcal{A}^I \triangleq (\prod_{i \in I} \mathcal{A}_i)$ [resp., \mathcal{B}] is called the [a] $[sub]direct\ I$ -power (square) of \mathcal{A} .

Lemma 2.19 (Subdirect Product Lemma). Let M be a [finite] class of [finite] Σ -matrices and \mathcal{A} a {truth-non-empty} (simple) ($[\omega \cap](\omega + 1)$)-generated model of the logic of M. Then, there is some strict surjective homomorphism from a subdirect product of a [finite] tuple constituted by consistent {truth-non-empty} submatrices of members of M onto $\Re(\mathcal{A})$ (resp., onto \mathcal{A} itself).

Proof. Take any $A' \in \wp_{[\omega\cap](\omega+1)}(A)$ generating \mathfrak{A} and any $a \in A \neq \emptyset$, in which case $A'' \triangleq (A' \cup \{a\}) \in (\wp_{[\omega\cap](\omega+1)}(A) \setminus 1)$ generates \mathfrak{A} , and so $\alpha \triangleq |A''| \in (([\omega\cap](\omega+1)) \setminus 1) \subseteq \wp_{\infty\setminus 1}(\omega)$. Next, take any bijection from V_{α} onto A'' to be extended to a surjective $h \in \text{hom}(\operatorname{Fm}_{\Sigma}^{\alpha}, \mathfrak{A})$, in which case it is a surjective strict homomorphism from $\mathcal{B} \triangleq \langle \operatorname{Fm}_{\Sigma}^{\alpha}, X \rangle$, where $\{\emptyset \neq \}X \triangleq h^{-1}[D^A]$, onto A, and so, by (2.5), \mathcal{B} is a $\{\text{truth-non-empty}\}$ model of the logic of M. Then, applying (2.3) twice, we get $\operatorname{Cn}_{M}^{\alpha}(X) \subseteq \operatorname{Cn}_{\mathcal{B}}^{\alpha}(X) \subseteq X \subseteq \operatorname{Cn}_{M}^{\alpha}(X)$. Furthermore, we have the [finite] set $I \triangleq \{\langle h', \mathcal{D} \rangle \mid h' \in \text{hom}(\mathcal{B}, \mathcal{D}), \mathcal{D} \in M, (\text{img } h') \not\subseteq \mathcal{D}^{\mathcal{D}}\}$, in which case, for every $i \in I$, we set $h_i \triangleq \pi_0(i)$, and so $\mathcal{C}_i \triangleq (\pi_1(i) \mid (\text{img } h_i))$ is a consistent $\{\text{truth-non-empty}\}$ submatrix of $\pi_1(i) \in M$. Clearly, $X = \operatorname{Cn}_{M}^{\alpha}(X) = (\operatorname{Fm}_{\Sigma}^{\alpha} \cap \bigcap_{i \in I} h_i^{-1}[\mathcal{D}^{\mathcal{C}_i}])$. Therefore, $g \triangleq (\prod_{i \in I} h_i) : \operatorname{Fm}_{\Sigma}^{\alpha} \to (\prod_{i \in I} C_i)$ is a strict homomorphism from \mathcal{B} to $\prod_{i \in I} \mathcal{C}_i$ such that, for each $i \in I$, $(\pi_i \circ g) = h_i$, in which case $\pi_i[g[\operatorname{Fm}_{\Sigma}^{\alpha}]] = h_i[\operatorname{Fm}_{\Sigma}^{\alpha}] = C_i$, and so g is a surjective strict homomorphism from \mathcal{B} onto the subdirect product $\mathcal{E} \triangleq ((\prod_{i \in I} \mathcal{C}_i) \mid (\operatorname{img} g))$ of $\overline{\mathcal{C}}$. Put $\theta \triangleq \partial(\mathcal{A})(=\Delta_A)$ and $\mathcal{F} \triangleq (\mathcal{A}/\theta)$. Then, $f \triangleq (\nu_{\theta} \circ h) \in \operatorname{hom}_{\mathbb{S}}^{\mathcal{E}}(\mathcal{F}, \mathcal{F})$. Therefore, by Corollaries 2.12, 2.16 and Proposition 2.15, we have $(\ker g) = g^{-1}[\Delta_E] \subseteq \partial(\mathcal{B}) = f^{-1}[\Delta_F] = (\ker f)$, in which case, by Proposition 2.14, $e \triangleq (f \circ h^{-1}) \in \operatorname{hom}_{\mathbb{S}}^{\mathcal{E}}(\mathcal{F}, \mathcal{F})$ (and so $(\nu_{\theta}^{-1} \circ e) \in \operatorname{hom}_{\mathbb{S}}^{\mathcal{E}}(\mathcal{F}, \mathcal{A})$), as required.

Given a class M of Σ -matrices, the class of all (truth-non-empty) [consistent] submatrices of members of M is denoted by $\mathbf{S}_{[*]}^{(*)}(\mathsf{M})$, respectively. Likewise, the class of all [sub]direct products of tuples (of cardinality $\in K \subseteq \infty$) constituted by members of M is denoted by $\mathbf{P}_{(K)}^{[\mathrm{SD}]}(\mathsf{M})$. Clearly, $\mathrm{Mod}(C)$, where C is a Σ -logic, is closed under \mathbf{P} .

Theorem 2.20. Let K and M be classes of Σ -matrices, C the logic of M and C' an extension of C. Suppose (both M and all members of it are finite and) $[\Re](\mathbf{P}^{\mathrm{SD}}_{(\omega)}(\mathbf{S}_*(\mathsf{M}))) \subseteq \mathsf{K}$ {in particular, $[\Re](\mathbf{S}(\mathbf{P}_{(\omega)}(\mathsf{M}))) \subseteq \mathsf{K}$ {in particular, $\mathsf{K} \supseteq \mathsf{M}$ is closed under both S and $\mathbf{P}_{(\omega)}$ [as well as \Re] \rangle }. Then, C' is (finitely-)defined by $\mathsf{S} \triangleq (\mathrm{Mod}_{[*]}(C') \cap \mathsf{K})$.

Proof. Clearly, $C' \subseteq \operatorname{Cn}_{\Sigma}^{S}$, for $S \subseteq \operatorname{Mod}(C')$. Conversely, consider any $(\Gamma \cup \{\varphi\}) \in \wp_{(\omega)}(\operatorname{Fm}_{\Sigma}^{\omega})$, in which case (there is some $\alpha' \in (\omega \setminus 1)$ such that $(\Gamma \cup \{\varphi\}) \subseteq \operatorname{Fm}_{\Sigma}^{\alpha'}$, and so) $(\Gamma \cup \{\varphi\}) \subseteq \operatorname{Fm}_{\Sigma}^{\alpha}$, where $\alpha \triangleq ((\alpha' \cap \omega) \in \wp_{\infty \setminus 1}(\omega))$, such that $\varphi \notin C'(\Gamma)$. Then, by the structurality of C', $(\mathfrak{Fm}_{\Sigma}^{\omega}, C'(\Gamma))$ is a model of C' (in particular, of C), and so is its $(\alpha + 1)$ -generated (in particular, finitely-generated) submatrix $A \triangleq (\mathfrak{Fm}_{\Sigma}^{\alpha}, C'(\Gamma) \cap \operatorname{Fm}_{\Sigma}^{\alpha})$, in view of (2.5), in which case $\varphi \notin \operatorname{Cn}_{\mathcal{A}}^{\alpha}(\Gamma)$, by the idempotencity of C', and so $\varphi \notin \operatorname{Cn}_{\mathcal{A}}^{\omega}(\Gamma)$, in view of (2.3). Therefore, by Lemma 2.19, there are some $\mathcal{B} \in \operatorname{P}_{(\omega)}^{\operatorname{SD}}(\mathbf{S}_{*}(\mathsf{M}))$, in which case $\mathcal{D} \triangleq [\Re](\mathcal{B}) \in [\Re](\mathbf{P}_{(\omega)}^{\operatorname{SD}}(\mathbf{S}_{*}(\mathsf{M}))) \subseteq \mathsf{K}$, and some $g \in \operatorname{hom}_{S}^{S}(\mathcal{B}, \mathcal{A}/\partial(\mathcal{A}))$. Then, by (2.5), $\operatorname{Cn}_{\mathcal{D}}^{\omega} = \operatorname{Cn}_{\mathcal{A}}^{\omega}$, in which case [by Corollary 2.16] $\mathcal{D} \in \mathsf{S}$, and so $\varphi \notin \operatorname{Cn}_{S}^{\omega}(\Gamma)$, as required.

Corollary 2.21. Let M be a class of Σ -matrices and A an axiomatic Σ -calculus. Then, the axiomatic extension C' of the logic C of M relatively axiomatized by A is defined by $\mathbf{S}_*(\mathsf{M}) \cap \mathrm{Mod}(A)$.

Proof. Then, $\operatorname{Mod}(C') = (\operatorname{Mod}(C) \cap \operatorname{Mod}(A))$, and so (2.5), (2.6) and Theorem 2.20 with $\mathsf{K} \triangleq \mathbf{P}^{\operatorname{SD}}(\mathbf{S}_*(\mathsf{M})) \subseteq \operatorname{Mod}(C)$, in which case $(\operatorname{Mod}(C') \cap \mathsf{K}) = (\operatorname{Mod}(A) \cap \mathsf{K}) = \mathbf{P}^{\operatorname{SD}}(\mathbf{S}_*(\mathsf{M}) \cap \operatorname{Mod}(A))$, complete the argument.

Given any Σ -logic C and any $\Sigma' \subseteq \Sigma$, in which case $\operatorname{Fm}_{\Sigma'}^{\alpha} \subseteq \operatorname{Fm}_{\Sigma'}^{\alpha}$ and $\operatorname{hom}(\mathfrak{Fm}_{\Sigma'}^{\alpha}, \mathfrak{Fm}_{\Sigma'}^{\alpha}) = \{h \upharpoonright \operatorname{Fm}_{\Sigma'}^{\alpha} \mid h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\alpha}, \mathfrak{Fm}_{\Sigma}^{\alpha}), h[\operatorname{Fm}_{\Sigma'}^{\alpha}] \subseteq \operatorname{Fm}_{\Sigma'}^{\alpha} \}$, for all $\alpha \in \wp_{\infty \setminus 1}(\omega)$, we have the Σ' -logic C', defined by $C'(X) \triangleq (\operatorname{Fm}_{\Sigma'}^{\omega} \cap C(X))$, for all $X \subseteq \operatorname{Fm}_{\Sigma'}^{\omega}$, called the Σ' -fragment of C, in which case C is said to be a $(\Sigma$ -)expansion of C'. In that case, given also any class M of Σ -matrices defining C, in its turn, C' is defined by $M \upharpoonright \Sigma'$.

2.3.1. Classical matrices and logics. Let $\ell \in \Sigma$ be unary.

A two-valued consistent Σ -matrix \mathcal{A} is said to be \wr -classical, provided, for all $a \in A$, $(a \in D^{\mathcal{A}}) \Leftrightarrow (\wr^{\mathfrak{A}} a \notin D^{\mathcal{A}})$, in which case it is truth-non-empty, for it is consistent, and so is both truth- and false-singular, but not \wr -paraconsistent.

A Σ -logic is said to be \wr -[sub]classical, whenever it is [a sublogic of] the logic of a \wr -classical Σ -matrix. Then, a Σ -logic is said to be *inferentially* \wr -classical, whenever it is either \wr -classical or the purely inferential version of a \wr -classical Σ -logic.

Next, ℓ is called a subclassical negation for a Σ -logic C, whenever the ℓ -fragment of C is ℓ -subclassical, in which case:

$$(2.7) rac{m}{x_0} \notin C(r^n x_0),$$

for all $m, n \in \omega$ such that the integer m - n is odd.

3. Preliminary key issues

3.1. Congruence and equality determinants. A [binary] relational Σ -scheme is any $\varepsilon \subseteq (\wp_{\omega}(\operatorname{Fm}_{\Sigma}^{[2\cap]\omega}) \times \operatorname{Fm}_{\Sigma}^{[2\cap]\omega})$, in which case, given any Σ -matrix \mathcal{A} , we set $\theta_{\varepsilon}^{\mathcal{A}} \triangleq \{\langle a,b \rangle \in A^2 \mid \mathcal{A} \models (\forall_{\omega \setminus 2} \bigwedge \varepsilon)[x_0/a,x_1/b]\} \subseteq A^2$. Note that, given a one more Σ -matrix \mathcal{B} and an $h \in \operatorname{hom}_{S}^{(S)}(\mathcal{A},\mathcal{B})$, we have:

$$(3.1) h^{-1}[\theta_{\varepsilon}^{\mathcal{B}}] \subseteq (=)[=]\theta_{\varepsilon}^{\mathcal{A}}.$$

A [unary] unitary relational Σ-scheme is any $\Upsilon \subseteq \operatorname{Fm}_{\Sigma}^{[1\cap]\omega}$, in which case we have the [binary] relational Σ-scheme $\varepsilon_{\Upsilon} \triangleq \{(v[x_0/x_i]) \vdash (v[x_0/x_{1-i}]) \mid i \in 2, v \in \sigma_{1:+1}[\Upsilon]\}$ such that $\theta_{\varepsilon_{\Upsilon}}^{\mathcal{A}}$, where \mathcal{A} is any Σ-matrix, is an equivalence relation on A.

A [binary] congruence/equality determinant for a class of Σ -matrices M is any [binary] relational Σ -scheme ε such that, for each $A \in M$, $\theta_{\varepsilon}^{A} \in \text{Con}(A)/=\Delta_{A}$, respectively.

Then, according to [24]/[23], a [unary] unitary congruence/equality determinant for a class of Σ -matrices M is any [unary] unitary relational Σ -scheme Υ such that ε_{Υ} is a/an congruence/equality determinant for M. (It is unary unitary equality determinants that are equality determinants in the sense of [23].)

Lemma 3.1 (cf., e.g., [24]). $\operatorname{Fm}_{\Sigma}^{\omega}$ is a unitary congruence determinant for every Σ -matrix A.

Proof. We start from proving the fact the equivalence relation $\theta^{\mathcal{A}} \triangleq \theta_{\varepsilon_{\operatorname{Fm}}^{\omega}_{\Sigma}}^{\mathcal{A}} \in \operatorname{Con}(\mathfrak{A})$. For consider any $\varsigma \in \Sigma$ of arity $n \in \omega$, any $i \in n$, in which case $n \neq 0$, any $\bar{a} \in \theta^{\mathcal{A}}$, any $\bar{b} \in A^{n-1}$, any $\phi \in \operatorname{Fm}^{\omega}_{\Sigma}$ and any $\bar{c} \in A^{\omega}$. Put $\psi \triangleq \varsigma(\langle \langle x_{j+1} \rangle_{j \in i}, x_0 \rangle * \langle x_k \rangle_{k \in (n \setminus i)})$ and $\varphi \triangleq ((\sigma_{1:+n}\phi)[x_0/\psi]) \in \operatorname{Fm}^{\omega}_{\Sigma}$. Then, we have

$$(\sigma_{1:+1}\phi)^{\mathfrak{A}}[x_{l+1}/c_{l};x_{0}/\varsigma^{\mathfrak{A}}(\langle\langle b_{j}\rangle_{j\in i},a_{0}\rangle*\langle b_{k}\rangle_{k\in((n-1)\backslash i)})]_{l\in\omega} = (\sigma_{1:+1}\varphi)^{\mathfrak{A}}[x_{l+n+1}/c_{l};x_{0}/a_{0};x_{m+1}/b_{m}]_{l\in\omega;m\in(n-1)}\in D^{\mathcal{A}}\Leftrightarrow D^{\mathcal{A}}\ni (\sigma_{1:+1}\varphi)^{\mathfrak{A}}[x_{l+n+1}/c_{l};x_{0}/a_{1};x_{m+1}/b_{m}]_{l\in\omega;m\in(n-1)} = (\sigma_{1:+1}\phi)^{\mathfrak{A}}[x_{l+1}/c_{l};x_{0}/\varsigma^{\mathfrak{A}}(\langle\langle b_{j}\rangle_{j\in i},a_{1}\rangle*\langle b_{k}\rangle_{k\in((n-1)\backslash i)})]_{l\in\omega},$$

in which case we eventually get $\langle \varsigma^{\mathfrak{A}}(\langle \langle b_j \rangle_{j \in i}, a_0 \rangle * \langle b_k \rangle_{k \in ((n-1)\setminus i)}), \varsigma^{\mathfrak{A}}(\langle \langle b_j \rangle_{j \in i}, a_1 \rangle * \langle b_k \rangle_{k \in ((n-1)\setminus i)}) \rangle \in \theta^{\mathcal{A}}$, and so $\theta^{\mathcal{A}} \in \text{Con}(\mathfrak{A})$. Finally, as $x_0 \in \text{Fm}_{\Sigma}^{\omega}$, we clearly have $\theta^{\mathcal{A}}[D^{\mathcal{A}}] \subseteq D^{\mathcal{A}}$, as required.

Example 3.2 (cf. Example 1 of [23]). $\{x_0\}$ is a unary unitary equality determinant for any consistent truth-non-empty two-valued (in particular, classical) matrix.

Example 3.3. [cf. Example 2 of [23]] Let $j \in 2$, $\vec{k} \in 2^2$, ℓ a (possibly, secondary) unary connective of Σ and \mathcal{A} a Σ -matrix. Suppose $A \subseteq 2^2$, $D^{\mathcal{A}} = (A \cap \pi_j^{-1}[\{k_1\}])$ and $(\ell^{\mathfrak{A}})^{-1}[D^{\mathcal{A}}] = (A \cap \pi_{1-j}^{-1}[\{k_0\}])$. Then, $\Upsilon_{\ell} \triangleq \{x_0, \ell x_0\}$ is a unary unitary equality determinant for \mathcal{A} .

Lemma 3.4. Let \mathcal{A} be a Σ -matrix and ε a congruence determinant for \mathcal{A} . Then, $\partial(\mathcal{A}) = \theta_{\varepsilon}^{\mathcal{A}}$. In particular, \mathcal{A} is simple, whenever ε is an equality determinant for it.

Proof. Consider any $\theta \in \text{Con}(\mathcal{A})$ and any $\langle a, b \rangle \in \theta$. Then, as $\text{Con}(\mathcal{A}) \ni \theta_{\varepsilon}^{\mathcal{A}} \supseteq \Delta_{A} \ni \langle a, a \rangle$, we have $\mathcal{A} \models (\forall_{\omega \setminus 2} \bigwedge \varepsilon)[x_0/a, x_1/a]$, in which case, by the reflexivity of θ , we get $\mathcal{A} \models (\forall_{\omega \setminus 2} \bigwedge \varepsilon)[x_0/a, x_1/b]$, and so $\langle a, b \rangle \in \theta_{\varepsilon}^{\mathcal{A}}$, as required.

It is remarkable that Proposition 2.15 equally ensues from Lemmas 3.1, 3.4 and (3.1).

Lemma 3.5. Let M be a class of Σ -matrices, C the logic of M and $\mathcal{B} \in \operatorname{Mod}_*(C)$. Then, $\mathfrak{B} \in \mathbf{V}(\pi_0[\mathsf{M}])$.

Proof. Consider any $(\phi \approx \psi) \in \operatorname{Eq}_{\Sigma}^{\omega}$ being true in $\pi_0[\mathsf{M}]$ and any $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{B})$. Take any $\varphi \in \operatorname{Fm}_{\Sigma}^{\omega}$ and any $v : V_{\omega \setminus 2} \to B$. Then, there is some $k \in (\omega \setminus 1)$ such that $(\phi \approx \psi) \in \operatorname{Eq}_{\Sigma}^k$. Put $\varphi' \triangleq \sigma_{1:+k}(\varphi)$. Then, for each $\mathcal{A} \in \mathsf{M}$ and every $g \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$, we have $g(\phi) = g(\psi)$, in which case $g(\varphi'[x_0/\phi]) = g(\varphi'[x_0/\phi])$, and so the rules $(\varphi'[x_0/\phi]) \vdash (\varphi'[x_0/\phi])$ and $(\varphi'[x_0/\psi]) \vdash (\varphi'[x_0/\phi])$ are true in M , and so in \mathcal{B} . Let $h' \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{B})$ extend $(h \upharpoonright V_k) \cup [x_{i+k}/v(x_{i+1})]_{i \in (\omega \setminus 1)}$. Then, $(\sigma_{1:+1}(\varphi)[x_0/h(\phi);v]) = h'(\varphi'[x_0/\phi]) \in D^{\mathcal{B}}$ iff $D^{\mathcal{B}} \ni h'(\varphi'[x_0/\psi]) = (\sigma_{1:+1}(\varphi)[x_0/h(\psi);v])$. Thus, $\mathcal{B} \models (\forall_{\omega \setminus 2}((\sigma_{1:+1}(\varphi)[x_0/x_1]) \leftrightarrow \sigma_{1:+1}(\varphi)))[x_0/h(\phi), x_1/h(\psi)]$, for all $\varphi \in \operatorname{Fm}_{\Sigma}^{\omega}$. Hence, by Lemma 3.1, we eventually get $\langle h(\phi), h(\psi) \rangle \in \partial(\mathcal{B}) = \Delta_{\mathcal{B}}$, as required.

Lemma 3.6. Let \mathcal{A} and \mathcal{B} be Σ -matrices, ε a/an congruence/equality determinant for \mathcal{B} and h a/an strict homomorphism/embedding from/of \mathcal{A} to/into \mathcal{B} . Suppose either ε is binary or h[A] = B. Then, ε is a/an congruence/equality determinant for \mathcal{A} .

Proof. In that case, by (3.1), we have $\theta_{\varepsilon}^{\mathcal{A}} = h^{-1}[\theta_{\varepsilon}^{\mathcal{B}}]$. In this way, Corollary 2.12/the injectivity of h completes the argument. \square

Lemma 3.7. Let \mathcal{A} be a Σ -matrix with unary unitary equality determinant Υ , \mathcal{B} a submatrix of \mathcal{A} and $h \in \text{hom}_{S}(\mathcal{B}, \mathcal{A})$. Then, h is diagonal.

Proof. Consider any $a \in B$. Then, for any $v \in \Upsilon$, we have $(v^{\mathfrak{A}}(a) \in D^{\mathcal{A}}) \Leftrightarrow (v^{\mathfrak{B}}(a) \in D^{\mathcal{B}}) \Leftrightarrow (v^{\mathfrak{A}}(h(a)) = h(v^{\mathfrak{B}}(a)) \in D^{\mathcal{A}})$, so we get h(a) = a, as required.

3.2. False-singular consistent weakly conjunctive matrices. Given any consistent false-singular Σ -matrix \mathcal{A} , the unique element of $A \setminus D^{\mathcal{A}}$ is denoted by $\exists^{\mathcal{A}}$.

Lemma 3.8. Let \diamond be a (possibly, secondary) binary connective of Σ , \mathcal{A} a consistent false-singular weakly \diamond -conjunctive Σ matrix, $n \in \omega$, $\overline{\mathcal{B}}$ an n-tuple constituted by consistent submatrices of \mathcal{A} and \mathcal{C} a subdirect product of $\overline{\mathcal{B}}$. Then, $(n \times \{\exists^{\mathcal{A}}\}) \in \mathcal{C}$.

Proof. In case n = 0, we simply have $(n \times \{ \exists^{\mathcal{A}} \}) = \emptyset \in C$, for $C \neq \emptyset$.

Now, assume $n \neq \emptyset$. Define a $\bar{c} \in C^n$ as follows. Consider any $i \in n$. Then, as \mathcal{B}_i , being a submatrix of the false-singular matrix \mathcal{A} , is consistent, $\exists^{\mathcal{A}} \in B_i$. Therefore, since $\pi_i[C] = B_i$, there is some $c_i \in C$ such that $\pi_i(c_i) = \exists^{\mathcal{A}}$. Finally, put $b \triangleq (\diamond^{\mathfrak{C}}\bar{c}) \in C$. Then, for each $i \in I$, we have $\pi_i(b) = \exists^{\mathcal{A}}$, for \mathcal{A} is both weakly \diamond -conjunctive and false-singular, as required. \square

3.3. **Disjunctivity.** Fix any set A and any $\delta: A^2 \to A$. Given any $X, Y \subseteq A$, set $\delta(X, Y) \triangleq \delta[X \times Y]$. Then, a $Z \subseteq A$ is said to be [weakly] δ -disjunctive, provided, for all $a, b \in A$, it holds that $((\{a, b\} \cap Z) \neq \emptyset) \Leftrightarrow [\Rightarrow](\delta(a, b) \in Z)$, in which case, for all $X, Y \subseteq A$, we have $((X \subseteq Z)|(Y \subseteq Z)) \Leftrightarrow [\Rightarrow](\delta(X, Y) \subseteq Z)$. Next, a closure operator C over A is said to be [weakly] δ -disjunctive, provided, for all $a, b \in A$ and every $Z \subseteq A$, it holds that

$$(3.2) C(Z \cup \delta(a,b))[\subseteq] = (C(Z \cup \{a\}) \cap C(Z \cup \{b\})),$$

in which case the following [resp., (3.3) and (3.4) alone, being equivalent to the weak δ -disjunctivity of C] clearly hold, by (3.2) with $Z = \emptyset$:

- $\delta(a,b) \in C(a),$
- $\delta(a,b) \in C(b),$
- $(3.5) a \in C(\delta(a,a)),$
- $\delta(b,a) \in C(\delta(a,b)),$
- $(3.7) C(\delta(\delta(a,b),c)) = C(\delta(a,\delta(b,c))),$

for all $a, b, c \in A$.

Lemma 3.9. Let C be a closure operator over A and B a closure basis of $\operatorname{img} C$. Suppose each element of B is δ -disjunctive. Then,

$$(C(Z \cup X) \cap C(Z \cup Y)) = C(Z \cup \delta(X, Y)),$$

for all $X, Y, Z \subseteq A$. In particular, C is δ -disjunctive and the following holds:

(3.9)
$$\delta(C(X), a) \subseteq C(\delta(X, a)),$$

for all $(X \cup \{a\}) \subseteq A$.

Proof. First, for all $a \in A$, we have:

```
(a \in C(Z \cup X) \cap C(Z \cup Y))
\Leftrightarrow \forall W \in \mathcal{B} : ((((Z \subseteq W) \& (X \subseteq W)) \Rightarrow (a \in W))
\&(((Z \subseteq W) \& (Y \subseteq W)) \Rightarrow (a \in W)))
\Leftrightarrow \forall W \in \mathcal{B} : (((Z \subseteq W) \& (X \subseteq W | Y \subseteq W)) \Rightarrow (a \in W))
\Leftrightarrow \forall W \in \mathcal{B} : (((Z \subseteq W) \& (\delta(X, Y) \subseteq W)) \Rightarrow (a \in W))
\Leftrightarrow (a \in C(Z \cup \delta(X, Y))),
```

in which case (3.8) holds, and so immediately does its particular case (3.2). Finally, applying (3.8) with $Z = \emptyset$ twice, we also get $\delta(C(X), a) \subseteq C(\delta(C(X), a)) = (C(C(X)) \cap C(a)) = (C(X) \cap C(a)) = C(\delta(X, a))$, in which case (3.9) holds, as required. \square

Lemma 3.10. Let C be a δ -disjunctive closure operator over A and $X \in (\text{img } C)$. Then, X is δ -disjunctive iff it is pair-wise-meet-irreducible in img C, and so it is finitely-meet-irreducible in img C iff it is δ -disjunctive and proper.

Proof. First, assume X is not δ -disjunctive. Then, in view of (3.3) and (3.4), X is weakly δ -disjunctive, so there is some $\vec{a} \in (A \setminus X)^2$, in which case, for each $i \in 2$, it holds that $X \neq C(X \cup \{a_i\}) \in (\text{img } C)$, such that $\delta(\vec{a}) \in X$. Therefore, by (3.2), we have $X = (\bigcap_{i \in 2} C(X \cup \{a_i\}))$. Hence, X is not pair-wise-meet-irreducible in img C.

Conversely, assume X is not pair-wise-meet-irreducible in $\operatorname{img} C$. Then, there is some $\vec{Y} \in ((\operatorname{img} C) \setminus \{X\})^2$ such that $X = (\bigcap_{i \in 2} Y_i)$, in which case, for each $i \in 2$, $X \subsetneq Y_i$, so there is some $a_i \in (Y_i \setminus X) \neq \emptyset$. In this way, by (3.2), we have $\delta(\vec{a}) \in C(X \cup \delta(\vec{a})) = (\bigcap_{i \in 2} C(X \cup \{a_i\})) \subseteq (\bigcap_{i \in 2} Y_i) = X$. Thus, X is not δ -disjunctive, as required.

3.3.1. Disjunctive logics and matrices. Fix any (possibly, secondary) binary connective \veebar of Σ . Clearly, a Σ -matrix \mathcal{A} is [weakly] \veebar -disjunctive iff $D^{\mathcal{A}}$ is [weakly] \veebar 21-disjunctive.

Remark 3.11. Given any more (possibly, secondary) binary connective \diamond of Σ and any \veebar -disjunctive Σ -logic C, in view of (3.2) and the structurality of C, C is \diamond -disjunctive iff $(x_0 \diamond x_1) \equiv_C (x_0 \veebar x_1)$. In particular, any extension/model of C is \veebar -disjunctive iff it is \diamond -disjunctive.

Remark 3.12. In view of (2.4) and (2.5), given two Σ -matrices \mathcal{A} and \mathcal{B} such that there is a [surjective] strict homomorphism from \mathcal{A} [on]to \mathcal{B} , \mathcal{A} is (weakly) \veebar -disjunctive if[f] \mathcal{B} is so.

Corollary 3.13. Let I be a finite set, $\overline{\mathcal{A}}$ an I-tuple of $\underline{\vee}$ -disjunctive Σ -matrices and \mathcal{B} a consistent $\underline{\vee}$ -disjunctive subdirect product of $\overline{\mathcal{A}}$. Then, $(\pi_i \upharpoonright B) \in \hom^S_S(\mathcal{B}, \mathcal{A}_i)$, for some $i \in I$.

Proof. Then, by Remark 3.12, $\mathcal{B} \triangleq \{B \cap \pi_i^{-1}[D^{\mathcal{A}_i}] \mid i \in I\}$ is a finite set of $\veebar^{\mathfrak{B}}$ -disjunctive subsets of B. Let C be the closure operator over B dual to the closure system with basis \mathcal{B} . Then, $D^{\mathcal{B}} = (B \cap \bigcap \mathcal{B}) \in (\operatorname{img} C)$ is both $\veebar^{\mathfrak{B}}$ -disjunctive and proper. Hence, by Lemmas 3.9 and 3.10, $D^{\mathcal{B}} \in \mathcal{B}$, as required.

Corollary 3.14. Let $\alpha \in \wp_{\infty \setminus 1}(\omega)$ and M a class of [non-]weakly \vee -disjunctive Σ -matrices. Then, $\operatorname{Cn}_{\mathsf{M}}^{\alpha}$ is [non-]weakly \vee -disjunctive [and satisfies (3.9)].

Proof. The "weak" case is evident. [Conversely, for each $A \in M$ and every $h \in \text{hom}(\mathfrak{F}\mathfrak{m}_{\Sigma}^{\alpha}, \mathfrak{A}), h^{-1}[D^{A}]$ is \veebar -disjunctive, by Remark 3.12. Then, Lemma 3.9 completes the argument.]

Corollary 3.15. Let A be a false-singular Σ -matrix and C the logic of A. Then, the following are equivalent:

- (i) C is $[non-]weakly \subseteq -disjunctive;$
- (ii) \mathcal{A} is $\lceil non-\rceil weakly \subseteq -disjunctive$;
- (iii) C satisfies both (3.3) and (3.4) [as well as (3.5)].

Proof. First, (ii) \Rightarrow (i) is by Corollary 3.14. Next, (iii) is a particular case of (i). Finally, assume (iii) holds. Consider any $a, b \in A$. In case $(a/b) \in D^{\mathcal{A}}$, by (3.3)/(3.4), we have $(a \veebar^{\mathfrak{A}} b) \in D^{\mathcal{A}}$. [Now, assume $(\{a,b\} \cap D^{\mathcal{A}}) = \varnothing$. Then, $D^{\mathcal{A}} \not\ni a = b$. Therefore, by (3.5), we get $D^{\mathcal{A}} \not\ni (a \veebar^{\mathfrak{A}} a) = (a \veebar^{\mathfrak{A}} b)$.] Thus, (ii) holds, as required.

Corollary 3.16. Let C be an inductive Σ -logic. Then, the following are equivalent:

- (i) C is \vee -disjunctive;
- (ii) $\operatorname{img} C$ has a basis consisting of \vee -disjunctive sets;
- (iii) (3.3), (3.5), (3.6) and (3.9) hold;
- (iv) (3.3), (3.5), (3.6) hold and, for any axiomatization $\mathfrak C$ of C, every $(\Gamma \vdash \phi) \in \operatorname{SI}_{\Sigma}(\mathfrak C)$ and each $\psi \in \operatorname{Fm}_{\Sigma}^{\omega}$, it holds that $(\phi \veebar \psi) \in C(\Gamma \veebar \psi)$.

Proof. First, (i) \Rightarrow (ii) is by Remark 2.1 and Lemma 3.10. Next, (ii) \Rightarrow (iii) is by Lemma 3.9. Further, (iv) is a particular case of (iii). Then, the converse is proved by induction on the length of C-derivations. Finally, assume (iii) holds, in which case (3.4) holds by (3.3) and (3.6), and so does the inclusion from left to right in (3.2), by (3.3) and (3.4). Conversely, consider any $\varphi \in (C(Z \cup \{\phi\}) \cap C(Z \cup \{\psi\}))$. Then, by (3.3), (3.6) and (3.9), we have $(\psi \veebar \varphi) \in C(Z \cup \{\phi \veebar \psi\})$. Likewise, by (3.3), (3.5) and (3.9), we also have $\varphi \in C(Z \cup \{\psi \veebar \varphi\})$. Hence, we eventually get $\varphi \in C(Z \cup \{\phi \veebar \psi\})$, in which case (3.2) holds, and so does (i), as required.

Finally, by (2.2), we immediately have:

Proposition 3.17. Any axiomatic extension of a \vee -disjunctive Σ -logic is \vee -disjunctive itself.

3.3.1.1. Disjunctive extensions of logics defined by finite classes of finite disjunctive matrices. Given a Σ -rule $\Gamma \vdash \phi$ and a Σ -formula ψ , put $((\Gamma \vdash \phi) \veebar \psi) \triangleq ((\Gamma \veebar \psi) \vdash (\phi \veebar \psi))$. (This notation is naturally extended to Σ -calculi member-wise.)

Lemma 3.18. Let $\Gamma \vdash \phi$ be a Σ -rule and \mathcal{A} a \veebar -disjunctive Σ -matrix. Then, $\mathcal{A} \in \operatorname{Mod}(\sigma_{+1}(\Gamma \vdash \phi) \veebar x_0)$ iff $\mathcal{A} \in \operatorname{Mod}(\Gamma \vdash \phi)$.

Proof. The "if" part is by the structurality of $Cn^{\omega}_{\mathcal{A}}$ and Corollary 3.14(3.9). Conversely, assume $\mathcal{A} \in \mathrm{Mod}(\sigma_{+1}(\Gamma \vdash \phi) \veebar x_0)$. Consider any $h \in \mathrm{hom}(\mathfrak{Fm}^{\omega}, \mathfrak{A})$ such that $h(\phi) \not\in D^{\mathcal{A}}$. Let $g \in \mathrm{hom}(\mathfrak{Fm}^{\omega}, \mathfrak{A})$ extend $[x_0/h(\phi); x_{i+1}/h(x_i)]_{i \in \omega}$, in which case $(g \circ \sigma_{+1}) = h$, and so, by the \veebar -disjunctivity of \mathcal{A} , we have $g(\sigma_{+1}(\phi) \veebar x_0) = (h(\phi) \veebar^{\mathfrak{A}} h(\phi)) \not\in D^{\mathcal{A}}$. Hence, there is some $\psi \in \Gamma$ such that $(h(\psi) \veebar^{\mathfrak{A}} h(\phi)) = g(\sigma_{+1}(\psi) \veebar x_0) \not\in D^{\mathcal{A}}$, in which case, by the \veebar -disjunctivity of \mathcal{A} , we eventually get $h(\psi) \not\in D^{\mathcal{A}}$, and so $\mathcal{A} \in \mathrm{Mod}(\Gamma \vdash \phi)$, as required.

Lemma 3.19. Let C be an inductive \veebar -disjunctive logic, \mathfrak{C} a Σ -calculus and $A \subseteq \mathfrak{C}$ an axiomatic Σ -calculus. Then, the extension C' of C relatively axiomatized by $\mathfrak{C}' \triangleq (A \cup (\sigma_{+1}[\mathfrak{C} \setminus A] \veebar x_0))$ is \veebar -disjunctive.

Proof. Then, C being inductive, is axiomatized by a Σ -calculus C'', in which case C' is axiomatized by the Σ -calculus $C'' \cup C'$, and so is inductive. Moreover, C', being an extension of C, inherits (3.3), (3.5), (3.6) and (3.7) held for C. Then, we prove the Σ -disjunctivity of C' with applying Corollary 3.16(i) \Leftrightarrow (iv) to both C and C'. For consider any Σ -substitution σ and any $\psi \in \operatorname{Fm}_{\Sigma}^{\omega}$. First, consider any $\phi \in A$. Then, by the structurality of C' and (3.3), we have $(\sigma(\phi) \times \psi) \in C'(\emptyset)$. Now, consider any $(\Gamma \vdash \phi) \in (C \setminus A)$. Let ς be the Σ -substitution extending $(\sigma \upharpoonright (V_{\omega} \setminus V_1)) \cup [x_0/(\sigma(x_0) \times \psi)]$, in which case $(\varsigma \circ \sigma_{+1}) = (\sigma \circ \sigma_{+1})$, and so, by (3.7) and the structurality of C', we eventually get $(\sigma[\sigma_{+1}[\Gamma] \times x_0] \times \psi) = ((\varsigma[\sigma_{+1}[\Gamma]] \times \sigma(x_0)) \times \psi) \vdash_{C'} (\varsigma[\sigma_{+1}[\Gamma]] \times \sigma(x_0) \times \psi)$. \square

Lemma 3.20. Let K be a finite class of consistent $\underline{\lor}$ -disjunctive Σ -matrices. Then, the set of all relative [positive] universal Horn model subclasses of K is a closure system over K closed under unions, and so forms a finite distributive lattice.

Proof. Consider any set I of [positive] universal Horn model subclasses of K, in which case it is finite, for K is so, and so there are some bijection $e: n \to I$, where $n \triangleq |I| \in \omega$, some $\overline{\mathbb{C}}: n \to \wp(\wp_{\omega[\cap 1]}(\mathrm{Fm}_{\Sigma}^{\omega}) \times \mathrm{Fm}_{\Sigma}^{\omega})$ and some $\overline{\alpha}: n \to \wp_{\omega \setminus 1}(\omega \setminus 1)$ such that, for every $i \in n$, $e(i) = (\mathsf{K} \cap \mathrm{Mod}(\mathbb{C}_i))$, $\mathfrak{C}_i \subseteq (\wp_{\omega}(\mathrm{Fm}_{\Sigma}^{\alpha_i}) \times \mathrm{Fm}_{\Sigma}^{\alpha_i})$ and $(\alpha_i \cap \alpha_j) = \emptyset$, for all $j \in (n \setminus \{i\})$. Then, we clearly have $(\mathsf{K} \cap \mathrm{Mod}(\bigcup_{i \in n} \mathbb{C}_i)) = (\mathsf{K} \cap (\bigcap I))$. Moreover, every member of $(\bigcup I) \subseteq \mathsf{K}^{[*]}$ is a model of $\mathfrak{C} \triangleq \{(\bigcup \mathrm{img}(\pi_0 \circ \overline{R})) \vdash \forall \langle \pi_1 \circ \overline{R}, x_0 \rangle \mid \overline{R} \in \prod \overline{\mathbb{C}}\} \in \wp(\wp_{\omega[\cap 1]}(\mathrm{Fm}_{\Sigma}^{\omega}) \times \mathrm{Fm}_{\Sigma}^{\omega})$. Conversely, consider any $A \in (\mathsf{K} \setminus (\bigcup I))$. Then, for every $i \in n$, $A \notin e(i)$, in which case there are some $R_i \in \mathbb{C}_i$ and some $h_i : \alpha_i \to A$ such that $A \not\models R_i[h_i]$, and so $((\bigcup_{i \in n} \pi_0[R_i]) \vdash \forall \langle (\pi_1(R_i))_{i \in n}, x_0 \rangle) \in \mathbb{C}$ is not true in A under $[x_0/a] \cup \bigcup_{i \in n} h_i$, where $a \in (A \setminus D^A) \neq \emptyset$, for A is consistent. Thus, $(\bigcup I) = (\mathsf{K} \cap \mathrm{Mod}(\mathbb{C}))$, as required. \square

Theorem 3.21. Let M be a finite class of finite \vee -disjunctive matrices, C the logic of M and $K^{[*]} \triangleq \mathbf{S}_*^{[*]}(M)$. Then:

- (i) the mappings $C' \mapsto (\operatorname{Mod}(C') \cap \mathsf{K}^{[*]})$ and $\mathsf{S} \mapsto \operatorname{Cn}_{\mathsf{S}}^{\omega}$ are inverse to one another dual isomorphisms between the poset of all \veebar -disjunctive [non-pseudo-axiomatic] extensions of C and that of all relative universal Horn model subclasses of $\mathsf{K}^{[*]}$, the latter poset forming a finite distributive lattice, and so doing the former one;
- (ii) for any Σ -calculus C, the following hold:
 - a) the extension of C relatively axiomatized by \mathbb{C} , being \veebar -disjunctive [and non-pseudo-axiomatic], corresponds to the relative universal Horn model subclass of $\mathsf{K}^{[*]}$ relatively axiomatized by \mathbb{C} ;
 - b) [providing $(\mathfrak{C} \cap \operatorname{Fm}_{\Sigma}^{\omega}) \neq \varnothing$] the relative universal Horn model subclass of $\mathsf{K}^{[*]}$ relatively axiomatized by \mathfrak{C} corresponds to the \veebar -disjunctive [non-pseudo-axiomatic] extension of C relatively axiomatized by $(\mathfrak{C} \cap \operatorname{Fm}_{\Sigma}^{\omega}) \cup (\sigma_{+1}[\mathfrak{C} \setminus \operatorname{Fm}_{\Sigma}^{\omega}] \vee x_0)$;
- (iii) [providing every member of M is truth-non-empty] relative positive universal Horn model subclasses of K^[*] correspond exactly to [non-pseudo-axiomatic] axiomatic extensions of C, corresponding objects having same axiomatic relative axiomatizations and forming dual finite distributive lattices;
- (iv) for any $C \subseteq K^{[*]}$, $S_*^{[*]}(C)$, being a relative universal Horn model subclass of $K^{[*]}$, corresponds to the logic of C. In particular, all \veebar -disjunctive extensions of C are inductive.
- (i) First, the fact that $(\operatorname{Mod}(\operatorname{Cn}_S^{\omega}) \cap \mathsf{K}^{[*]}) = \mathsf{S}$, where S is a relative universal Horn model subclass of $\mathsf{K}^{[*]}$, is Proof. immediate, while the fact that $\operatorname{Cn}_{\mathsf{S}}^{\omega}$ is a \vee -disjunctive [and non-pseudo-axiomatic] extension of C is by (2.5), Corollary 3.14 and Remark 3.12 [as well as Proposition 2.18]. Now, consider any ⊻-disjunctive [non-pseudo-axiomatic] extension C' of C. Then, we have the inductive \vee -disjunctive [non-pseudo-axiomatic] extension C'' of C (for C is inductive [and non-pseudo-axiomatic]) defined as follows: for every $Z \subseteq \operatorname{Fm}_{\Sigma}^{\omega}$, put $C''(Z) \triangleq (\bigcup C'[\wp_{\omega}(Z)])$. Consider any Σ-rule $\Gamma \vdash \varphi$ such that $\varphi \notin C''(\Gamma)$ [and $\Gamma \neq \varnothing$]. Then, by Corollary 3.16(i)⇒(ii), there is some \vee -disjunctive $X \in (\operatorname{img} C'') \subseteq (\operatorname{img} C)$ such that $\Gamma \subseteq X \not\ni \varphi$. Moreover, as Γ is finite, there is some $\alpha \in (\omega \setminus 1) \subseteq \wp_{\infty \setminus 1}(\omega)$ such that $(\Gamma \cup \{\varphi\}) \subseteq \operatorname{Fm}_{\Sigma}^{\alpha}$, in which case, in view of (2.3), $\Gamma \subseteq Y \triangleq (X \cap \operatorname{Fm}_{\Sigma}^{\alpha}) \in (\operatorname{img} \operatorname{Cn}_{M}^{\alpha})$ is [both] \vee -disjunctive [and non-empty] as well as proper, for $\varphi \in (\operatorname{Fm}_{\Sigma}^{\alpha} \setminus Y)$. Furthermore, by the structurality of C'', $(\mathfrak{Fm}_{\Sigma}^{\omega}, X)$ is a model of C''', and so is its consistent [truth-non-empty] submatrix $\mathcal{D} \triangleq \langle \mathfrak{Fm}_{\Sigma}^{\alpha}, Y \rangle$, in view of (2.5). On the other hand, by Corollary 3.14, $\operatorname{Cn}_{\mathsf{M}}^{\mathsf{M}}$ is \veebar -disjunctive. Hence, by Lemma 3.10, Y is finitely-meet-irreducible in $\operatorname{img} \operatorname{Cn}_{\mathsf{M}}^{\mathsf{M}}$. And what is more, since both α , M and all members of M are finite, $\mathcal{B} \triangleq \{h^{-1}[D^{\mathcal{A}}] \mid \mathcal{A} \in \mathsf{M}, h \in \mathsf{hom}(\mathfrak{Fm}^{\alpha}_{\Sigma}, \mathfrak{A})\}$ is a finite basis of img $\operatorname{Cn}_{\mathsf{M}}^{\alpha}$. Therefore, $Y \in \mathcal{B}$, in which case there are some $A \in \mathsf{M}$ and some $h \in \operatorname{hom}(\mathfrak{F}_{\Sigma}^{\alpha}, \mathfrak{A})$ such that $Y = h^{-1}[D^{\mathcal{A}}]$, and so h is a surjective strict homomorphism from \mathcal{D} onto $\mathcal{B} \triangleq (\mathcal{A} \upharpoonright (\operatorname{img} h))$. In this way, by (2.5), \mathcal{B} is a consistent [truth-non-empty] model of C''. Finally, as $\Gamma \subseteq Y = h^{-1}[D^{\mathcal{B}}] \not\ni \varphi$, we conclude that $\Gamma \vdash \varphi$ is not true in $\mathcal{B} \in \mathsf{S} \triangleq (\mathrm{Mod}(C'') \cap \mathsf{K}^{[*]})$ under h. Thus, since both S and all members of it are finite, in which case $C''' \triangleq \mathrm{Cn}_{\mathsf{S}}^{\omega}$ is inductive [and non-pseudo-axiomatic, by Proposition 2.18], and so C'' = C''', by Proposition 2.17, we eventually get C' = C''' = C''', as required, for, in that case, C', being inductive, is axiomatized by a Σ -calculus. In this way, Lemma 3.20 completes the argument.

- (ii) Consider any Σ -calculus \mathcal{C} . Then:
 - a) is immediate, in view of (2.5), due to which $K \subseteq Mod(C)$.
 - b) Let C' be the extension of C relatively axiomatized by $(\mathfrak{C} \cap \operatorname{Fm}_{\Sigma}^{\omega}) \cup (\sigma_{+1}[\mathfrak{C} \setminus \operatorname{Fm}_{\Sigma}^{\omega}] \vee x_0)$. Then, by Lemma 3.19 with $\mathcal{A} = (\mathfrak{C} \cap \operatorname{Fm}_{\Sigma}^{\omega})$, C' is \vee -disjunctive. [And what is more, since $\mathcal{A} \neq \emptyset$, C' is not theorem-less, and so is non-pseudo-axiomatic.] Then, a) and Lemma 3.18 complete the argument.
- (iii) is by (i), (ii), Proposition 3.17, Lemma 3.20 and Remark 3.12 [as well as Proposition 2.18, due to which C, being the axiomatic extension of C relatively axiomatized by the axiomatic Σ -calculus \emptyset , is non-pseudo-axiomatic].

(iv) is by (2.5).

As it is demonstrated by Theorem 4.60 below, $(\mathcal{C} \cap \operatorname{Fm}_{\Sigma}^{\omega}) \cup (\sigma_{+1}[\mathcal{C} \setminus \operatorname{Fm}_{\Sigma}^{\omega}] \vee x_0)$ cannot be replaced by \mathcal{C} in the item (ii)b) of Theorem 3.21, and so the reservations "positive" and "axiomatic" cannot be omitted in its item (iii).

3.3.1.2. Axiomatic extensions of logics defined by finite classes of finite implicative matrices. Let \triangleright be any (possibly, secondary) binary connective of Σ . By induction on $l = (\operatorname{dom} \bar{\phi}) \in \omega$ for any $\bar{\phi} \in (\operatorname{Fm}_{\Sigma}^{\omega})^*$ and any $\psi \in \operatorname{Fm}_{\Sigma}^{\omega}$, put:

$$(\bar{\phi} \rhd \psi) \triangleq \begin{cases} \psi & \text{if } l = 0, \\ \phi_0 \rhd (((\bar{\phi} \upharpoonright (l \setminus 1)) \circ ((+1) \upharpoonright (l-1))) \rhd \psi) & \text{otherwise.} \end{cases}$$

A Σ -matrix \mathcal{A} is said to be \triangleright -implicative, provided, for all $a, b \in A$, it holds that $((a \in D^{\mathcal{A}}) \Rightarrow (b \in D^{\mathcal{A}})) \Leftrightarrow ((a \triangleright^{\mathfrak{A}} b) \in D^{\mathcal{A}})$, in which case it is \vee_{\triangleright} -disjunctive, where $(x_0 \vee_{\triangleright} x_1) \triangleq ((x_0 \triangleright x_1) \triangleright x_1)$, while every submatrix of \mathcal{A} is \triangleright -implicative, Remark 3.22. Let M be a finite class of finite \triangleright -implicative as well as \veebar -disjunctive (in particular, $\veebar = \bigvee_{\triangleright}$) Σ -matrices, in which case the axiom $x_0 \triangleright x_0$ is true in it, and so every member of $\mathsf{K}_{[*]} \triangleq \mathsf{S}_{[*]}(\mathsf{M})$, satisfying the axiom involved, in view of

which case the axiom $x_0 > x_0$ is true in it, and so every member of $\mathsf{K}_{[*]} \triangleq \mathbf{S}_{[*]}(\mathsf{M})$, satisfying the axiom involved, in view of (2.5), is truth-non-empty. Then, any Σ -rule $\Gamma \vdash \psi$ is true in any member of K iff $\bar{\phi} > \psi$ is so, where $\bar{\phi} : |\Gamma| \to \Gamma$ is any bijection, in which case any universal Horn model subclass of K_* is positive, and so \veebar -disjunctive extensions of the logic of M are exactly axiomatic ones, in view of Theorem 3.21(iii).

A Σ -logic C is said to have Deduction-Detachment Theorem (DDT) with respect to \triangleright , provided $(\phi \in C(\Gamma \cup \{\psi\})) \Leftrightarrow ((\psi \triangleright \phi) \in C(\Gamma))$, for all $(\Gamma \cup \{\phi, \psi\}) \subseteq \operatorname{Fm}_{\Sigma}^{\omega}$.

Proposition 3.23. Let A be a false-singular Σ -matrix and C the logic of A. Then, the following are equivalent:

- (i) C has DDT with respect to \vee ;
- (ii) C satisfies the following rule and axioms:

$$\{x_0, x_0 \rhd x_1\} \vdash x_1,$$

$$(3.11) x_0 \rhd (x_1 \rhd x_0),$$

$$(3.12) x_0 > x_0;$$

- (iii) (3.10), (3.11) and (3.12) are true in A;
- (iv) \mathcal{A} is \triangleright -implicative.

Proof. First, $(iv)\Rightarrow(i)\Rightarrow(ii)\Rightarrow(ii)$ are immediate. Finally, assume (iii) holds. Consider any $a,b\in A$. Then, the fact that $((a\in D^{\mathcal{A}})\Rightarrow(b\in D^{\mathcal{A}}))\Leftarrow((a\rhd^{\mathfrak{A}}b)\in D^{\mathcal{A}})$ is by (3.10). Conversely, assume $(a\in D^{\mathcal{A}})\Rightarrow(b\in D^{\mathcal{A}})$. Then, in case $b\in D^{\mathcal{A}}$, by (3.10) and (3.11), we get $(a\rhd^{\mathfrak{A}}b)\in D^{\mathcal{A}}$. Otherwise, we have $a\notin D^{\mathcal{A}}$, in which case a=b, by the false-singularity of \mathcal{A} , and so, by (3.12), we eventually get $(a\rhd^{\mathfrak{A}}b)=(b\rhd^{\mathfrak{A}}b)\in D^{\mathcal{A}}$, as required.

3.3.1.3. Disjunctive extensions of the logics of single finite disjunctive matrices with unary initary equality determinant.

Lemma 3.24. Let \mathcal{A} be a finite \succeq -disjunctive Σ -matrix with unary unitary equality determinant Υ , $S \subseteq \mathbf{S}(\mathcal{A})$ and $\mathcal{B} \in \mathbf{S}_*(\mathcal{A})$. Suppose $\mathcal{B} \notin \mathbf{S}(S)$. Then, there is some Σ -rule satisfied in S but is not satisfied in \mathcal{B} .

Proof. In case $S = \emptyset$, the axiom $\vdash x_0$ is satisfied in it but is not satisfied in any consistent Σ -matrix (in particular, in \mathcal{B}). Now, assume $S \neq \emptyset$, in which case $n \triangleq |S| \in (\omega \setminus 1)$, and so there is a bijection $\overline{\mathcal{C}} : n \to S$. Consider any $i \in n$, in which case $B \nsubseteq C_i$, and so there is some $a_i \in (B \setminus C_i) \neq \emptyset$. Define a $\Delta_i \in \wp_\omega(\operatorname{Fm}_\Sigma^\omega)$ and a $\bar{\psi}^i \in (\operatorname{Fm}_\Sigma^\omega)^*$ as follows. Let $m \triangleq |C_i| \in (\omega \setminus 1)$. Take any bijection $\vec{c} : m \to C_i$. By induction on any $j \in (m+1)$, define a $\Gamma_j \in \wp_\omega(\operatorname{Fm}_\Sigma^\omega)$ and a $\bar{\phi}^j \in (\operatorname{Fm}_\Sigma^\omega)^*$ such that, for all $b \in (A \setminus D^A)$, it holds that $A \not\models (\Gamma_j \vdash (\veebar \langle \bar{\phi}^j, x_n \rangle)[x_0/a_i, x_n/b]$, while, for all $k \in j$ and all $a \in A$, it holds that $A \models (\Gamma_j \vdash (\veebar \langle \bar{\phi}^j, x_n \rangle)[x_0/c_k, x_n/a]$, as follows. First, put $\Gamma_j \triangleq \emptyset$ and $\bar{\phi}^j \triangleq \emptyset$, in case j = 0. Next, assume j > 0, in which case $(j-1) \in m$, and so $c_{j-1} \neq a_i$. Therefore, there is some $v \in \Upsilon$ such that $v^{\mathfrak{A}}(a_i) \in D^A$ iff $v^{\mathfrak{A}}(c_{j-1}) \notin D^A$. Then, set:

$$\langle \Gamma_{j}, \bar{\phi}^{j} \rangle \triangleq \begin{cases} \langle \Gamma_{j-1}, \langle \bar{\phi}^{j-1}, v \rangle \rangle & \text{if } v^{\mathfrak{A}}(a_{i}) \not\in D^{\mathcal{A}}, v \not\in (\operatorname{img} \bar{\phi}^{j-1}), \\ \langle \Gamma_{j-1}, \bar{\phi}^{j-1} \rangle & \text{if } v^{\mathfrak{A}}(a_{i}) \not\in D^{\mathcal{A}}, v \in (\operatorname{img} \bar{\phi}^{j-1}), \\ \langle \Gamma_{j-1} \cup \{v\}, \bar{\phi}^{j-1} \rangle & \text{otherwise.} \end{cases}$$

Finally, put $\Delta_i \triangleq (\Gamma_m[x_0/x_i])$ and $\bar{\psi}^i \triangleq (\bar{\phi}^m[x_0/x_i])$. Let $\Xi \triangleq (\bigcup_{i \in n} \Delta_i), \bar{\xi} \triangleq (*\langle \bar{\psi}^i \rangle_{i \in n})$ and

$$\varphi \triangleq \begin{cases} x_n & \text{if } \bar{\xi} = \varnothing, \\ \underline{\vee} \bar{\xi} & \text{otherwise.} \end{cases}$$

In this way, the Σ -rule $\Xi \vdash \varphi$ is true in S but is not true in \mathcal{B} under $[x_i/a_i; x_n/b]_{i \in n}$, where $b \in (B \setminus D^{\mathcal{A}}) \neq \emptyset$, for \mathcal{B} is consistent, as required.

As an immediate consequence of (2.5) and Lemma 3.24, we get:

Theorem 3.25. Let M, C and $K^{[*]}$ be as in Theorem 3.21. Suppose $M = \{A\}$, where A is a Σ -matrix with equality determinant. Then, relative universal Horn model subclasses of $K^{[*]}$ are exactly lower cones of it, under identification of its members with the carriers of their underlying algebras.

In this way, Lemma 3.24 collectively with Theorems 3.21 and 3.25 provide an effective procedure of finding the lattice of disjunctive extensions of the logic of a finite disjunctive matrix with equality determinant collectively with their finite relative axiomatizations and finite anti-chain matrix semantics. Concluding this discussion, we should like to highlight that the effective procedure of finding relative axiomatizations of disjunctive extensions to be extracted from the constructive proof of Lemma 3.24 is definitely and obviously much less computationally complex than the straightforward one of direct search among all finite sets of rules.

3.3.1.3.1. Implicative matrices with unary unitary equality determinant. By (2.2), Theorem 3.21, Remark 3.22 and Lemma 3.24, we immediately get:

Corollary 3.26. Let A be a finite \diamond -implicative Σ -matrix with unary unitary equality determinant and $S \triangleq S_*(A)$. Then, the mappings:

$$\begin{array}{ll} \mathcal{E} & \mapsto & (\operatorname{Mod}(\mathcal{E}) \cap \mathsf{S}) = (\operatorname{Mod}(\mathcal{E} \cap \operatorname{Fm}_{\Sigma}^{\omega}) \cap \mathsf{S}), \\ \mathsf{C} & \mapsto & \operatorname{Cn}_{\mathsf{C}}^{\omega} \end{array}$$

are inverse to one another dual isomorphisms between the lattices of all axiomatic extensions of $\operatorname{Cn}_{\mathcal{A}}^{\omega}$ and of all lower cones of S (under identification of submatrices of A with the carriers of their underlying algebras), corresponding axiomatic extensions of $\operatorname{Cn}_{\mathcal{A}}^{\omega}$ and lower cones of S having same relative axiomatizations, both lattices being finite and distributive.

This elaboration, being exemplified by applying it to implicative expansions of Belnap's logic (cf. Subsection 6.1.3 collectively with Remark 3.22 and Theorem 6.10), is equally applicable to more interesting examples including Łukasiewicz' finitely-valued logics (cf. [10]), for their defining matrices both are implicative (cf. Example 7 of [24]) and have unary unitary equality determinant, in view of Example 3 of [23] (cf. Proposition 6.10 of [25] for a constructive proof of this result), being however beyond the scopes of the present work.

3.4. **Distributive and De Morgan lattices.** Let $\Sigma_{[01]}^+ \triangleq (\{\land, \lor\}[\cup \{\bot, \top\}])$ be the [bounded] lattice signature with binary \land (conjunction) and \lor (disjunction) [as well as nullary \bot and \top (falsehood/zero and truth/unit constants, respectively)].

Lemma 3.27. Let $\mathfrak A$ and $\mathfrak B$ be lattices, a a unit/zero of $\mathfrak A$, b a unit/zero of $\mathfrak B$ and $h \in \text{hom}(\mathfrak A, \mathfrak B)$. Suppose h[A] = B. Then, h(a) = b.

Proof. Then, there is some $c \in A$ such that h(c) = b, in which case $(a(\vee/\wedge)^{\mathfrak{A}}c) = a$, and so $h(a) = (h(a)(\vee/\wedge)^{\mathfrak{B}}b) = b$.

Given any $\Sigma \supseteq \Sigma^+$, $\phi \lessapprox \psi$ is used as an abbreviation for $(\phi \land \psi) \approx \phi$, where $\phi, \psi \in \operatorname{Fm}_{\Sigma}^{\omega}$. Then, any Σ -algebra \mathfrak{A} such that $\mathfrak{A} \upharpoonright \Sigma^+$ is a lattice is well-known to be congruence-distributive (cf., e.g., Example 2 on p. 12 of [13]), the partial ordering of $\mathfrak{A} \upharpoonright \Sigma^+$ being denoted by $\leqslant^{\mathfrak{A}}$.

Given any $n \in (\omega \setminus 1)$, by $\mathfrak{D}_{n[01]}$ we denote the [bounded] distributive lattice given by the chain n, viz., the $\Sigma_{[01]}^+$ -algebra with carrier n such that $(\wedge/\vee)^{\mathfrak{D}_n} \triangleq ((\min/\max) \upharpoonright n^2)$ [and $(\bot/\top)^{\mathfrak{D}_n} \triangleq (0/(n-1))$].

Here, we deal with the signature $\Sigma_{0[1]} \triangleq (\Sigma_{[01]}^+ \cup \{\sim\})$ with unary \sim (weak negation).

A [bounded] De Morgan lattice (cf. [3], [19], [20]) is any $\Sigma_{0[1]}$ -algebra \mathfrak{A} such that $\mathfrak{A} \upharpoonright \Sigma_{[01]}^+$ is a [bounded] distributive lattice (cf. [3]) and the following Σ_0 -identities are true in \mathfrak{A} :

$$(3.13) \qquad \sim \sim x_0 \approx x_0$$

$$(3.14) \sim (x_0 \vee x_1) \approx \sim x_0 \wedge \sim x_1,$$

$$(3.15) \qquad \sim (x_0 \wedge x_1) \quad \approx \quad \sim x_0 \vee \sim x_1,$$

the variety of all them being denoted by [B]DML. Then, a [bounded] Kleene lattice is any [bounded] De Morgan lattice satisfying the Σ_0 -identity:

$$(3.16) (x_0 \wedge \sim x_0) \lesssim (x_1 \vee \sim x_1),$$

the variety of all them being denoted by [B]KL. Next, a [bounded] Boolean lattice is any [bounded] De Morgan lattice satisfying the Σ_0 -identity:

$$(3.17) x_0 \lessapprox (x_1 \lor \sim x_1),$$

the variety of all them being denoted by $[\mathsf{B}]\mathsf{BL}\subseteq [\mathsf{B}]\mathsf{KL}.^3$

By $\mathfrak{DM}_{4[01]}$ we denote the [bounded] De Morgan lattice such that $(\mathfrak{DM}_{4[01]}|\Sigma_{[01]}^+) \triangleq \mathfrak{D}_{2[01]}^2$ and $\sim^{\mathfrak{DM}_{4[01]}}\vec{a} \triangleq \langle 1 - a_{1-i} \rangle_{i \in 2}$, for all $\vec{a} \in 2^2$.

Remark 3.28. Since any non-empty proper prime filter of $\mathfrak{D}^2_{2[01]}$ contains t but not f, and so contains b iff it does not contain n, $F_j \triangleq (2^2 \cap \pi_j^{-1}[\{1\}])$, where $j \in 2$, are exactly all non-empty proper prime filters of $\mathfrak{D}^2_{2[01]}$, in which case $\langle \mathfrak{DM}_{4[01]}, F_j \rangle$ is both \wedge -conjunctive and \vee -disjunctive, while, by Example 3.3 with $\vec{k} = \Delta_2$ and $\ell = \infty$, we see that Υ_{∞} is a unary unitary equality determinant for it.

Recall also the following rather well-known (within Universal Algebra) fact:

 $^{^3} According \ to \ [3], \ "Boolean/Kleene/De \ Morgan \ algebra" \ traditionally \ stands \ for \ "bounded \ Boolean/Kleene/De \ Morgan \ lattice".$

Lemma 3.29. Let \mathfrak{B} be a subalgebra of \mathfrak{DM}_4 . Then, $\operatorname{Con}(\mathfrak{B}) \subseteq \{\Delta_B, B^2\}$. In particular, \mathfrak{B} is simple iff |B| > 1.

Proof. Consider any $\theta \in (\text{Con}(\mathfrak{B}) \setminus \{\Delta_B\})$. Take any $\vec{a} \in (\theta \setminus \Delta_B) \neq \emptyset$. Consider the following exhaustive cases:

- (1) $\operatorname{img} \vec{a} \subseteq \{f, t\}$. Then, $\operatorname{img} \vec{a} = \{f, t\}$, for $a_0 \neq a_1$, and so $f \theta t$.
- (2) $\operatorname{img} \vec{a} \subseteq \{\mathsf{n},\mathsf{b}\}.$
 - Then, $\operatorname{img} \vec{a} = \{\mathsf{n}, \mathsf{b}\}$, for $a_0 \neq a_1$, in which case $\mathsf{n} \theta \mathsf{b}$, and so $\mathsf{f} = (\mathsf{n} \wedge^{\mathfrak{B}} \mathsf{b}) \theta (\mathsf{n} \wedge^{\mathfrak{B}} \mathsf{n}) = \mathsf{n} = (\mathsf{n} \vee^{\mathfrak{B}} \mathsf{n}) \theta (\mathsf{n} \vee^{\mathfrak{B}} \mathsf{b}) = \mathsf{t}$.
 - (3) $a_i \in \{f, t\}$, while $a_{1-i} \in \{b, n\}$, for some $i \in 2$. Then, $a_i \theta \ a_{1-i} = \sim^{\mathfrak{B}} a_{1-i} \ \theta \sim^{\mathfrak{B}} a_i$, and so $f \theta t$, because $\sim^{\mathfrak{B}} \langle j, j \rangle = \langle 1 - j, 1 - j \rangle$, for all $j \in 2$.

Thus, in any case, we have $f \theta t$. Therefore, for every $c \in B$, we get $c = (f \vee^{\mathfrak{B}} c) \theta (t \vee^{\mathfrak{B}} c) = t$. Hence, $\theta = B^2$, as required. \square

Given any $n \in (\omega \setminus 1)$, by $\mathfrak{K}_{n[01]}$ we denote the chain [bounded] Kleene lattice such that $(\mathfrak{K}_{n[01]} \upharpoonright \Sigma_{[01]}^+) \triangleq \mathfrak{D}_{n[01]}$ and $\sim^{\mathfrak{K}_{n[01]}} i \triangleq (n-1-i)$, for all $i \in n$, $\mathfrak{K}_{2[01]}$ being a [bounded] Boolean lattice. Then, $e_n \triangleq \{\langle 0, 0 \rangle, \langle 1, n-1 \rangle\} \in \text{hom}(\mathfrak{K}_{2[01]}, \mathfrak{K}_{n[01]})$ is injective. Moreover, for any $n \in (\omega \setminus 3)$, $\hbar_n \triangleq (\{\langle 0, 0 \rangle, \langle n-1, 2 \rangle\} \cup (((n-1) \setminus 1) \times \{1\})) \in \text{hom}(\mathfrak{K}_{n[01]}, \mathfrak{K}_{3[01]})$ is surjective. Finally, for any $i \in 2$, $e_{3,i} \triangleq \{\langle 0, f \rangle, \langle 2, t \rangle, \langle 1, \langle i, 1-i \rangle \rangle\} \in \text{hom}(\mathfrak{K}_{3[01]}, \mathfrak{DM}_{4[01]})$ is injective.

4. Four-valued expansions of Belnap's logic

Fix any language $\Sigma \supseteq \Sigma_{0[1]}$ such that either $\Sigma \supseteq \Sigma_{01}$ or $(\Sigma \cap \Sigma_{01}) = \Sigma_0$ and any Σ -algebra \mathfrak{A} such that $(\mathfrak{A} \upharpoonright \Sigma_{0[1]}) = \mathfrak{D}\mathfrak{M}_{4[01]}$. Given any Σ -matrix \mathcal{B} , set $\overleftarrow{\mathcal{B}} \triangleq \langle \mathfrak{A}, (\sim^{\mathfrak{B}})^{-1}[B \setminus D^{\mathcal{B}}] \rangle$. Put $\mathcal{A} \triangleq \langle \mathfrak{A}, 2^2 \cap \pi_0^{-1}[\{1\}] \rangle$, in which case $\overleftarrow{\mathcal{A}} = \langle \mathfrak{A}, 2^2 \cap \pi_1^{-1}[\{1\}] \rangle$, and $\overrightarrow{\mathcal{A}} \triangleq \langle \mathfrak{A}, \{t\} \rangle$. Since [bounded] Belnap's four-valued logic (cf. [4]), denoted by $C_{[B]B}$ from now on, is defined by $\mathcal{D}\mathcal{M}_{4[01]} \triangleq (\mathcal{A} \upharpoonright \Sigma_{0[1]})$ (cf. [16]),⁴ the logic C of \mathcal{A} is a four-valued expansion of $C_{[B]B}$. We start our study from marking its framework.

4.1. Characteristic matrix expansions.

Lemma 4.1. Let Σ' be an algebraic signature, ℓ a (possibly, secondary) unary connective of Σ' , A' a Σ' -matrix, I a set, $\overline{\mathcal{D}}$ an I-tuple constituted by submatrices of A', \mathcal{E} a submatrix of $\prod_{i \in I} \mathcal{D}_i$ and $a \in D^{\mathcal{E}}$. Suppose $\ell^{\mathfrak{E}} a \in D^{\mathcal{E}}$. Then, $a \in (D^{\mathcal{A}'} \cap (\ell^{\mathfrak{A}'})^{-1}[D^{\mathcal{A}'}])^I$.

Proof. Then, for each $i \in I$, both $\pi_i(a) \in D^{\mathcal{A}'}$ and $\mathfrak{I}^{\mathfrak{A}'}\pi_i(a) = \pi_i(\mathfrak{I}^{\mathfrak{E}}a) \in D^{\mathcal{A}'}$, as required.

Next, a subalgebra \mathfrak{B} of \mathfrak{A} is said to be *regular*, whenever its operations are so. (Clearly, every subalgebra of $\mathfrak{DM}_{4[01]}$ is regular.) Likewise, \mathfrak{B} is said to be *b-idempotent*, where $b \in B$, provided its operations are so. (Clearly, \mathfrak{B} is *b*-idempotent iff $\{b\}$ forms a subalgebra of it.) Finally, \mathfrak{B} is said to be *specular*, whenever $(\mu \upharpoonright B) \in \text{hom}(\mathfrak{B}, \mathfrak{A})$. (Clearly, $\mathfrak{DM}_{4[01]}$ is specular.)

Lemma 4.2. Let I be a set, $\overline{C} \in \mathbf{S}(\mathcal{A})^I$, \mathcal{B} a Σ -matrix and e an embedding of \mathcal{B} into $\prod_{i \in I} C_i$. Suppose $\{\mathsf{f}, \mathsf{b}, \mathsf{t}\}$ forms a subalgebra of \mathfrak{A} , $\{I \times \{a\} \mid a \in \{\mathsf{f}, \mathsf{t}\}\} \subseteq e[B]$ and, for each $i \in I$, $\{\mathsf{f}, \mathsf{b}, \mathsf{t}\} \cup C_i$ forms a regular subalgebra of \mathfrak{A} and either $\mathsf{n} \notin C_i$ or $\mathfrak{A} \upharpoonright \{\mathsf{f}, \mathsf{b}, \mathsf{t}\}$ is specular. Then, $(B \dotplus 2) \triangleq ((B \times \{\mathsf{b}\}) \cup \{\langle e^{-1}(I \times \{\mathsf{f}\}), \mathsf{f}\rangle, \langle e^{-1}(I \times \{\mathsf{t}\}), \mathsf{t}\rangle\})$ forms a subalgebra of $\mathfrak{B} \times (\mathfrak{A} \upharpoonright \{\mathsf{f}, \mathsf{b}, \mathsf{t}\})$, in which case $\pi_0 \upharpoonright (B \dotplus 2)$ is a surjective strict homomorphism from $(\mathcal{B} \dotplus 2) \triangleq ((\mathcal{B} \times (\mathcal{A} \upharpoonright \{\mathsf{f}, \mathsf{b}, \mathsf{t}\})) \upharpoonright (B \dotplus 2))$ onto \mathcal{B} .

Proof. Consider any $\varsigma \in \Sigma$ of arity $n \in \omega$ and any $\bar{b} \in (B \dotplus 2)^n$. In case $\varsigma^{\mathfrak{A}}(\bar{a}) = \mathsf{b}$, where $\bar{a} \triangleq (\pi_1 \circ \bar{b})$, we clearly have $\varsigma^{\mathfrak{B} \times \mathfrak{A}}(\bar{b}) \in (B \times \{\mathsf{b}\}) \subseteq (B \dotplus 2)$. Otherwise, since $\{\mathsf{f},\mathsf{b},\mathsf{t}\}$ forms a subalgebra of \mathfrak{A} , we have $\varsigma^{\mathfrak{A}}(\bar{a}) \in \{\mathsf{f},\mathsf{t}\}$. Put $N \triangleq \{k \in n \mid a_k = \mathsf{b}\}$. Consider any $i \in I$. Put $\bar{c} \triangleq (\pi_i \circ e \circ \pi_0 \circ \bar{b})$. Then, for every $j \in (n \setminus N)$, it holds that $C_i \ni c_j = a_j \in \{\mathsf{f},\mathsf{t}\}$. Hence, $c_j \sqsubseteq a_j$, for all $j \in n$. Therefore, by the regularity of $\mathfrak{A} \upharpoonright (\{\mathsf{f},\mathsf{b},\mathsf{t}\} \cup C_i)$, we have $\varsigma^{\mathfrak{A}}(\bar{c}) \sqsubseteq \varsigma^{\mathfrak{A}}(\bar{a})$. Consider the following complementary cases:

- (1) $\mathsf{n} \in C_i$. Then, $C_i \ni \mu(a_j) \sqsubseteq c_j$, for all $j \in n$. Therefore, as, in that case, $\mathfrak{A} \upharpoonright \{\mathsf{f}, \mathsf{b}, \mathsf{t}\}$ is specular, by the regularity of $\mathfrak{A} \upharpoonright (\{\mathsf{f}, \mathsf{b}, \mathsf{t}\} \cup C_i)$, we have $\varsigma^{\mathfrak{A}}(\bar{a}) = \mu(\varsigma^{\mathfrak{A}}(\bar{a})) = \varsigma^{\mathfrak{A}}(\mu \circ \bar{a}) \sqsubseteq \varsigma^{\mathfrak{A}}(\bar{c})$, and so we get $\varsigma^{\mathfrak{A}}(\bar{c}) = \varsigma^{\mathfrak{A}}(\bar{a})$.
- (2) $n \notin C_i$. Then, $\varsigma^{\mathfrak{A}}(\bar{c}) \in C_i \subseteq \{f, b, t\}$. Therefore, since both f and t are minimal elements of the poset $\{f, b, t\}$ ordered by \sqsubseteq , we get $\varsigma^{\mathfrak{A}}(\bar{c}) = \varsigma^{\mathfrak{A}}(\bar{a})$.

Thus, in any case, we have $\varsigma^{\mathfrak{A}}(\bar{c}) = \varsigma^{\mathfrak{A}}(\bar{a})$. and so, by the injectivity of e, we get $\varsigma^{\mathfrak{B} \times \mathfrak{A}}(\bar{b}) \in \{\langle e^{-1}(I \times \{f\}), f \rangle, \langle e^{-1}(I \times \{t\}), t \rangle\} \subseteq (B + 2)$, as required.

Lemma 4.3. Let \mathcal{B} be a model of C. Suppose either \mathfrak{A} is b-idempotent or both \mathfrak{A} is regular and $\{f,b,t\}$ forms a specular subalgebra of \mathfrak{A} (in particular, $\Sigma = \Sigma_{0[1]}$), while \mathcal{B} is not a model of the rule:

$$\{x_0, \sim x_0\} \vdash (x_1 \lor \sim x_1).$$

Then, there is some submatrix \mathcal{D} of \mathcal{B} such that \mathcal{A} is isomorphic to $\Re(\mathcal{D})$.

Proof. In that case, there are some $a, b \in B$ such that (4.1) is not true in \mathcal{B} under $[x_0/a, x_1/b]$. Then, in view of (2.5), the submatrix \mathcal{E} of \mathcal{B} generated by $\{a, b\}$ is a finitely-generated model of C, in which (4.1) is not true under $[x_0/a, x_1/b]$. Hence, by Lemma 2.19 with $M = \{\mathcal{A}\}$, there are some set J, some J-tuple $\overline{\mathcal{C}}$ constituted by submatrices of \mathcal{A} , some subdirect product \mathcal{F} of $\overline{\mathcal{C}}$, in which case ($\mathfrak{F}|\Sigma_0$) \in DML, for DML $\ni \mathfrak{DM}_4$ is a variety, and some $g \in \text{hom}_S^S(\mathcal{F}, \Re(\mathcal{E}))$, in which case, by (2.5), \mathcal{F} is a model of C, in which case it is \land -conjunctive, for \mathcal{A} is so (cf. Remark 3.28 with j = 0), but is not a model of (4.1), in

⁴This equally ensues from Theorem 4.68(x)⇒(v) below, (2.5), the ∧-conjuctivity (cf. Remark 3.28 with j=0) and the finiteness (and so the inductivity of the logic) of $\mathcal{DM}_{4[01]}$ as well as the fact that $\mathcal{DM}_{4} \upharpoonright \{n\}$ is truth-empty, while $\mu \in \text{hom}(\mathfrak{DM}_{4[01]}, \mathfrak{DM}_{4[01]})$.

which case there are some $c, d \in F$ such that $\{c, \sim^{\mathfrak{F}} c\} \subseteq D^{\mathcal{F}} \not\ni d \geqslant^{\mathfrak{F}} \sim^{\mathfrak{F}} d$. Then, by Lemma 4.1, $c = (I \times \{b\})$, in which case $\sim^{\mathfrak{F}} c = c$, and so $(F \setminus D^{\mathcal{F}}) \ni e \triangleq ((c \wedge^{\mathfrak{F}} d) \vee^{\mathfrak{F}} \sim^{\mathfrak{F}} d) = \sim^{\mathfrak{F}} e \leqslant^{\mathfrak{F}} d$. Hence, $e \in \{b, n\}^J$, while $K \triangleq \{i \in J \mid \pi_i(e) = n\} \not= \emptyset$. Given any $\bar{a} \in A^2$, set $(a_0|a_1) \triangleq ((K \times \{a_0\}) \cup ((J \setminus K) \times \{a_1\}))$. In this way, we have:

$$(4.2) F \ni c = (\mathsf{b}|\mathsf{b}),$$

$$(4.3) F \ni e = (\mathsf{n}|\mathsf{b}),$$

$$(4.4) F \ni (c \wedge^{\mathfrak{F}} e) = (\mathsf{f}|\mathsf{b}),$$

$$(4.5) F \ni (c \vee^{\mathfrak{F}} e) = (\mathsf{t}|\mathsf{b}).$$

Consider the following complementary cases:

- (1) either \mathfrak{A} is b-idempotent or K = J.
 - Then, $f \triangleq \{\langle x, (x|b) \rangle \mid x \in A\}$ is an embedding of \mathcal{A} into \mathcal{F} , in which case $g' \triangleq (g \circ f) \in \text{hom}_{S}(\mathcal{A}, \Re(\mathcal{E}))$, and so, by Corollary 2.13, Lemma 3.4 and Remark 3.28 with j = 0, g' is injective. In this way, g' is an isomorphism from \mathcal{A} onto the submatrix $\mathcal{G} \triangleq (\Re(\mathcal{E}) \upharpoonright (\text{img } g'))$ of $\Re(\mathcal{E})$, and so $h \triangleq {g'}^{-1} \in \text{hom}_{S}^{S}(\mathcal{G}, \mathcal{A})$.
- (2) \mathfrak{A} is not b-idempotent and $K \neq J$. Then, there is some $\varphi \in \operatorname{Fm}_{\Sigma}^1$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \neq \mathsf{b}$,

Then, there is some $\varphi \in \operatorname{Fm}_{\Sigma}^1$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \neq \mathsf{b}$, in which case $\phi^{\mathfrak{A}}(\mathsf{b}) = \mathsf{f}$ and $\psi^{\mathfrak{A}}(\mathsf{b}) = \mathsf{t}$, where $\phi \triangleq (x_0 \wedge (\varphi \wedge \sim \varphi))$ and $\psi \triangleq (x_0 \vee (\varphi \vee \sim \varphi))$, and so, by (4.2), we get:

$$(4.6) F \ni \phi^{\mathfrak{F}}(c) = (\mathsf{f}|\mathsf{f}),$$

$$(4.7) F \ni \psi^{\mathfrak{F}}(c) = (\mathsf{t}|\mathsf{t}).$$

Moreover, in that case, both \mathfrak{A} is regular and $\{f, b, t\}$ forms a specular subalgebra of \mathfrak{A} . And what is more, $e' \triangleq \{\langle a', \langle a' \rangle \rangle$ is an embedding of \mathcal{A} into \mathcal{A}^1 such that $\{1 \times \{x\} \mid x \in \{f, t\}\} = e'[\{f, t\}] \subseteq e'[A]$. In this way, Lemma 4.2 with I = 1 and both \mathcal{A} and e' instead of \mathcal{B} and e, respectively, used tacitly throughout the rest of the proof, is well-applicable to \mathcal{A} . Then, since $K \neq \emptyset \neq (J \setminus K)$, by (4.2), (4.3), (4.4), (4.5), (4.6) and (4.7), we see that $f \triangleq \{\langle \langle x, y \rangle, (x|y) \rangle \mid \langle x, y \rangle \in (A + 2)\}$ is an embedding of $\mathcal{H} \triangleq (A \dotplus 2)$ into \mathcal{F} , while $h' \triangleq (\pi_0 \upharpoonright (A \dotplus 2)) \in \text{hom}_S^S(\mathcal{H}, \mathcal{A})$. Then, $g' \triangleq (g \circ f) \in \text{hom}_S(\mathcal{H}, \Re(\mathcal{E}))$, and so g' is a surjective strict homomorphism from \mathcal{H} onto the submatrix $\mathcal{G} \triangleq (\Re(\mathcal{E}) \upharpoonright (\text{img } g'))$ of $\Re(\mathcal{E})$. And what is more, by Lemma 3.4 and Remark 3.28 with g = 0, $g \in \mathbb{R}$ is simple. Hence, by Corollary 2.12 and Proposition 2.15, we get $g \in \mathbb{R}$ (for $g' \in \mathcal{E}$). Therefore, by Proposition 2.14, $g \in \mathbb{R}$ for $g \in \mathbb{R}$ for g

Thus, in any case, there are some submatrix \mathcal{G} of \mathcal{E}/θ , where $\theta \triangleq \mathcal{O}(\mathcal{E})$, and some $h \in \text{hom}_{\mathbb{S}}^{\mathbb{S}}(\mathcal{G}, \mathcal{A})$. Then, $\mathcal{D} \triangleq (\mathcal{E} \upharpoonright \nu_{\theta}^{-1}[G])$, being a submatrix of \mathcal{E} , is so of \mathcal{B} , in which case $h'' \triangleq (\nu_{\theta} \upharpoonright D) \in \text{hom}_{\mathbb{S}}(\mathcal{D}, \mathcal{G})$ is surjective, and so is $h''' \triangleq (h \circ h'') \in \text{hom}_{\mathbb{S}}(\mathcal{D}, \mathcal{A})$. On the other hand, by Lemma 3.4 and Remark 3.28 with j = 0, \mathcal{A} is simple. Hence, by Proposition 2.15, $\vartheta \triangleq \mathcal{O}(\mathcal{D}) = (\ker h''')$. Therefore, by Proposition 2.14, $\nu_{\vartheta} \circ h'''^{-1}$ is an isomorphism from \mathcal{A} onto $\Re(\mathcal{D})$, as required.

Corollary 4.4. Let C' be an extension of C. Suppose either $\mathfrak A$ is b-idempotent or both $\mathfrak A$ is regular and $\{f,b,t\}$ forms a specular subalgebra of $\mathfrak A$ (in particular, $\Sigma = \Sigma_{0[1]}$), while the rule (4.1) is not satisfied in C'. Then, C' = C.

Proof. In that case, $\sim(x_1 \vee \sim x_1) \notin T \triangleq C'(\{x_0, \sim x_0\})$, so, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a model of C' (in particular, of C) not being a model of (4.1). In this way, (2.5) and Lemma 4.3 complete the argument.

Proposition 4.5. Let M be a class of Σ -matrices. Suppose either $\mathfrak A$ is b-idempotent or both $\mathfrak A$ is regular and $\{f,b,t\}$ forms a specular subalgebra of $\mathfrak A$ (in particular, $\Sigma = \Sigma_{0[1]}$), while C is defined by M. Then, there are some $\mathcal B \in M$ and some submatrix $\mathcal D$ of $\mathcal B$ such that $\mathcal A$ is isomorphic to $\mathfrak R(\mathcal D)$.

Proof. Note that the rule (4.1) is not satisfied in C, because it is not true in \mathcal{A} under $[x_0/b, x_1/n]$. Therefore, as C is defined by M, there is some $\mathcal{B} \in M \subseteq Mod(C)$ not being a model of (4.1), in which case Lemma 4.3 completes the argument.

Now, we are in a position to argue several interesting corollaries of Proposition 4.5:

Corollary 4.6. Let M be a class of Σ -matrices. Suppose the logic of M is an expansion of C_B (in particular, $\Sigma = \Sigma_0$ and the logic of M is C_B itself). Then, some $\mathcal{B} \in M$ is not truth-/false-singular. In particular, any four-valued expansion of C_B (including C_B itself) is defined by no truth-/false-singular matrix.

Proof. By contradiction. For suppose every member of M is truth-/false-singular. Then, $\mathsf{M}\upharpoonright\Sigma_0$ is a class of truth-/false-singular Σ_0 -matrices defining C_B . Then, by Proposition 4.5, there are some $\mathcal{B}\in (\mathsf{M}\upharpoonright\Sigma_0)$ and some submatrix \mathcal{D} of \mathcal{B} such that \mathcal{DM}_4 is isomorphic to $\mathcal{E}\triangleq (\mathcal{D}/\theta)$, where $\theta\triangleq \mathcal{D}(\mathcal{D})$, in which case \mathcal{E} is truth-/false-singular, for \mathcal{D} is so, because \mathcal{B} is so/, while $((\mathcal{D}/\theta)\setminus(\mathcal{D}^{\mathcal{D}}/\theta))\subseteq ((\mathcal{D}\setminus\mathcal{D}^{\mathcal{D}})/\theta)$, and so is \mathcal{DM}_4 . This contradiction completes the argument.

Corollary 4.7. Any four-valued $\Sigma_{0[1]}$ -matrix \mathcal{B} defining $C_{[B]B}$ is isomorphic to $\mathcal{DM}_{4[01]}$.

Proof. By Proposition 4.5, there are then some submatrix \mathcal{D} of \mathcal{B} and some isomorphism e from $\mathcal{DM}_{4[01]}$ onto \mathcal{D}/θ , where $\theta \triangleq \partial(\mathcal{D})$, in which case $4 = |DM_{4[01]}| = |D/\theta| \leqslant |D| \leqslant |B| = 4$, in which case $4 = |D/\theta| = |D| = |B|$, and so ν_{θ} is injective, whereas D = B. In this way, $e^{-1} \circ \nu_{\theta}$ is an isomorphism from \mathcal{B} onto $\mathcal{DM}_{4[01]}$, as required.

This, in its turn, enables us to prove:

Theorem 4.8. Any four-valued expansion of $C_{[B]B}$ is defined by an expansion of $\mathcal{DM}_{4[01]}$.

Proof. Let \mathcal{B} be a four-valued Σ -matrix defining an expansion of $C_{[B]B}$. Then, $\mathcal{B}\upharpoonright \Sigma_{0[1]}$ is a four-valued $\Sigma_{0[1]}$ -matrix defining $C_{[B]B}$ itself. Hence, by Corollary 4.7, there is an isomorphism e from $\mathcal{B}\upharpoonright \Sigma_{0[1]}$ onto $\mathcal{DM}_{4[01]}$. In that case, e is an isomorphism from \mathcal{B} onto the expansion $\langle e[\mathfrak{B}], e[D^{\mathcal{B}}] \rangle$ of $\mathcal{DM}_{4[01]}$. In this way, (2.5) completes the argument.

Thus, the way of construction of four-valued expansions chosen in the beginning of this section does exhaust *all* of them. And what is more, any of them is defined by a unique expansion of \mathcal{DM}_4 , as it follows from the theorem immediately ensuing from the following key lemma "killing several (more precisely, $|\mathbf{S}_*(\mathcal{DM}_4)| = 5$; cf. Subsubsection 6.1.4) birds with one stone":

Lemma 4.9 (Four-Valued Key Lemma). Let \mathcal{B} be a Σ -matrix. Suppose $(\mathcal{B} \upharpoonright \Sigma_0) \in \mathbf{S}_*(\mathcal{DM}_4)$ and \mathcal{B} is a model of C. Then, \mathcal{B} is a submatrix of \mathcal{A} .

Proof. In that case, \mathcal{B} is consistent and, being finite, is finitely-generated. In addition, by Lemmas 3.4, 3.6 and Remark 3.28 with j=0, it is simple. And what is more, by Remarks 3.12 and 3.28 with j=0, \mathcal{B} is \vee -disjunctive. Therefore, as \mathcal{A} is finite, by Lemma 2.19 with $\mathsf{M}=\{\mathcal{A}\}$, there are some finite set I, some I-tuple $\overline{\mathcal{C}}$ constituted by submatrices of \mathcal{A} , some subdirect product \mathcal{D} of $\overline{\mathcal{C}}$ and some $g\in \hom_S^S(\mathcal{D},\mathcal{B})$, in which case, by Remark 3.12 and (2.5), \mathcal{D} is consistent and \vee -disjunctive, and so, by Corollary 3.13, there is some $i\in I$ such that $h\triangleq (\pi_i|\mathcal{D})\in \hom_S^S(\mathcal{D},\mathcal{C}_i)$. Moreover, by Lemmas 3.4, 3.6 and Remark 3.28 with j=0, \mathcal{C}_i is simple. Therefore, by Proposition 2.15, $(\ker h)=\mathcal{D}(\mathcal{D})=(\ker g)$. Hence, by Proposition 2.14, $e\triangleq (h\circ g^{-1})\in \hom_S(\mathcal{B},\mathcal{C}_i)\subseteq \hom_S(\mathcal{B},\mathcal{A})\subseteq \hom_S(\mathcal{B}|\Sigma_0,\mathcal{DM}_4)$, in which case, by Lemma 3.7 and Remark 3.28 with j=0, e is diagonal, as required.

By (2.5) and Lemma 4.9, we immediately get the following universal characterization:

Corollary 4.10. Let $\mathcal{B} \in \mathbf{S}_*(\mathcal{DM}_4)$. Then, the logic of a Σ -expansion of \mathcal{B} is an extension of C iff \mathfrak{B} is a subalgebra of \mathfrak{A} .

Theorem 4.11. Let \mathcal{B} be a Σ -matrix. Suppose $(\mathcal{B} \upharpoonright \Sigma_0) = \mathcal{DM}_4$ and \mathcal{B} is a model of C (in particular, C is defined by \mathcal{B}). Then, $\mathcal{B} = \mathcal{A}$.

Proof. Then, by Lemma 4.9, \mathcal{B} is a submatrix of \mathcal{A} , in which case $\mathcal{B} = \mathcal{A}$, for $\mathcal{B} = \mathcal{A}$, as required.

In view of Theorem 4.11, \mathcal{A} is said to be *characteristic for C*. Subsections 4.2, 4.3, 4.4, 4.5 and 4.6 provide characterizations of certain properties of four-valued expansions of $C_{\rm B}$ via respective properties of their characteristic matrices. And what is more, \mathcal{A} is \vee -disjunctive and has a unary unitary equality determinant (cf. Remark 3.28 with j=0), so Theorems 3.21 and 3.25 are well applicable to C immediately yielding the item (1k) of the Abstract (cf. Subsubsection 6.1.4 for more detail).

Corollary 4.12. Let $\Sigma' \supseteq \Sigma$ be a signature and C' a four-valued Σ' -expansion of C. Then, C' is defined by a unique Σ' -expansion of A.

Proof. Then, by Theorem 4.8, C' is defined by a Σ' -expansion \mathcal{A}' of \mathcal{DM}_4 , in which case C is defined by the Σ -expansion $\mathcal{A}'\upharpoonright\Sigma$ of \mathcal{DM}_4 , and so $(\mathcal{A}'\upharpoonright\Sigma) = \mathcal{A}$, in view of Theorem 4.11. In this way, Theorem 4.11 completes the argument.

4.1.1. Minimal four-valuedness. As a one more interesting consequence of Proposition 4.5, we have:

Theorem 4.13. Let M be a class of Σ -matrices. Suppose the logic of M is an expansion of C_B (in particular, $\Sigma = \Sigma_0$ and the logic of M is C_B itself). Then, $4 \leq |B|$, for some $\mathcal{B} \in M$. In particular, any four-valued expansion of C_B (including C_B itself) is minimally four-valued.

Proof. In that case, $C_{\rm B}$ is defined by $\mathsf{M} \upharpoonright \Sigma_0$, and so, by Proposition 4.5, there are some $\mathcal{B} \in \mathsf{M}$ and some submatrix \mathcal{D} of $\mathcal{B} \upharpoonright \Sigma_0$ such that $\mathcal{D}\mathcal{M}_4$ is isomorphic to \mathcal{D}/θ , where $\theta \triangleq \mathfrak{D}(\mathcal{D})$. In this way, $4 = |DM_4| = |D/\theta| \leqslant |D| \leqslant |B|$, as required.

4.2. Relevance Principle.

Lemma 4.14. C is purely-inferential iff $\{n\}$ forms a subalgebra of \mathfrak{A} .

Proof. First, assume $\{n\}$ forms a subalgebra of \mathcal{A} , in which case $\mathcal{A} \upharpoonright \{n\}$ is a truth-empty submatrix of \mathcal{A} , and so C is purely inferential, in view of (2.5).

Conversely, assume $\{n\}$ does not form a subalgebra of \mathfrak{A} . Then, there is some $\varphi \in \operatorname{Fm}^1_{\Sigma}$ such that $\varphi^{\mathfrak{A}}(\mathsf{n}) \neq \mathsf{n}$, in which case $(\varphi^{\mathfrak{A}}(\mathsf{n}) \vee^{\mathfrak{A}} \sim^{\mathfrak{A}} \varphi^{\mathfrak{A}}(\mathsf{n})) \in D^{\mathcal{A}}$, and so $((x_0 \vee \sim x_0) \vee (\varphi \vee \sim \varphi)) \in C(\varnothing)$, as required.

Lemma 4.15. C has no inconsistent formula iff $\{b\}$ forms a subalgebra of \mathfrak{A} .

Proof. First, assume $\{b\}$ does not form a subalgebra of \mathfrak{A} . Then, there is some $\varphi \in \operatorname{Fm}_{\Sigma}^1$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \neq \mathsf{b}$, in which case $(\varphi^{\mathfrak{A}}(\mathsf{b}) \wedge^{\mathfrak{A}} \sim^{\mathfrak{A}} \varphi^{\mathfrak{A}}(\mathsf{b})) \notin D^{\mathcal{A}}$, and so $((x_0 \wedge \sim x_0) \wedge (\varphi \wedge \sim \varphi))$ is an inconsistent formula of C.

Conversely, assume $\{b\}$ forms a subalgebra of \mathcal{A} . Let us prove, by contradiction, that C has no inconsistent formula. For suppose some $\varphi \in \operatorname{Fm}_{\Sigma}^{\omega}$ is an inconsistent formula of C, in which case $\varphi \in \operatorname{Fm}_{\Sigma}^{\alpha}$, for some $\alpha \in (\omega \setminus 1)$, while $x_{\alpha} \in C(\varphi)$. Let $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$ extend $(V_{\alpha} \times \{b\}) \cup (V_{\omega \setminus \alpha} \times \{f\})$. Then, $h(\varphi) = b \in D^{\mathcal{A}}$, whereas $h(x_{\alpha}) = f \notin D^{\mathcal{A}}$. This contradiction completes the argument.

Theorem 4.16. The following are equivalent:

- (i) C satisfies Relevance Principle;
- (ii) C is purely inferential and has no inconsistent formula;
- (iii) both $\{n\}$ and $\{b\}$ form subalgebras of \mathfrak{A} .

Proof. First, (ii) is a particular case of (i). Next, (ii)⇒(iii) is by Lemmas 4.14 and 4.15.

Finally, assume (iii) holds. Consider any $\alpha \in (\omega \setminus 1)$, any $\phi \in \operatorname{Fm}_{\Sigma}^{\alpha}$ and any $\psi \in \operatorname{Fm}_{\Sigma}^{\omega \setminus \alpha}$. Let $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$ extend $(V_{\alpha} \times \{b\}) \cup (V_{\omega \setminus \alpha} \times \{n\})$. Then, $h(\phi) = b \in D^{\mathcal{A}}$, whereas $h(\psi) = n \notin D^{\mathcal{A}}$. Thus, $\psi \notin C(\phi)$, and so (i) holds, as required. \square

Corollary 4.17 (cf. Theorem 4.2 of [16] for the case $\Sigma = \Sigma_0$). C has no proper extension satisfying Relevance Principle.

Proof. Consider any extension C' of C satisfying Relevance Principle, in which case C, being a sublogic of C', does so as well, and so, by Theorem 4.16(i) \Rightarrow (iii), {b} forms a subalgebra of \mathfrak{A} . Moreover, as C' is \land -conjunctive, for \mathcal{A} is so (cf. Remark 3.28 with j=0), (4.1) is not satisfied in C', for $1 \in (\omega \setminus 1)$, while $(x_0 \land \sim x_0) \in \operatorname{Fm}_{\Sigma}^1$, whereas $(x_1 \lor \sim x_1) \in \operatorname{Fm}_{\Sigma}^{\omega \setminus 1}$. In this way, Corollary 4.4 completes the argument.

Perhaps, this is the principal maximality of C in addition to the standard one studied below.

4.3. Maximality.

Lemma 4.18. Any proper submatrix \mathcal{B} of \mathcal{A} defines a proper extension C' of C.

Proof. For consider the following complementary cases:

- (1) $b \in B$.
 - Then, $n \notin B$, for $B \neq A$, while $(n \wedge^{\mathfrak{B}} b) = f$, whereas $(n \vee^{\mathfrak{B}} b) = t$. In that case, $(x_0 \vee \sim x_0) \in (C'(\emptyset) \setminus C(\emptyset))$.
- (2) $b \notin B$. Then, \mathcal{B} is not \sim -paraconsistent, as opposed to \mathcal{A} , and so is C', as opposed to C.

Thus, in any case, $C' \neq C$, as required, in view of (2.5).

Lemma 4.19. Let $\mathcal{D} \in \mathbf{S}_*(\mathcal{A})$. Then, providing $D \neq \{n\}$ (in particular, \mathcal{D} is truth-non-empty), $\{f, t\} \subseteq D$, in which case \mathcal{D} is truth-non-empty. In particular, \mathcal{D} is truth-non-empty iff $D \neq \{n\}$.

Proof. In that case, we have $(\{f, n\} \cap D) \neq \emptyset$. In this way, the fact that $(n \wedge^{\mathfrak{A}} b) = f$, while $\sim^{\mathfrak{A}} f = t$, whereas $\sim^{\mathfrak{A}} t = f$, completes the argument.

Clearly, \mathcal{A} is consistent [and truth-non-empty], and so C is [inferentially] consistent. In this connection, we have:

Theorem 4.20. C is [inferentially] maximal iff A has no proper consistent [truth-non-empty] submatrix.

Proof. First, consider any proper consistent [truth-non-empty] submatrix \mathcal{B} of \mathcal{A} . Then, by Lemma 4.18, the logic C' of \mathcal{B} is a[n inferentially] consistent proper extension of C, and so C is not [inferentially] maximal.

Conversely, assume \mathcal{A} has no proper consistent [truth-non-empty] submatrix. Consider any [inferentially] consistent extension C' of C. Then, $x_0 \notin T \triangleq C'(\varnothing[\cup\{x_1\})[\ni x_1]$, while, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a model of C' (in particular, of C), and so is its consistent [truth-non-empty] finitely-generated submatrix $\mathcal{B} = \langle \mathfrak{Fm}_{\Sigma}^{\omega}, \operatorname{Fm}_{\Sigma}^{\omega} \cap T \rangle$, in view of (2.5). Hence, by Lemma 2.19 with $M = \{\mathcal{A}\}$, there are some finite set I, some I-tuple \overline{C} constituted by consistent [truth-non-empty] submatrices of \mathcal{A} , some subdirect product \mathcal{D} of \overline{C} and some $g \in \operatorname{hom}_{\mathbb{S}}^{\mathbb{S}}(\mathcal{D}, \mathcal{B}/\partial(\mathcal{B}))$, in which case, by (2.5), \mathcal{D} is a consistent model of C', and so, in particular, $I \neq \varnothing$. Moreover, for any $i \in I$, [as \mathcal{C}_i is truth-non-empty] $\mathcal{C}_i = \mathcal{A}$ is truth-non-empty anyway. Hence, by the following claim, both $D \ni a \triangleq (I \times \{f\})$ and $D \ni b \triangleq (I \times \{t\})$:

Claim 4.21. Let I be a finite set, \overline{C} an I-tuple constituted by consistent truth-non-empty submatrices of A and B a subdirect product of \overline{C} . Then, $\{I \times \{f\}, I \times \{t\}\} \subseteq B$.

Proof. In that case, $\mathfrak{B}\upharpoonright \Sigma^+$ is a finite lattice, so it has both a zero a and a unit b. Consider any $i \in I$. Then, as \mathcal{C}_i is both consistent and truth-non-empty, by Lemma 4.19, we have $\{f,t\}\subseteq C_i$. Therefore, since $\pi_i[B]=C_i$ and $(\pi_i\upharpoonright B)\in \text{hom}(\mathfrak{B}\upharpoonright \Sigma^+,\mathfrak{C}_i\upharpoonright \Sigma^+)$, by Lemma 3.27, we get $\pi_i(a)=f$ and $\pi_i(b)=t$. Thus, $B\ni a=(I\times\{f\})$ and $B\ni b=(I\times\{t\})$, as required.

Next, if $\{f,t\} \subseteq A$ did form a subalgebra of \mathfrak{A} , $A \upharpoonright \{f,t\}$ would be a proper consistent [truth-non-empty] submatrix of \mathcal{A} . Therefore, there are some $\phi \in \operatorname{Fm}_{\Sigma}^2$ and some $j \in 2$ such that $\phi^{\mathfrak{A}}(f,t) = \langle j,1-j \rangle$. Likewise, if $\{f,\langle j,1-j \rangle,t\} \subseteq A$ did form a subalgebra of \mathfrak{A} , $A \upharpoonright \{f,\langle j,1-j \rangle,t\}$ would be a proper consistent [truth-non-empty] submatrix of \mathcal{A} . Therefore, there is some $\psi \in \operatorname{Fm}_{\Sigma}^3$ such that $\psi^{\mathfrak{A}}(f,\langle j,1-j \rangle,t) = \langle 1-j,j \rangle$. In this way, $\{\phi^{\mathfrak{A}}(f,t),\psi^{\mathfrak{A}}(f,\phi^{\mathfrak{A}}(f,t),t)\} = \{\mathsf{n},\mathsf{b}\}$. Then, $D \supseteq \{\phi^{\mathfrak{D}}(a,b),\psi^{\mathfrak{D}}(a,\phi^{\mathfrak{D}}(a,b),b)\} = \{I \times \{\mathsf{n}\},I \times \{\mathsf{b}\}\}$. Thus, $\{I \times \{c\} \mid c \in A\} \subseteq D$. Hence, as $I \neq \emptyset$, $\{\langle c,I \times \{c\} \rangle \mid c \in A\}$ is an embedding of \mathcal{A} into \mathcal{D} , in which case, by (2.5), C is an extension of C', and so C' = C, as required.

4.4. Subclassical expansions.

Lemma 4.22. Let \mathcal{B} be a (simple) finitely generated consistent truth-non-empty model of C. Then, the following hold:

- (i) \mathcal{B} is \sim -paraconsistent, if $\sim (x_0 \land \sim x_0)$ is true in \mathcal{B} and $\{f,t\}$ does not form a subalgebra of \mathfrak{A} ;
- (ii) providing $\{f,t\}$ forms a subalgebra of \mathfrak{A} , $\mathcal{A} \upharpoonright \{f,t\}$ is embeddable into $\mathcal{B} / \mathcal{D}(\mathcal{B})$ (resp., into \mathcal{B} itself).

Proof. Put $\mathcal{E} \triangleq (\mathcal{B}/\mathcal{D}(\mathcal{B}))$ (resp., $\mathcal{E} \triangleq \mathcal{B}$). Then, by Lemma 2.19 with $\mathsf{M} = \{\mathcal{A}\}$, there are some finite set I, some I-tuple $\overline{\mathcal{C}}$ constituted by consistent truth-non-empty submatrices of \mathcal{A} , some subdirect product \mathcal{D} of $\overline{\mathcal{C}}$ and some $g \in \mathsf{hom}_S^S(\mathcal{D}, \mathcal{E})$, in which case, by (2.5), \mathcal{D} is consistent, and so, in particular, $I \neq \emptyset$. Hence, by Claim 4.21, both $D \ni a \triangleq (I \times \{\mathsf{f}\})$ and $D \ni b \triangleq (I \times \{\mathsf{t}\})$. Consider the following respective cases:

(i) $\sim (x_0 \land \sim x_0)$ is true in \mathcal{B} and $\{f, t\}$ does not form a subalgebra of \mathfrak{A} . Then, there is some $\varphi \in \operatorname{Fm}_{\Sigma}^2$ such that $\varphi^{\mathfrak{A}}(f, t) \in \{\mathsf{n}, \mathsf{b}\}$. Take any $i \in I \neq \varnothing$. Then, $\{\mathsf{f}, \mathsf{t}\} = \pi_i[\{a, b\}] \subseteq C_i$. Moreover, $(\pi_i \upharpoonright D) \in \operatorname{hom}^{\mathsf{S}}(\mathcal{D}, \mathcal{C}_i)$, in which case, by (2.5) and (2.6), \mathcal{C}_i is a model of $\sim (x_0 \land \sim x_0)$, and so $\mathsf{n} \notin C_i$, for $\sim^{\mathfrak{A}}(\mathsf{n} \land^{\mathfrak{A}} \sim^{\mathfrak{A}}\mathsf{n}) = \mathsf{n} \notin D^{\mathcal{A}}$. And what is more, \mathfrak{C}_i is a subalgebra of \mathfrak{A} . Hence, $\varphi^{\mathfrak{A}}(\mathsf{f}, \mathsf{t}) \in C_i$, and so $\varphi^{\mathfrak{A}}(\mathsf{f}, \mathsf{t}) = \mathsf{b}$, for $\mathsf{n} \notin C_i$. Then, $D \ni c \triangleq \varphi^{\mathfrak{D}}(a, b) = (I \times \{\mathsf{b}\})$, in which case $\sim^{\mathfrak{D}} c = c \in D^{\mathcal{D}}$, and so \mathcal{D} , being consistent, is \sim -paraconsistent, and so is \mathcal{B} , in view of (2.5), as required.

(ii) $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case $\mathcal{F} \triangleq (\mathcal{A}|\{f,t\})$ is \sim -classical, and so simple, in view of Example 3.2 and Lemma 3.4. Finally, as $\{I \times \{d\} \mid d \in F\} \subseteq D \text{ and } I \neq \emptyset, e \triangleq \{\langle d, I \times \{d\} \rangle \mid d \in F\} \text{ is an embedding of } \mathcal{F} \text{ into } \mathcal{D}, \text{ in which case, } (g \circ e) \in \text{hom}_{\mathbb{S}}(\mathcal{F}, \mathcal{E}), \text{ and so Corollary 2.13 completes the argument.}$

Theorem 4.23. C is \sim -subclassical iff $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case any \sim -classical model of C is isomorphic to $\mathcal{A}_{nt'} \triangleq \mathcal{A} \upharpoonright \{f,t\}$, and so the logic of this submatrix is the only \sim -classical extension of C.

Proof. Let \mathcal{B} be a \sim -classical model of C, in which case it is simple (cf. Example 3.2 and Lemma 3.4) and finite (in particular, finitely generated), but not \sim -paraconsistent.

First, consider any $a \in B$. Then, $\{a, \sim^{\mathfrak{B}} a\} \not\subseteq D^{\mathcal{B}}$, for \mathcal{B} is \sim -classical, in which case $(a \wedge^{\mathfrak{B}} \sim^{\mathfrak{B}} a) \not\in D^{\mathcal{B}}$, for \mathcal{B} is \wedge -conjunctive, because C is so, since \mathcal{A} is so (cf. Remark 3.28 with j = 0), and so $\sim^{\mathfrak{B}} (a \wedge^{\mathfrak{B}} \sim^{\mathfrak{B}} a) \in D^{\mathcal{B}}$, for \mathcal{B} is \sim -classical. Thus, $\sim (x_0 \wedge \sim x_0)$ is true in \mathcal{B} . Hence, by Lemma 4.22(i), $\{f, t\}$ forms a subalgebra of \mathfrak{A} .

Conversely, assume $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case $\mathcal{D} \triangleq (\mathcal{A} | \{f,t\})$ is a \sim -classical model of C, by (2.5), and is embeddable into \mathcal{B} , by Lemma 4.22(ii), and so is isomorphic to it, for they are both two-valued. In this way, (2.5) completes the argument.

In view of Theorem 4.23, the unique \sim -classical extension of a \sim -subclassical four-valued expansion C of C_B is said to be characteristic for/of C and denoted by C^{PC} , the maximality nature of which is as follows:

Theorem 4.24. Let C' be an inferentially consistent (in particular, consistent non-pseudo-axiomatic) extension of C. Suppose $\{f,t\}$ forms a subalgebra of \mathfrak{A} . Then, $\mathcal{A} \setminus \{f,t\}$ is a model of C'.

Proof. Then, $x_1 \notin C'(x_0) \ni x_0$, while, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, C'(x_0) \rangle$ is a model of C' (in particular, of C), and so is its consistent truth-non-empty finitely generated submatrix $\langle \mathfrak{Fm}_{\Sigma}^2, \operatorname{Fm}_{\Sigma}^2 \cap C'(x_0) \rangle$, in view of (2.5). In this way, (2.5) and Lemma 4.22(ii) complete the argument.

Example 4.25. When $\Sigma = \Sigma_0$, $\{n\}$ forms a subalgebra of \mathfrak{A} , in which case $\mathcal{B} \triangleq (\mathcal{A} | \{n\})$ is a consistent truth-empty submatrix of \mathcal{A} , and so, by (2.5), the logic C' of \mathcal{B} is a consistent but inferentially inconsistent extension of C. Then, C' is not subclassical, because any classical logic is inferentially consistent, for any classical matrix is both consistent and truth-non-empty. In this way, the reservation "inferentially" cannot be omitted in the formulation of Theorem 4.24.

4.5. **Paraconsistent and paracomplete extensions.** The axiomatic extension of C relatively axiomatized by the Excluded Middle law axiom:

 $(4.8) x_0 \lor \sim x_0$

is denoted by $C^{\rm EM}$.

An extension C' of C is said to be (maximally) [inferentially] paracomplete, provided $(x_0 \lor \sim x_0) \notin C'(\varnothing[\cup \{x_1\}])$ (and C' has no proper [inferentially] paracomplete extension). Then, a model of C is said to be [inferentially] paracomplete, whenever the logic of it is so.

Clearly, a submatrix \mathcal{B} of \mathcal{A} is paracomplete/ \sim -paraconsistent iff $n \in B$ /both $b \in B$ and $(B \cap \{n, f\}) \neq \emptyset$. In particular, \mathcal{A} is both \sim -paraconsistent and paracomplete, and so is C.

By \mathcal{A}_{-n} we denote the \sim -paraconsistent submatrix of \mathcal{A} generated by $\{f,b,t\}$, the logic of it being denoted by C^{-n} . (Clearly, $\mathcal{A}_{-n} = \mathcal{A}_{n'} \triangleq (\mathcal{A} \upharpoonright \{f,b,t\})$, if $\{f,b,t\}$ forms a subalgebra of \mathfrak{A} , and $\mathcal{A}_{-n} = \mathcal{A}$, otherwise.)

Lemma 4.26. Let \mathcal{B} be a \sim -paraconsistent model of C. Then, there is some submatrix \mathcal{D} of \mathcal{B} such that \mathcal{A}_{-n} is embeddable into $\mathcal{D}/\partial(\mathcal{D})$.

Proof. In that case, there are some $a \in D^{\mathcal{B}}$ such that $\sim^{\mathfrak{B}} a \in D^{\mathcal{B}}$ and some $b \in (B \setminus D^{\mathcal{B}})$. Then, in view of (2.5), the submatrix \mathcal{D} of \mathcal{B} generated by $\{a,b\}$ is a \sim -paraconsistent finitely-generated model of C. Hence, by Lemma 2.19 with $\mathsf{M} = \{\mathcal{A}\}$, there are some finite set I, some I-tuple \overline{C} constituted by consistent submatrices of \mathcal{A} , some subdirect product \mathcal{E} of \overline{C} and some $g \in \mathsf{hom}_S^S(\mathcal{E}, \mathcal{D}/\partial(\mathcal{D}))$. Hence, by (2.5), \mathcal{E} is \sim -paraconsistent, in which case it is consistent, and so $I \neq \varnothing$. Take any $a \in D^{\mathcal{E}}$ such that $\sim^{\mathfrak{E}} a \in D^{\mathcal{E}}$. Then, by Lemma 4.1, $E \ni a = (I \times \{b\})$, in which case, for each $i \in I$, $D^{\mathcal{C}_i} \ni \pi_i(a)$, and so \mathcal{C}_i is truth-non-empty. Therefore, by Claim 4.21, we also have both $E \ni b \triangleq (I \times \{f\})$ and $E \ni c \triangleq (I \times \{t\})$. Consider the following complementary cases:

- (1) $\{f, b, t\}$ does not form a subalgebra of \mathfrak{A} . Then, $A_{-n} = A$ and there is some $\varphi \in \operatorname{Fm}_{\Sigma}^3$ such that $\varphi^{\mathfrak{A}}(f, b, t) = n$, in which case $E \ni \varphi^{\mathfrak{E}}(b, a, c) = (I \times \{\varphi^{\mathfrak{A}}(f, b, t)\}) = (I \times \{n\})$, and so $\{I \times \{d\} \mid d \in A_{-n}\} \subseteq E$.
- (2) $\{f, b, t\}$ forms a subalgebra of \mathfrak{A} . Then, $A_{-n} = \{f, b, t\}$, and so $\{I \times \{d\} \mid d \in A_{-n}\} \subseteq E$.

Thus, in any case, $\{I \times \{d\} \mid d \in A_{-n}\} \subseteq E$. Then, as $I \neq \emptyset$, $e \triangleq \{\langle d, I \times \{d\} \rangle \mid d \in A_{-n}\}$ is an embedding of \mathcal{A}_{-n} into \mathcal{E} , in which case $(g \circ e) \in \text{hom}_{\mathbb{S}}(\mathcal{A}_{-n}, \mathcal{D}/\mathfrak{D}(\mathcal{D}))$, and so Corollary 2.13, Lemmas 3.4, 3.6 and Remark 3.28 with j = 0 complete the argument.

Corollary 4.27. A_{-n} is a model of any \sim -paraconsistent extension of C. In particular, C^{-n} is the greatest \sim -paraconsistent extension of C, and so maximally \sim -paraconsistent, in which case an extension of C is \sim -paraconsistent iff it is a sublogic of C^{-n} .

Proof. Consider any \sim -paraconsistent extension C' of C, in which case $x_1 \notin T \triangleq C'(\{x_0, \sim x_0\})$, and so, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a \sim -paraconsistent model of C', and so of C. Then, (2.5) and Lemma 4.26 complete the argument.

Lemma 4.28 (cf. Corollary 5.3 of [16] for the case $\Sigma = \Sigma_0$). Suppose $\{f, b, t\}$ forms a subalgebra of $\mathfrak{A}/\{f, t\}[\cup \{b\}]$ does [not] form a subalgebra of \mathfrak{A} . Then, the logic of $A_{\eta/\eta h}$ is the proper consistent axiomatic extension of C relatively axiomatized by (4.8).

Proof. In that case, $(\text{Mod}(4.8) \cap \mathbf{S}_*(\mathcal{A})) = \mathbf{S}_*(\mathcal{A}_{\mathfrak{p}/\mathfrak{p}/\mathfrak{p}})$. In this way, Corollary 2.21, the consistency of $\mathcal{A}_{\mathfrak{p}/\mathfrak{p}/\mathfrak{p}}$ and the fact that (4.8) is not satisfied in \mathcal{A} under $[x_1/\mathfrak{n}]$ complete the argument.

The logic of $\mathcal{DM}_{4[01]} \upharpoonright \{f, b, t\}$ is known as the [bounded] logic of paradox $LP_{[01]}$ [14] (cf. [17]).

Theorem 4.29. The following are equivalent:

- (i) C is maximally \sim -paraconsistent;
- (ii) $C = C^{-n}$;
- (iii) $C^{\text{EM}} \neq C^{-n}$;
- (iv) {f, b, t} does not form a subalgebra of \mathfrak{A} ;
- (v) C^{EM} is not \sim -paraconsistent;
- (vi) C^{EM} is not maximally \sim -paraconsistent;
- (vii) C^{EM} is either \sim -classical, if C is \sim -subclassical, or inconsistent, otherwise;
- (viii) any consistent non- \sim -classical extension of C is paracomplete;
- (ix) any \sim -paraconsistent extension of C is paracomplete;
- (x) no expansion of LP is an extension of C;
- (xi) C^{EM} is not an expansion of LP.

Proof. First, (i) \Rightarrow (ii) is by (2.5). The converse is by Corollary 4.27. Thus, (i) \Leftrightarrow (ii) holds. Next, (ii) \Rightarrow (iii) is by the paracompleteness of C. In addition, (iv) \Rightarrow (ii) is immediate.

Further, assume $\{f, b, t\}$ forms a subalgebra of \mathfrak{A} , in which case $A_{-n} = A_{p}$, and so, by Lemma 4.28, $C^{\text{EM}} = C^{-n}$ is an expansion of LP. Thus, both (iii) \Rightarrow (iv) and (xi) \Rightarrow (iv) hold.

Furthermore, (vi) is a particular case of (v). Likewise, (v) is a particular case of (ix), while (ix) is a particular case of (viii). Moreover, (vi) \Rightarrow (iii) is by Corollary 4.27. And what is more, (vii) \Rightarrow (viii) is by Theorems 4.23 and 4.24.

Finally, assume (iv) holds. Let S be the set of all non-paracomplete consistent submatrices of \mathcal{A} , in which case, by Corollary 2.21, C^{EM} is defined by S. Consider any $\mathcal{B} \in S$. Since it is not paracomplete, we have $n \notin B$, in which case $f \in B$, for it is consistent, and so $f \in B$. Therefore, by (iv), $f \notin B$, for $f \in B$, for $f \in B$, in this way, by Theorem 4.23, either $f \in B$, in which case $f \in B$, which case $f \in B$, in which case $f \in B$, in which case $f \in B$, in which case $f \in B$, which case $f \in B$ is $f \in B$.

After all, (xi/x) is a particular case of (x/ix), as required.

It is Theorem $4.29(i)\Leftrightarrow(iv)$ that provides a quite useful algebraic criterion of the maximal \sim -paraconsistency of C inherited by its four-valued expansions, in view of Corollary 4.12, applications of which are demonstrated in Subsection 6.1.

4.5.1. The resolutional extension. By $C^{[EM+]R}$ we denote the resolutional extension of $C^{[EM]}$, viz., the one relatively axiomatized by the Resolution rule:

$$\{x_1 \lor x_0, \sim x_1 \lor x_0\} \vdash x_0.$$

Put $S_{[*]b} \triangleq \{ \mathcal{B} \in \mathbf{S}_{[*]}(\mathcal{A}) \mid b \notin B \}.$

$$\{x_1 \vee x_0, (x_1 \vee x_0)\} \vdash (x_2 \vee x_0)$$

is satisfied in C'' iff

$$\{x_1 \ \underline{\lor} \ x_0, \ | x_1 \ \underline{\lor} \ x_0\} \vdash x_0$$

is so.

Proof. In that case, (3.4) and (3.5), being valid for C', remain so for C''. First, assume (4.10) is satisfied in C'', in which case (4.10)[x_2/x_0] is so, in view of the structurality of C'', and so is (4.11), in view of (3.5) and the transitivity of C''. Conversely, the fact that (4.11) and (3.4) are satisfied in C'' implies the fact that (4.10) is so, in view of the transitivity of C'', as required. \Box

By Lemmas 3.18, 4.30, Corollary 3.14 and Remark 3.28 with j = 0, we first have:

Corollary 4.31. $C^{\mathbb{R}}$ is a proper extension of C.

Theorem 4.32. $C^{\text{EM+R}}$ is equal to C^{PC} , if C is \sim -subclassical, and inconsistent, otherwise.

Proof. With using Remark 3.28 with j=0, Theorems 3.21, 4.23 and Lemma 4.30. Then, $C^{\text{EM}+R}$ is defined by the set S of all non-paracomplete members of $S_{*,b}$. In that case, $S = \{A | \{f,t\}\}$, if $\{f,t\}$ forms a subalgebra of \mathfrak{A} , and $S = \emptyset$, otherwise, as required.

By Remark 3.28 with j = 0, Theorem 3.21 and Lemma 4.30, we also have:

Lemma 4.33. $C^{\mathbf{R}}$ is defined by $S_{[*]b}$.

By Lemmas 4.14 and 4.33, we first have:

Corollary 4.34. $C^{\mathbb{R}}$ is purely inferential iff C is so. In particular, $C^{\mathbb{R}}$ is paracomplete, whenever C is purely inferential.

In addition, we also get:

Corollary 4.35. Suppose $\{f, n, t\}$ forms a subalgebra of \mathfrak{A} . Then, C^{R} is defined by $\mathcal{A}_{b'} \triangleq (\mathcal{A} \upharpoonright \{f, n, t\})$,

Proof. In that case, $S_{b} = S(A_{b})$, and so (2.5) and Lemma 4.33 complete the argument.

Theorem 4.36. The following are equivalent:

- (i) C^R is paracomplete;
- (ii) there is some subalgebra \mathfrak{B} of \mathfrak{A} such that $b \notin B \ni n$;
- (iii) the carrier of the subalgebra of \mathfrak{A} generated by $\{n\}$ does not contain \mathfrak{b} ;
- (iv) there is no $\varphi \in \operatorname{Fm}^1_{\Sigma}$ such that $\varphi^{\mathfrak{A}}(\mathsf{n}) = \mathsf{b}$.

Proof. In view of Lemma 4.33, C^{R} is paracomplete iff $S_{b'}$ contains a paracomplete matrix. Thus, (i) \Leftrightarrow (ii) holds. Finally, (ii) \Leftrightarrow (iii) \Leftrightarrow (iv) are immediate.

Lemma 4.37. Let $a \in \{b, n\}$. Suppose $\{f, [a,]t\}$ forms a [regular] subalgebra of \mathfrak{A} . Then, $K_4^a \triangleq \{\langle f, f \rangle, \langle a, f \rangle, \langle a, t \rangle, \langle t, t \rangle\}$ forms a subalgebra of $(\mathfrak{A} \setminus \{f, a, t\}) \times (\mathfrak{A} \setminus \{f, t\})$.

Proof. Let \mathfrak{B} be the subalgebra of $(\mathfrak{A} \upharpoonright \{f, a, t\}) \times (\mathfrak{A} \upharpoonright \{f, t\})$ generated by K_4^a . If $\langle t, f \rangle$ was in B, there would be some $\varphi \in \operatorname{Fm}_{\Sigma}^4$ such that both $\varphi^{\mathfrak{A}}(f, a, a, t) = t$ and $\varphi^{\mathfrak{A}}(f, f, t, t) = f$, in which case, since $(\mathsf{n}/\mathsf{b}) \sqsubseteq / \supseteq b$, for every $b \in \{f, t\}$, by the regularity of $\mathfrak{A} \upharpoonright \{f, a, t\}$, we would get $t \sqsubseteq / \supseteq f$. Therefore, as $\sim^{\mathfrak{A}}(f/t) = (t/f)$, we conclude that $B = K_4^a$, as required.

Lemma 4.38. Let $B \subseteq \{b, n\}$. Suppose $\{f, t\} \cup B$ forms a specular subalgebra of \mathfrak{A} . Then, $\{f, t\}$ forms a subalgebra of \mathfrak{A} .

Proof. By contradiction. For suppose $\{f,t\}$ does not form a subalgebra of \mathfrak{A} . In that case, there are some $\varsigma \in \Sigma$ of some arity $n \in \omega$ and some $\bar{a} \in \{f,t\}^n$ such that $\varsigma^{\mathfrak{A}}(\bar{a}) \in B$. Then, $(\mu \circ \bar{a}) = \bar{a}$, while $\mu(\varsigma^{\mathfrak{A}}(\bar{a})) \neq \varsigma^{\mathfrak{A}}(\bar{a})$, in which case $\mu \notin \text{hom}(\mathfrak{A} \upharpoonright (\{f,t\} \cup B), \mathfrak{A})$, and so this contradiction completes the argument.

Theorem 4.39. Suppose $\{f, n, t\}$ forms a regular specular subalgebra of \mathfrak{A} , in which case $\{f, t\}$ forms a subalgebra of $\mathfrak{A}_{b'}$ (cf. Lemma 4.38), [while $\{n\}$ does not form a subalgebra of $\mathfrak{A}_{b'}$] (in particular, $\Sigma = \Sigma_{0[1]}$). Then, an extension of C is [non-]inferentially paracomplete iff it is a sublogic of C^R . In particular, C^R is maximally [non-]inferentially paracomplete.

Proof. In that case, by Corollary 4.35, C^{R} is defined by the truth-non-empty paracomplete (and so inferentially paracomplete) Σ -matrix \mathcal{A}_{\flat} , in which case, in particular, any extension of C, being a sublogic of C^{R} , is inferentially paracomplete, and so paracomplete.

Conversely, consider any [non-]inferentially paracomplete extension C' of C, in which case [since $C'(\varnothing) \supseteq C(\varnothing) \neq \varnothing$, in view of Lemma 4.14] $(x_0 \lor \sim x_0) \not\in T \triangleq C'(x_1)$, while, by the structurality of C', $\langle \mathfrak{F}\mathfrak{m}_{\Sigma}^{\omega}, T \rangle$ is a model of C' (in particular, of C), and so is its finitely-generated inferentially paracomplete submatrix $\mathcal{B} \triangleq \langle \mathfrak{F}\mathfrak{m}_{\Sigma}^2, T \cap \mathrm{Fm}_{\Sigma}^2 \rangle$, in view of (2.5). Hence, by Lemma 2.19, there are some set I, some I-tuple \overline{C} constituted by submatrices of \mathcal{A} , some subdirect product \mathcal{D} of \overline{C} , in which case $(\mathfrak{D} \upharpoonright \Sigma_0) \in \mathsf{DML}$, for $\mathsf{DML} \ni \mathfrak{D}\mathfrak{M}_4$ is a variety, and some $g \in \mathsf{hom}_S^S(\mathcal{D}, \mathfrak{R}(\mathcal{B}))$, in which case, by (2.5), \mathcal{D} is an inferentially paracomplete model of C', and so there are some $a \in \mathcal{D}^{\mathcal{D}} \subseteq \{\mathsf{b},\mathsf{t}\}^I$ and $b \in (\mathcal{D} \setminus \mathcal{D}^{\mathcal{D}})$ such that $\sim^{\mathfrak{D}} b \leqslant^{\mathfrak{D}} b$, in which case $\{\mathsf{n},\mathsf{b},\mathsf{t}\}^I \ni b \nleq^{\mathfrak{D}} c \triangleq (a \lor^{\mathfrak{D}} b) \in \mathcal{D}^{\mathcal{D}}$. Put $J \triangleq \{i \in I \mid \pi_i(b) = \mathsf{t}\}$, $K \triangleq \{i \in I \mid \pi_i(b) = \mathsf{n}\} \neq \varnothing$, for $b \notin \mathcal{D}^{\mathcal{D}}$, and $L \triangleq \{i \in I \mid \pi_i(b) = \mathsf{b} \neq \pi_i(c)\}$. Given any $\bar{a} \in A^4$, put $(a_0|a_1|a_2|a_3) \triangleq ((J \times \{a_0\}) \cup (K \times \{a_1\}) \cup (L \times \{a_2\}) \cup ((I \setminus (J \cup K \cup L)) \times \{a_3\})) \in A^I$. Then, we have:

$$(4.12) D \ni b = (\mathsf{t}|\mathsf{n}|\mathsf{b}|\mathsf{b}),$$

$$(4.13) D \ni \sim^{\mathfrak{D}} b = (\mathsf{f}|\mathsf{n}|\mathsf{b}|\mathsf{b}),$$

$$(4.14) D \ni c = (\mathsf{t}|\mathsf{t}|\mathsf{b}),$$

$$(4.15) D \ni \sim^{\mathfrak{D}} c = (\mathsf{f}|\mathsf{f}|\mathsf{b})$$

Consider the following complementary cases:

(1) \mathfrak{A} is b-idempotent.

Then, we have the following complementary subcases:

(a) $J = \emptyset$

Then, since $K \neq \emptyset = J$, $\mathfrak{A}_{b'}$ is specular and $\{b\}$ forms a subalgebra of \mathfrak{A} , by (4.12), (4.14) and (4.15), we see that $\{\langle x, (x|x|\mu(x)|b)\rangle \mid x \in A_{b'}\}$ is an embedding of $\mathcal{A}_{b'}$ into \mathcal{D} . Hence, by (2.5), $\mathcal{A}_{b'}$ is a model of C', for \mathcal{D} is so.

(b) $J \neq \emptyset$.

Then, taking Lemma 4.37 into account, since $K \neq \emptyset \neq J$, $\mathfrak{A}_{b'}$ is specular and $\{b\}$ forms a subalgebra of \mathfrak{A} , by (4.12), (4.13), (4.14) and (4.15), we see that $\{\langle \langle x,y \rangle, (y|x|\mu(x)|b) \rangle \mid \langle x,y \rangle \in K_4^n\}$ is an embedding of $\mathcal{B} \triangleq ((\mathcal{A}_{b'} \times (\mathcal{A} \upharpoonright \{f,t\})) \upharpoonright K_4^n)$ into \mathcal{D} . Moreover, $(\pi_0 \upharpoonright K_4^n) \in \hom_S^S(\mathcal{B}, \mathcal{A}_{b'})$. Hence, by (2.5), $\mathcal{A}_{b'}$ is a model of C', for \mathcal{D} is so.

(2) A is not b-idempotent.

Then, there is some $\varphi \in \operatorname{Fm}_{\Sigma}^1$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \neq \mathsf{b}$, in which case $\phi^{\mathfrak{A}}[\{\mathsf{b},\mathsf{t}\}] = \{\mathsf{t}\}$ and $\psi^{\mathfrak{A}}[\{\mathsf{b},\mathsf{t}\}] = \{\mathsf{f}\}$, where $\phi \triangleq (x_0 \vee (\varphi \vee \neg \varphi))$ and $\psi \triangleq \neg \phi$, and so, by (4.14), we get:

$$(4.16) D \ni \psi^{\mathfrak{D}}(c) = (\mathsf{f}|\mathsf{f}|\mathsf{f}),$$

$$(4.17) D \ni \phi^{\mathfrak{D}}(c) = (\mathsf{t}|\mathsf{t}|\mathsf{t}).$$

Consider the following complementary subcases:

(a) $J = \emptyset$,

Then, since $K \neq \emptyset = J$ and $\mathfrak{A}_{b'}$ is specular, by (4.12), (4.16) and (4.17), we see that $\{\langle x, (x|x|\mu(x)|\mu(x))\rangle \mid x \in A_{b'}\}$ is an embedding of $\mathcal{A}_{b'}$ into \mathcal{D} . Hence, by (2.5), $\mathcal{A}_{b'}$ is a model of C', for \mathcal{D} is so.

(b) $J \neq \emptyset$.

Then, taking Lemma 4.37 into account, since $K \neq \varnothing \neq J$ and $\mathfrak{A}_{b'}$ is specular, by (4.12), (4.13), (4.16) and (4.17), we see that $\{\langle\langle x,y\rangle,(y|x|\mu(x)|\mu(x))\rangle\mid\langle x,y\rangle\in K_4^n\}$ is an embedding of $\mathcal{B}\triangleq((\mathcal{A}_{b'}\times(\mathcal{A}\upharpoonright\{f,t\}))\upharpoonright K_4^n)$ into \mathcal{D} . Moreover, $(\pi_0\upharpoonright K_4^n)\in \hom_S^S(\mathcal{B},\mathcal{A}_{b'})$. Hence, by (2.5), $\mathcal{A}_{b'}$ is a model of C', for \mathcal{D} is so.

Thus, in any case, $\mathcal{A}_{b'}$ is a model of C', and so $C' \subseteq C^{\mathbb{R}}$, as required.

The logic of $\mathcal{DM}_{4[01]} \upharpoonright \{f, n, t\}$ is known as Kleene's [bounded] three-valued logic $K_{3[01]}$ (cf. [8]).

Theorem 4.40. The following are equivalent:

- (i) {f, n, t} does not form a subalgebra of \mathfrak{A} ;
- (ii) [providing C is not purely inferential] $C^{\mathbb{R}}$ is [non-]inferentially either \sim -classical, if C is \sim -subclassical, or inconsistent, otherwise;
- (iii) [providing C is not purely inferential] $C^{\mathbb{R}}$ is not [non-]inferentially paracomplete;
- (iv) the Σ_0 -fragment of $C^{\mathbb{R}}$ is not inferentially paracomplete;
- (v) no expansion of K_3 is an extension of C;
- (vi) $C^{\mathbf{R}}$ is not an expansion of K_3 .

Proof. First, $(vi) \Rightarrow (i)$ is by Corollary 4.35.

Moreover, (vi) is a particular case of (v).

Next, assume (i) holds. We use Remark 2.10, Theorem 4.23 and Lemmas 4.14 and 4.33 tacitly. Consider the following four exhaustive cases:

(1) C is both \sim -subclassical and not purely inferential.

Then, $S_{*,b'} = \{A | \{f, t\}\}\$, in which case $C^{\mathbb{R}}$ is \sim -classical, and so inferentially so.

(2) C is both purely-inferential and \sim -subclassical.

Then, $S_{*,b'} = \{A \mid \{f,t\}, A \mid \{n\}\}\$, in which case $C^{\mathbb{R}}$ is inferentially \sim -classical.

(3) C is both not \sim -subclassical and not purely inferential.

Then, $S_{*,b'} = \emptyset$, in which case $C^{\mathbb{R}}$ is inconsistent, and so inferentially so.

(4) C is both purely-inferential and not \sim -subclassical.

Then, $S_{*,b'} = \{A \mid \{n\}\}\$, in which case $C^{\mathbb{R}}$ is inferentially inconsistent.

Thus, (ii) holds.

Further, in view of Theorem 4.23, any [inferentially] \sim -classical extension of C is not [inferentially] paracomplete. And what is more, any [inferentially] paracomplete extension of C is clearly [inferentially] consistent. Hence, (ii) \Rightarrow (iii) holds.

Furthermore, (iii) \Rightarrow (iv) is by the fact that $x_0 \vee \sim x_0$ is a Σ_0 -formula.

Finally, by Proposition 2.18, K_3 is non-pseudo-axiomatic. Moreover, it is paracomplete, and so inferentially so. And what is more, (4.9), being satisfied in K_3 , is so in any expansion of it. In this way, (iv) \Rightarrow (v) holds, as required.

In this connection, it is remarkable that paracomplete analogue of the "maximality" items (i) and (vi) of Theorem 4.29 do not hold, generally speaking, as it ensues from the following generic counterexamples collectively with Subsubsections 6.1.1 and 6.1.3:

Example 4.41. Suppose C is \sim -subclassical, i.e., $\{f,t\}$ forms a subalgebra of \mathfrak{A} (cf. Theorem 4.23). Then, $\mathcal{B} \triangleq (\mathcal{A} \times \mathcal{A}_{\eta t})$ is truth-non-empty, non- \sim -paraconsistent and, by (2.6), paracomplete, for \mathcal{A} is so, in which case the logic of \mathcal{B} is a proper (inferentially) paracomplete extension of C, in view of (2.5) (and Proposition 2.18).

Example 4.42. Let \Box be a (possibly, secondary) binary connective of Σ . Suppose both $\{f, t\}$ and $\{f, n[/b], t\}$ form subalgebras of \mathfrak{A} , in which case $\mathcal{A} \upharpoonright \{f, t\}$ is a submatrix of $\mathcal{A}_{b'}$, $\{\mathcal{A}_{b'}[, \mathcal{A}_{\eta'}]\}$ defining $C^{R}[\cap C^{EM}]$, in view of Corollary 4.35 [and Theorem 4.29(iii) \Rightarrow (iv)], while $C^{R}[\cap C^{EM}]$ satisfies $x_0 \supset x_0$, whereas $\{x_0, x_0 \supset x_1\} \vdash x_1$ is true in $\mathcal{A} \upharpoonright \{f, t\}$, in which case $\mathcal{B} \triangleq (\mathcal{A}_{b'} \times (\mathcal{A} \upharpoonright \{f, t\}))$ is truth-non-empty, paracomplete, in view of (2.6), for $\mathcal{A}_{b'}$ is so, and a model of the rule $\{\sim^i x_0 \supset \sim^{1-i} x_0 \mid i \in 2\} \vdash (x_0 \vee \sim x_0)$, in its turn, [being also true in $\mathcal{A}_{b'}$ but] not being true in $\mathcal{A}_{b'}$ under $[x_0/n]$, and so, by (2.5) (and Proposition 2.18), the logic of $\{\mathcal{B}[\mathcal{A}_{\eta'}]\}$ is a proper [both \sim -paraconsistent and] (inferentially) paracomplete extension of $C^{R}[\cap C^{EM}]$. \square

Example 4.42 and Subsubsection 6.1.3 show that the preconditions in the formulation of Theorem 4.39 cannot be omitted. And what is more, as it follows from Theorem 4.39 [resp., Corollary 4.70(ii) below], the condition of existence of implication \Box holding both the Reflexivity axiom in $\{A_{b'}[,A_{b'}]\}$ and the Modus Ponens rule in $A \upharpoonright \{f,t\}$ is essential within Example 4.42. 4.5.1.1. The meet with the least non-paracomplete extension. Next, C is said to be hereditary, provided $C^{\text{EM} \times \text{R}} \triangleq (C^{\text{EM}} \cap C^{\text{R}})$ is both \sim -paraconsistent and inferentially paracomplete.

Corollary 4.43. The following are equivalent:

- (i) C is hereditary;
- (ii) C^{EM} is \sim -paraconsistent, while C^{R} is inferentially paracomplete;
- (iii) both $\{f, b, t\}$ and $\{f, n, t\}$ form subalgebras of \mathfrak{A} ;

in which case:

- (1) $C^{\text{EM}\times\text{R}}$ is:
 - (a) defined by $\{A_{p'}, A_{b'}\}$, and so is inductive, inferentially consistent, non-pseudo-axiomatic and \vee -disjunctive, while it is purely inferential iff C is so;

(b) axiomatized by:

$$\{x_1 \lor x_0, \sim x_1 \lor x_0\} \vdash ((x_2 \lor \sim x_2) \lor x_0)$$

relatively to C, and so is a proper extension of C;

(2) $\{f,t\}$ forms a subalgebra of \mathfrak{A} , that is, C is \sim -subclassical.

Proof. First, (i) \Leftrightarrow (ii) is by the fact that C^{EM} is not inferentially paracomplete, for it is monotonic and not paracomplete, while C^{R} is not \sim -paraconsistent, for it is transitive and inherits (3.3) held in its \vee -disjunctive sublogic C (cf. Corollary 3.14 and Remark 3.28 with j=0). Next, (ii) \Leftrightarrow (iii) is by Theorems 4.29 and 4.40. Further, assume (iii) holds. Then, (1)(a) is by Theorem 4.29, Remarks 3.12, 3.28 with j=0, Corollaries 3.14,4.35, Lemma 4.14 and (2.5). Likewise, (1)(b) is by Theorem 3.21, for any submatrix \mathcal{B} of \mathcal{A} satisfies (4.1) iff $\{\mathsf{n},\mathsf{b}\} \nsubseteq \mathcal{B}$, that is, \mathcal{B} is a submatrix of either $\mathcal{A}_{\eta'}$ or \mathcal{A}_{\flat} , and the fact that (4.18) is not true in \mathcal{A} under $[x_0/\mathsf{f}, x_1/\mathsf{b}, x_2/\mathsf{n}]$. Finally, (2) is by Theorem 4.23, as required.

4.5.1.1.1. The selfextensionality of the meet.

Theorem 4.44. Suppose C is hereditary. Then, the following are equivalent:

- (i) $C^{\text{EM}\times R}$ is self-extensional;
- (ii) $C^{\text{EM}\times R}$ has the property of Weak Contraposition with respect to \sim ;
- (iii) $\overleftarrow{\mathcal{A}_{p/b'}}$ is a model of $C^{\mathrm{EM} \times \mathrm{R}}$;
- (iv) $\overline{\mathcal{A}_{\mathfrak{g}'/\mathfrak{b}'}}$ is isomorphic to $\mathcal{A}_{\mathfrak{b}'/\mathfrak{g}'}$;
- (v) $\mu \upharpoonright A_{\eta'/b'}$ is an isomorphism from $\overleftarrow{\mathcal{A}_{\eta'/b'}}$ onto $\mathcal{A}_{b'/\eta'}$;
- (vi) $\mathfrak{A}_{\mathfrak{p}/\mathfrak{b}}$ is specular;
- (vii) $C^{\text{EM}\times R}$ is defined by $\{A_{\eta//b}, \overleftarrow{A_{\eta//b}}\}$;
- (viii) $\mathfrak{A}_{\mathfrak{p}'}$ is isomorphic to $\mathfrak{A}_{\mathfrak{p}'}$;
- (ix) $(\psi \in C^{\mathrm{EM} \times \mathrm{R}}(\phi)) \Leftrightarrow (\mathfrak{A}_{\eta/|b|} \models (\phi \lessapprox \psi)), \text{ for all } \phi, \psi \in \mathrm{Fm}_{\Sigma}^{\omega};$
- (x) there is some class K of Σ -algebras satisfying semilattice identities for \wedge such that $(\psi \in C^{\text{EM} \times \text{R}}(\phi)) \Leftrightarrow (\mathsf{K} \models (\phi \lessapprox \psi)),$ for all $\phi, \psi \in \text{Fm}_{\Sigma}^{\omega}$;
- (xi) $(\psi \equiv_{C^{\text{EM}\times R}} \phi) \Leftrightarrow (\mathfrak{A}_{\mathfrak{n}/\mathfrak{b}'} \models (\phi \approx \psi)), \text{ for all } \phi, \psi \in \text{Fm}_{\Sigma}^{\omega};$
- (xii) there is some class K of Σ -algebras such that $(\psi \equiv_{C^{\text{EM}\times R}} \phi) \Leftrightarrow (\mathsf{K} \models (\phi \approx \psi))$, for all $\phi, \psi \in \mathrm{Fm}_{\Sigma}^{\omega}$; in which case $\mathrm{IV}(C^{\mathrm{EM}\times R}) = \mathbf{V}(\mathfrak{A}_{\mathsf{r}/\mathsf{k}})$.

Proof. We use Corollary 4.43 tacitly.

First, (i) \Rightarrow (ii) is by the following claim:

Claim 4.45. Any self-extensional extension C' of C has the property of Weak Contraposition with respect to \sim .

Proof. Consider any $\phi, \psi \in \operatorname{Fm}_{\Sigma}^{\omega}$ such that $\psi \in C'(\phi)$. Then, since \mathcal{A} is both \wedge -conjunctive and \vee -disjunctive, and so is C (cf. Corollary 3.14 and Remark 3.28 with j=0), we have $C'(\phi \wedge \psi) = C'(\{\phi,\psi\}) = C'(\phi)$, in which case, by the validity of both (3.15) in \mathfrak{A} and (3.4) in C, and so in $C' \supseteq C$, as well as the self-extensionality of C', we get $C'(\sim \psi) \supseteq C'(\sim \phi \vee \sim \psi) = C'(\sim (\phi \wedge \psi)) = C'(\sim \phi) \supseteq \sim \phi$, as required.

Next, [since \mathcal{A} is \land -conjunctive (cf. Remark 3.28 with j=0), in which case C is \land -conjunctive, and so is any extension of it, in view of Proposition 2.18] we have:

Claim 4.46. Let C' be an inductive extension of C (in particular, C' = C). Then, any $[\land$ -conjunctive truth-non-empty] Σ -matrix \mathcal{B} is a model of C' [if and] only if $C'(\phi) \subseteq \operatorname{Cn}_{\mathcal{B}}(\phi)$, for all $\phi \in \operatorname{Fm}_{\Sigma}$.

Corollary 4.47. Let C' be an inductive extension of C and \mathcal{B} a consistent \vee -disjunctive model of C'. Suppose C' has the Property of Weak Contraposition with respect to \sim . Then, $\overleftarrow{\mathcal{B}} \in \operatorname{Mod}(C')$.

Proof. In that case, by (3.13) and (3.15), $\overleftarrow{\mathcal{B}}$ is truth-non-empty and \land -conjunctive. Consider any $\phi \in \operatorname{Fm}_{\Sigma}^{\omega}$, any $\psi \in C'(\phi)$, in which case $\sim \phi \in C'(\sim \psi)$, and so $\sim \phi \in \operatorname{Cn}_{\mathcal{B}}^{\omega}(\sim \psi)$, and any $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega},\mathfrak{B})$. Suppose $h(\phi) \in D^{\overleftarrow{\mathcal{B}}}$, in which case $h(\sim \phi) = \sim^{\mathfrak{B}} h(\phi) \notin D^{\mathcal{B}}$, and so $\sim^{\mathfrak{B}} h(\psi) = h(\sim \psi) \notin D^{\mathcal{B}}$, in which case $h(\psi) \in D^{\overleftarrow{\mathcal{B}}}$, and so $\psi \in \operatorname{Cn}_{\overleftarrow{\mathcal{B}}}^{\omega}(\phi)$, as required, in view of Claim 4.46.

In this way, (ii) \Rightarrow (iii) is by Remarks 3.12, 3.28 with j=0 and Claim 4.47.

Now, assume (iii) holds. Then, $A_{\eta/|y} \in \text{Mod}(C^{\text{EM} \times \text{R}})$, being finite, is finitely-generated, is consistent, in view of (3.13) true in \mathfrak{A} , for $A_{\eta/|y}$ is truth-non-empty, and, being a submatrix of \overline{A} , is both simple and \vee -disjunctive, by Lemmas 3.4, 3.6 and Remarks 3.12 and 3.28 with j=1. Hence, by Lemma 2.19, there are some finite set I, some $\overline{C} \in \mathbf{S}(\{A_{\eta/}, A_{y}\})^{I}$, some subdirect product \mathcal{D} of it and some $g \in \text{hom}_{\mathbf{S}}^{\mathbf{S}}(\mathcal{D}, \overline{A_{\eta/|y}})$, in which case, by (2.5) and Remark 3.12, \mathcal{D} is both consistent and \vee -disjunctive. Moreover, by Lemmas 3.4, 3.6 and Remarks 3.12 and 3.28 with j=0, every \mathcal{C}_{i} , where $i \in I$, is both simple and \vee -disjunctive. Therefore, by Corollary 3.13, there is some $i \in I$ such that $h \triangleq (\pi_i | \mathcal{D}) \in \text{hom}_{\mathbf{S}}^{\mathbf{S}}(\mathcal{D}, \mathcal{C}_i)$, in which case, by Proposition 2.15 and Corollary 2.16, we have $(\ker h) = h^{-1}[\Delta_{C_i}] = \mathcal{D}(\mathcal{D}) = g^{-1}[\Delta_{A_{\eta/|y}}] = (\ker g)$, and so, by Proposition 2.14, $e \triangleq (h \circ g^{-1})$ is an embedding of $\overline{A_{\eta/|y}}$ into \mathcal{C}_{i} , and so into either \mathcal{A}_{η} or $\mathcal{A}_{\mathfrak{b}}$. On the other hand, $\overline{A_{\eta/|y}}$, $\mathcal{A}_{\eta'}$ and $\mathcal{A}_{\mathfrak{b}}$ are all three-valued. Therefore, e is an isomorphism from $\overline{A_{\eta/|y}}$ onto either $\mathcal{A}_{\eta'}$ or $\mathcal{A}_{\mathfrak{b}}$. Finally, $\overline{A_{\eta/|y}}$ is truth/false-singular, while $\mathcal{A}_{\eta/|y}$ is not so, in which case they are not isomorphic, and so (iv) holds.

Further, $(vi)\Leftrightarrow(v)$ is by the following claim:

Claim 4.48. Any embedding e of a submatrix \mathcal{B} of $\overleftarrow{\mathcal{A}}$ into \mathcal{A} is equal to $\mu \upharpoonright B$.

Proof. Then, since $(\sim^{\mathfrak{A}} a = a) \Leftrightarrow (a \in \{\mathsf{n}, \mathsf{b}\})$, for all $a \in A$, we have both $e[\{\mathsf{n}, \mathsf{b}\} \cap B] \subseteq \{\mathsf{n}, \mathsf{b}\}$ and, by the injectivity of $e, e[\{f, \mathsf{t}\} \cap B] \subseteq \{\mathsf{f}, \mathsf{t}\}$. Moreover, as $\mathsf{n}, \mathsf{t} \in D^{\overleftarrow{\mathcal{A}}} \not\ni \mathsf{b}, \mathsf{f}$, while $(\{\mathsf{n}, \mathsf{b}\} \cap D^{\mathcal{A}}) = \{\mathsf{b}\}$, whereas $(\{\mathsf{f}, \mathsf{t}\} \cap D^{\mathcal{A}}) = \{\mathsf{t}\}$, we then get $e(\mathsf{n}) = \mathsf{b}$, if $\mathsf{n} \in B$, $e(\mathsf{t}) = \mathsf{t}$, if $\mathsf{t} \in B$, $e(\mathsf{b}) = \mathsf{n}$, if $\mathsf{b} \in B$, and $e(\mathsf{f}) = \mathsf{f}$, if $\mathsf{f} \in B$, as required.

Corollary 4.49. Any injective homomorphism from $\overleftarrow{\mathcal{A}}$ to \mathcal{A} is specular.

Proof. Consider any injective $e \in \text{hom}(\overleftarrow{\mathcal{A}}, \mathcal{A})$, in which case $e[D^{\overleftarrow{\mathcal{A}}}] \subseteq D^{\mathcal{A}}$, and so $e[D^{\overleftarrow{\mathcal{A}}}] = D^{\mathcal{A}}$, for e is injective, while $|D^{\overleftarrow{\mathcal{A}}}| = 2 = |D^{\mathcal{A}}|$. Hence, e, being injective, is an embedding of $\overleftarrow{\mathcal{A}}$ into \mathcal{A} . In this way, Claim 4.48 completes the argument. \square

Furthermore, we use the fact that $\mathfrak{A}_{\eta//b'}[\Sigma^+]$ is the three-element chain distributive lattice with $f \leqslant^{\mathfrak{A}_{\eta//b'}}(b/n) \leqslant^{\mathfrak{A}_{\eta//b'}}t$ tacitly. Then, (vi) \Leftrightarrow (viii) is by the following immediate consequence of it:

Claim 4.50. Any isomorphism from $\mathfrak{A}_{\mathfrak{p}'}$ onto $\mathfrak{A}_{\mathfrak{p}'}$ is equal to $\mu \upharpoonright A_{\mathfrak{p}'}$.

Finally, (v) \Leftrightarrow (vi) is immediate, while (iv) \Rightarrow (vii) is by (2.5), whereas (vii) \Rightarrow (ix) is by the Prime Ideal Theorem and the fact $D^{A_{\eta/|V}} = (\{t\}/\{n,t\})$ and $D^{A_{\eta/|V}} = (\{b,t\}/\{t\})$ are exactly all prime filters of $\mathfrak{A}_{\eta/|V|} \Sigma^+$. In addition, (x|xii) is a particular case of (ix|xi), respectively, while (xi|x) \Rightarrow (xi|xii) is by the semilattice identities for \land , whereas (xii) \Rightarrow (i) is immediate. After all, (xi) yields $IV(C^{EM\times R}) = V(\mathfrak{A}_{\eta/|V})$, as required.

Further, by the congruence-distributivity of lattice expansions, Lemma 3.29 and Corollary 2.5, we have:

Lemma 4.51. $Si(\mathbf{V}(\mathfrak{A})) = \mathbf{IS}_{>1}\mathfrak{A}$.

Note that $(\mathfrak{DM}_4 \upharpoonright \{f,t\}) \in \mathsf{BL} \not\ni (\mathfrak{DM}_4 \upharpoonright \{f,(\mathsf{n}/\mathsf{b}),t\}) \in \mathsf{KL} \not\ni \mathfrak{DM}_4$. In this way, by Remark 2.3 and Lemma 4.51, we immediately get:

Corollary 4.52. Let $a \in \{n, b\}$. Suppose $\{f, t\}$ forms a subalgebra of \mathfrak{A} , and $\{f, a, t\}$ does not form [resp., forms] a subalgebra of \mathfrak{A} . Then, there is no non-trivial proper subvariety of $\mathbf{V}(\mathfrak{A})$ other than $\mathbf{V}(\mathfrak{A}|\{f, t\})$ relatively axiomatized by (3.17) [and $\mathbf{V}(\mathfrak{A}|\{f, a, t\})$ relatively axiomatized by (3.16)].

After all, combining Proposition 2.17, Remarks 2.8, 2.9, 3.28 with j = 0, Theorems 4.23, 4.24, 4.29, 4.44, Lemma 4.14, Corollaries 4.43, 4.52 and Example 2.11, we eventually get:

Theorem 4.53. Suppose C is hereditary (as well as purely inferential), while $C^{\text{EM}\times R}$ is self-extensional. Then, there is no inferentially consistent proper self-extensional (non-pseudo-axiomatic/purely-inferential) extension of $C^{\text{EM}\times R}$ other than $C^{\text{PC}}_{(/+0)}$, being, in its turn, both so and inductive.

On the other hand, any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic. Therefore, by Remarks 2.8, 2.10, 3.28 with j = 0, 3.12, Corollaries 3.14, 4.43 and Theorems 3.21, 4.23, 4.44 and 4.53, we also get the following interesting non-trivial consequence:

Corollary 4.54. Suppose C is hereditary, and $C^{\text{EM} \times \text{R}}$ is self-extensional. Then, any extension of $C^{\text{EM} \times \text{R}}$ is \vee -disjunctive, whenever it is self-extensional.

4.5.2. Miscellaneous extensions. By $C^{[\text{EM}+]\text{NP}}$ we denote the least non- \sim -paraconsistent extension of $C^{[\text{EM}]}$, viz., that which is relatively axiomatized by the Ex Contradictione Quodlibet rule:

$$\{x_0, \sim x_0\} \vdash x_1.$$

Likewise, by $C^{[\text{EM}+]\text{MP}}$ we denote the extension of $C^{[\text{EM}]}$ relatively axiomatized by the rule:

$$\{x_0, \sim x_0 \lor x_1\} \vdash x_1,$$

being nothing but *Modus Ponens* for the *material* implication $\sim x_0 \vee x_1$. (Clearly, it is a/an sublogic/extension of $C^{[\text{EM}+](\text{R/NP})}$, in view of (3.3) held in C by its \vee -disjunctivity (cf. Corollary 3.14 and Remark 3.28 with j=0).) An extension of C is said to be *Kleene*, whenever it satisfies the rule (4.18).

Lemma 4.55. Let I be a finite set, $\overline{C} \in \{A, \overleftarrow{A}, \overrightarrow{A}\}^I$, and \mathcal{B} a consistent non- \sim -paraconsistent submatrix of $\prod_{i \in I} C_i$. Then, $hom(\mathcal{B}, \overrightarrow{A}) \neq \varnothing$.

Proof. Consider the following complementary cases:

- (1) \mathcal{B} is truth-empty. Take any $i \in I \neq \emptyset$, for \mathcal{B} is consistent. Then, $h \triangleq (\pi_i \upharpoonright B) \in \text{hom}(\mathfrak{B}, \mathfrak{A})$. Moreover, $D^{\mathcal{B}} = \emptyset \subseteq h^{-1}[\{t\}]$. Hence, $h \in \text{hom}(\mathcal{B}, \overrightarrow{\mathcal{A}})$.
- (2) \mathcal{B} is not truth-empty. Then, $B \subseteq A^I$ is finite, for both I and A are so, and so is $D^{\mathcal{B}} \subseteq B$. Hence, $n \triangleq |D^{\mathcal{B}}| \in (\omega \setminus 1)$. Take any bijection $\bar{b}: n \to D^{\mathcal{B}}$. Then, by the \wedge -conjunctivity of \mathcal{B} , $a \triangleq (\wedge^{\mathfrak{B}}\bar{b}) \in D^{\mathcal{B}}$. Therefore, as \mathcal{B} is consistent but not \sim -paraconsistent, $\sim^{\mathfrak{B}} a \not\in D^{\mathcal{B}}$. Then, there is some $i \in I$, in which case $h \triangleq (\pi_i \upharpoonright B) \in \text{hom}(\mathcal{B}, \mathcal{C}_i)$, such that $h(\sim^{\mathfrak{B}} a) \not\in D^{\mathcal{C}_i}$. If there was some $j \in n$ such that $h(b_j) \neq t$, we would have $\mathcal{C}_i \in \{\mathcal{A}, \overleftarrow{\mathcal{A}}\}$ and $(\{b, n\} \cap D^{\mathcal{C}_i}) \ni h(b_j) \leqslant^{\mathfrak{A}} h(a) \leqslant^{\mathfrak{A}} h(b_j)$, in which case we would get $h(a) = h(b_j)$, and so $h(\sim^{\mathfrak{B}} a) = \sim^{\mathfrak{A}} h(a) = \sim^{\mathfrak{A}} h(b_j) = h(b_j) \in D^{\mathcal{C}_i}$. Thus, $h \in \text{hom}(\mathcal{B}, \overrightarrow{\mathcal{A}})$. \square

Corollary 4.56. Let I be a finite set, $\overline{C} \in \{A, \overleftarrow{A}, \overrightarrow{A}\}^I$, and \mathcal{B} a consistent non- \sim -paraconsistent non-paracomplete submatrix of $\prod_{i \in I} C_i$. Then, $\{f, t\}$ forms a subalgebra of \mathfrak{A} and $\hom(\mathcal{B}, \mathcal{A} | \{f, t\}) \neq \varnothing$.

Proof. Then, by Lemma 4.55, there is some $h \in \text{hom}(\mathcal{B}, \overrightarrow{\mathcal{A}}) \neq \emptyset$, in which case $D \triangleq (\text{img } h)$ forms a subalgebra of \mathfrak{A} , and so $h \in \text{hom}^{S}(\mathcal{B}, \mathcal{D})$, where $\mathcal{D} \triangleq (\overrightarrow{\mathcal{A}} \upharpoonright D)$. Hence, by (2.6), \mathcal{D} is not paracomplete. Therefore, as $x_0 \lor \sim x_0$ is not true in $\overrightarrow{\mathcal{A}}$ under $[x_0/(\mathsf{b/n})]$, we have $(D \cap \{\mathsf{b}, \mathsf{n}\}) = \emptyset$. On the other hand, \mathcal{D} , being non-paracomplete, is truth-non-empty, for $D \neq \emptyset$. Therefore, $\mathsf{t} \in D$, in which case $\mathsf{f} = \sim^{\mathfrak{A}} \mathsf{t} \in D$, and so $D = \{\mathsf{f}, \mathsf{t}\}$, in which case $\mathcal{D} = (\mathcal{A} \upharpoonright D)$, as required.

Theorem 4.57. Suppose C is [not] maximally \sim -paraconsistent. Then, $C^{\mathrm{EM+NP}}$ is consistent iff C is \sim -subclassical, in which case $C^{\mathrm{EM+NP}}$ is defined by $[\mathcal{A}_{n'}\times]\mathcal{A}_{nb'}$.

Proof. First, assume $C^{\text{EM}+\text{NP}}$ is consistent, in which case $x_0 \notin T \triangleq C^{\text{EM}+\text{NP}}(\varnothing)$, while, by the structurality of $C^{\text{EM}+\text{NP}}$, $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a model of $C^{\text{EM}+\text{NP}}$ (in particular, of C), and so is its consistent finitely-generated submatrix $\mathcal{B} \triangleq \langle \mathfrak{Fm}_{\Sigma}^1, T \cap \text{Fm}_{\Sigma}^1 \rangle$, in view of (2.5). Hence, by Lemma 2.19, there are some finite set I, some $\overline{C} \in \mathbf{S}(\mathcal{A})^I$, some subdirect product \mathcal{D} of it, in which case this is a submatrix of \mathcal{A}^I , and some $h \in \text{hom}_{\mathbf{S}}^{\mathbf{S}}(\mathcal{D}, \Re(\mathcal{B}))$, in which case, by (2.5), \mathcal{D} is a consistent model of $C^{\text{EM}+\text{NP}}$, so it is neither \sim -paraconsistent nor paracomplete. Thus, by Corollary 4.56 and Theorem 4.23, C is \sim -subclassical.

Conversely, assume C is \sim -subclassical. Consider the following complementary cases:

- · C is maximally \sim -paraconsistent.
- Then, by Theorems 4.23 and 4.29(i) \Rightarrow (v,xiii) $C^{\text{EM}+\text{NP}} = C^{\text{EM}} = C^{\text{PC}}$ is defined by the consistent $\mathcal{A}_{\eta \psi}$, and so, in particular, is consistent, as required.
- · C is not maximally \sim -paraconsistent.

Then, by Theorem 4.29(iii/iv) \Rightarrow (i), C^{EM} is defined by $\mathcal{A}_{-n} = \mathcal{A}_{g'}$. Moreover, by Theorem 4.23, $\{f, t\}$ forms a subalgebra of \mathfrak{A} , and so of $\mathfrak{A}_{g'}$, in which case $\mathcal{A}_{gg'}$ is a submatrix of $\mathcal{A}_{g'}$, and so, by (2.5), $\mathcal{B} \triangleq (\mathcal{A}_{g'} \times \mathcal{A}_{gg'})$ is a model of C^{EM} . Moreover, $\{a, \sim^{\mathfrak{A}} a\} \subseteq \{t\}$, for no $a \in \{f, t\}$. Therefore, \mathcal{B} is not \sim -paraconsistent, so it is a model of $C^{\text{EM}+\text{NP}}$. Conversely, consider any finite set I, any $\overline{C} \in \mathbf{S}(\mathcal{A}_{g'})^I$ and any subdirect product $\mathcal{D} \in \text{Mod}(C^{\text{EM}+\text{NP}})$ of \overline{C} , in which case \mathcal{D} is a non- \sim -paraconsistent non-paracomplete submatrix of \mathcal{A}^I . Put $J \triangleq \text{hom}(\mathcal{D}, \mathcal{B})$. Consider any $a \in (D \setminus D^{\mathcal{D}})$, in which case \mathcal{D} is consistent, and so, by Corollary 4.56, there is some $g \in \text{hom}(\mathcal{D}, \mathcal{A}_{gg'}) \neq \emptyset$. Moreover, there is some $i \in I$, in which case $f \triangleq (\pi_i \upharpoonright D) \in \text{hom}(\mathcal{D}, \mathcal{A}_{g'})$, such that $f(a) \notin D^{\mathcal{A}_{g'}}$. Then, $h \triangleq (f \times g) \in J$ and $h(a) \notin D^{\mathcal{B}}$. In this way, $(\prod \Delta_J) \in \text{hom}_{\mathbf{S}}(\mathcal{D}, \mathcal{B}^J)$. Thus, by (2.5) and Theorem 2.20, $C^{\text{EM}+\text{NP}}$ is finitely-defined by the consistent six-valued \mathcal{B} , and so is consistent and, being finitary, for the four-valued C is so, is defined by \mathcal{B} , as required.

Remark 4.58. Let C' be a Kleene extension of C (in particular, a non-paracomplete one, in view of (3.3)). Then, we have $\{x_0 \lor x_1, \sim x_0 \lor x_1\} \vdash_{C'} (\sim(x_0 \lor x_1) \lor x_1)$. Therefore, in view of (3.3), C' satisfies (4.9) iff it satisfies (4.20). In particular, $C^{\text{EM}+\text{MP}} = C^{\text{EM}+\text{R}}$.

Lemma 4.59. Let C' be an extension of C. Suppose C is not maximally \sim -paraconsistent, (4.18) is satisfied in C' (in particular, C' is not paracomplete, in view of (3.3)), (4.20) is not satisfied in C' and, for every $\varsigma \in \Sigma$, $\varsigma^{\mathfrak{A}_{\eta'}}$ is either regular or both b-idempotent and no more than binary. Then, C' is a sublogic of $C^{\mathrm{EM}+\mathrm{NP}}$.

Proof. The case, when $C^{\text{EM}+\text{NP}}$ is inconsistent, is evident. Otherwise, by Theorems 4.23, 4.29(iv) \Rightarrow (i) and 4.57, $A_{\text{nf}} = \{ \mathsf{f}, \mathsf{b}, \mathsf{t} \}$ and $\{ \mathsf{f}, \mathsf{t} \}$ form subalgebras of \mathfrak{A} , $C^{\text{EM}+\text{NP}}$ being defined by the submatrix $\mathcal{B} \triangleq (\mathcal{A}_{\text{nf}} \times (\mathcal{A} \upharpoonright \{\mathsf{f}, \mathsf{t}\}))$ of \mathcal{A}^2 , and so it suffices to prove that $\mathcal{B} \in \text{Mod}(C')$. Then, by Theorem 2.20, there are some set I, some $\overline{C} \in \mathbf{S}(\mathcal{A})^I$ and some subdirect product $\mathcal{D} \in \text{Mod}(C') \subseteq \text{Mod}(C)$ of it not being a model of (4.20), in which case it is \land -conjunctive, for \mathcal{A} is so (cf. Remark 3.28 with j=0), while $(\mathfrak{D}\upharpoonright\Sigma_0) \in \text{DML}$, for $\text{DML} \ni \mathfrak{DM}_4$ is a variety. Therefore, there are some $a \in \mathcal{D}^{\mathcal{D}} \subseteq \{ \mathsf{b}, \mathsf{t} \}^I$, in which case $\sim^{\mathfrak{D}} a \leqslant^{\mathfrak{D}} a$, and some $b \in (\mathcal{D} \setminus \mathcal{D}^{\mathcal{A}})$ such that $(\sim^{\mathfrak{D}} a \vee^{\mathfrak{D}} b) \in \mathcal{D}^{\mathcal{A}}$. Hence, by (4.18), $(b \vee^{\mathfrak{D}} \sim^{\mathfrak{D}} b) = ((b \vee^{\mathfrak{D}} \sim^{\mathfrak{D}} b) \vee^{\mathfrak{D}} b) \in \mathcal{D}^{\mathcal{A}}$, in which case $b \in \{\mathsf{f}, \mathsf{b}, \mathsf{t} \}^I$. Put $J \triangleq \{i \in I \mid \pi_i(a) = \mathsf{b}\} \supseteq K \triangleq \{i \in I \mid \pi_i(b) = \mathsf{f}\} \neq \emptyset$, for $(\sim^{\mathfrak{D}} a \vee^{\mathfrak{D}} b) \in \mathcal{D}^{\mathcal{A}}$ and $L \triangleq \{i \in I \mid \pi_i(b) = \mathsf{t}\}$, Then, given any $\vec{a} \in \mathcal{A}^5$, set $(a_0|a_1|a_2|a_3|a_4) \triangleq ((((I \setminus (L \cup K)) \cap J) \times \{a_0\}) \cup ((I \setminus (L \cup J)) \times \{a_1\}) \cup ((L \setminus J) \times \{a_2\}) \cup ((L \cap J) \times \{a_3\}) \cup (K \times \{a_4\})) \in \mathcal{A}^I$. In this way, $a = (\mathsf{b} \mid \mathsf{t} \mid \mathsf{t} \mid \mathsf{b} \mid \mathsf{b})$ and $b = (\mathsf{b} \mid \mathsf{b} \mid \mathsf{t} \mid \mathsf{f})$. Therefore, we have:

$$(4.21) D \ni e \triangleq (a \wedge^{\mathfrak{D}} b) = (\mathsf{b}|\mathsf{b}|\mathsf{t}|\mathsf{b}|\mathsf{f}),$$

$$(4.22) D \ni \sim^{\mathfrak{D}} e = (\mathsf{b}|\mathsf{b}|\mathsf{f}|\mathsf{b}|\mathsf{t}),$$

$$(4.23) D \ni c \triangleq (e \vee^{\mathfrak{D}} \sim^{\mathfrak{D}} b) = (\mathsf{b}|\mathsf{b}|\mathsf{t}|\mathsf{b}|\mathsf{t}),$$

$$(4.24) D \ni \sim^{\mathfrak{D}} c = (\mathsf{b}|\mathsf{b}|\mathsf{f}|\mathsf{b}|\mathsf{f}),$$

$$(4.25) D \ni d \triangleq (e \vee^{\mathfrak{D}} \sim^{\mathfrak{D}} a) = (\mathsf{b}|\mathsf{b}|\mathsf{t}|\mathsf{b}|\mathsf{b}),$$

$$(4.26) D \ni \sim^{\mathfrak{D}} d = (\mathsf{b}|\mathsf{b}|\mathsf{f}|\mathsf{b}|\mathsf{b}).$$

Consider the following complementary cases:

(1) $L \subset I$

Then, given any $\vec{a} \in A^4$, set $(a_0|a_1|a_2|a_3) \triangleq ((((I\setminus (L\cup K))\cap J)\times \{a_0\})\cup ((I\setminus J)\times \{a_1\})\cup (L\times \{a_2\})\cup (K\times \{a_3\}))\in A^I$. In this way, by (4.21), (4.23) and (4.25), we have $e=(\mathsf{b}|\mathsf{b}|\mathsf{b}|\mathsf{f})\in D$, $c=(\mathsf{b}|\mathsf{b}|\mathsf{b}|\mathsf{t})\in D$ and $d=(\mathsf{b}|\mathsf{b}|\mathsf{b}|\mathsf{b})\in D$, respectively. Consider the following complementary subcases:

- (a) $\{b\}$ forms a subalgebra of $\mathfrak{A}_{p'}$.
 - Then, as $K \neq \emptyset$, $\{\langle x, (\mathsf{b}|\mathsf{b}|\mathsf{b}|x)\rangle \mid x \in A_{\mathsf{p}}\}$ is an embedding of \mathcal{A}_{p} into \mathcal{D} .
- (b) {b} does not form a subalgebra of \mathfrak{A}_{p} . Then, there is some $\varphi \in \operatorname{Fm}^{1}_{\Sigma}$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \in \{\mathsf{f},\mathsf{t}\}$, in which case $\phi^{\mathfrak{A}}(\mathsf{b}) = \mathsf{f}$ and $\psi^{\mathfrak{A}}(\mathsf{b}) = \mathsf{t}$, where $\phi \triangleq (\varphi \wedge \sim \varphi)$

and $\psi \triangleq (\varphi \vee \sim \varphi)$, and so both $D \ni \phi^{\mathfrak{D}}(d) = (\mathsf{f}|\mathsf{f}|\mathsf{f})$ and $D \ni \psi^{\mathfrak{D}}(d) = (\mathsf{t}|\mathsf{t}|\mathsf{t})$. Hence, as $I \supseteq K \neq \varnothing$, $\{\langle x, (x|x|x|x)\rangle \mid x \in A_{\mathsf{f}'}\}$ is an embedding of $\mathcal{A}_{\mathsf{f}'}$ into \mathcal{D} .

Thus, anyway, $\mathcal{A}_{\eta'}$ is embeddable into \mathcal{D} , in which case, by (2.5), it is a model of C', and so is \mathcal{B} , for $\{f, t\}$ forms a subalgebra of $\mathfrak{A}_{\eta'}$.

(2) $L \nsubseteq J$.

Consider the following complementary subcases:

- (a) either {b} forms a subalgebra of $\mathfrak{A}_{p'}$ or $(((I \setminus (L \cup K)) \cap J) \cup (I \setminus (L \cup J)) \cup (L \cap J)) = \emptyset$. Then, taking (4.21), (4.22), (4.23), (4.24), (4.25) and (4.26) into account, as $K \neq \emptyset \neq (L \setminus J)$, $\{\langle \langle x, y \rangle, (\mathsf{b} | \mathsf{b} | y | \mathsf{b} | x) \rangle \mid \langle x, y \rangle \in B\}$ is an embedding of \mathcal{B} into \mathcal{D} , and so, by (2.5), \mathcal{B} is a model of C'.
- (b) $\{b\}$ does not form a subalgebra of $\mathfrak{A}_{n'}$ and $(((I \setminus (L \cup K)) \cap J) \cup (I \setminus (L \cup J)) \cup (L \cap J)) \neq \emptyset$. Then, there is some $\varphi \in \operatorname{Fm}^1_{\Sigma}$ such that $\varphi^{\mathfrak{A}}(b) \in \{f, t\}$, in which case $\varphi^{\mathfrak{A}}[A_{n'}] \subseteq \{f, t\}$, for $\{f, t\}$ forms a subalgebra of \mathfrak{A} , and so $\varphi^{\mathfrak{A}}[A_{n'}] = \{f\}$ and $\psi^{\mathfrak{A}}[A_{n'}] = \{t\}$, where $\varphi \triangleq (\varphi \wedge \sim \varphi)$ and $\psi \triangleq (\varphi \vee \sim \varphi)$. In this way,

$$(4.27) D \ni \phi^{\mathfrak{D}}(a) = (\mathsf{f}|\mathsf{f}|\mathsf{f}|\mathsf{f}),$$

$$(4.28) D \ni \psi^{\mathfrak{D}}(a) = (\mathsf{f}|\mathsf{t}|\mathsf{t}|\mathsf{t}).$$

Consider the following complementary subsubcases:

(i) $\mathfrak{A}_{\mathfrak{p}'}$ is not regular.

Then, there are some $\varsigma \in \Sigma$ of arity $n \in \omega$, some $\vec{g} \in (A^n_{\vec{y}})^2$ and some $i \in 2$ such that $g^i_j \sqsubseteq g^{1-i}_j$, for all $j \in n$, but $\varsigma^{\mathfrak{A}}(\bar{g}^i) \not\sqsubseteq \varsigma^{\mathfrak{A}}(\bar{g}^{1-i})$, in which case $w \triangleq \varsigma^{\mathfrak{A}}(\bar{g}^i) \not= x \triangleq \varsigma^{\mathfrak{A}}(\bar{g}^{1-i}) \in \{\mathsf{f},\mathsf{t}\}$, and so $\bar{g}^i \not= \bar{g}^{1-i}$, in which case $y \triangleq g^i_j \in \{\mathsf{f},\mathsf{t}\}$ and $g^{1-i}_j = \mathsf{b}$, for some $j \in n$. Moreover, as $\varsigma^{\mathfrak{A}}$ is not regular, it is b-idempotent, in which case $\bar{g}^{1-i} \not= (n \times \{\mathsf{b}\})$, while $n \leqslant 2$, and so n = 2 and $z \triangleq g^{1-i}_{1-j} \not= \mathsf{b}$. Therefore, $g^i_{1-j} = z \in \{\mathsf{f},\mathsf{t}\}$, in which case $(z|z|z|z|z) \in D$, in view of (4.27) and (4.28). Moreover, by (4.25) and (4.26), we also have $(\mathsf{b}|\mathsf{b}|y|\mathsf{b}|\mathsf{b}) \in D$. In this way, $D \ni f \triangleq \varsigma^{\mathfrak{D}}(\{\langle j, (\mathsf{b}|\mathsf{b}|y|\mathsf{b}|\mathsf{b})\rangle, \langle 1-j, (z|z|z|z|z)\rangle\}) = (x|x|w|x|x)$. Consider the following complementary subsubsubcases:

(A) w = b.

Then, taking (4.26) into account, we have $D \ni ((f \wedge^{\mathfrak{D}} \sim^{\mathfrak{D}} f) \vee^{\mathfrak{D}} \sim^{\mathfrak{D}} d) = (\mathsf{b}|\mathsf{b}|\mathsf{b}|\mathsf{b}|\mathsf{b})$. Hence, as $I \supseteq K \neq \emptyset$, by (4.27) and (4.28), we see that $\{\langle u, (u|u|u|u|u)\rangle \mid u \in A_{\eta}\}$ is an embedding of $\mathcal{A}_{\eta'}$ into \mathcal{D} . Therefore, by (2.5), $\mathcal{A}_{\eta'}$ is a model of C', and so is \mathcal{B} , for $\{\mathsf{f},\mathsf{t}\}$ forms a subalgebra of $\mathfrak{A}_{\eta'}$.

- (B) $w \neq b$. Then, $w \in \{f, t\} \ni x$, so $D \supseteq \{f, \sim^{\mathfrak{D}} f\} = \{(f|f|t|f|f), (t|t|f|t|t)\}$. Hence, as $K \neq \emptyset \neq (L \setminus J)$, by (4.25), (4.26), (4.27) and (4.28), we see that $\{\langle \langle u, v \rangle, (u|u|v|u|u) \rangle \mid \langle u, v \rangle \in B\}$ is an embedding of \mathcal{B} into \mathcal{D} . Therefore, by (2.5), \mathcal{B} is a model of C'.
- (ii) $\mathfrak{A}_{n'}$ is regular.

Then, Lemma 4.2, used tacitly throughout the rest of the proof, is well-applicable to \mathcal{B} . In this way, as $(((I \setminus (L \cup K)) \cap J) \cup (I \setminus (L \cup J)) \cup (L \cap J)) \neq \emptyset \notin \{K, L \setminus J\}$, by (4.21), (4.22), (4.23), (4.24), (4.25), (4.26), (4.27) and (4.28), we see that $\{\langle \langle t, u, v \rangle, (v|v|u|v|t) \rangle \mid \langle t, u, v \rangle \in (B \dotplus 2)\}$ is an embedding of $\mathcal{B} \dotplus 2$ into \mathcal{D} , in which case, by (2.5), it is a model of C', and so is its strict surjective homomorphic image \mathcal{B} .

This completes the argument.

Ii is remarkable that it is the gentle operation-wise condition that makes Lemma 4.59 well-applicable to the purely-implicative expansion of C_{BB} despite of the fact that, in that case, $\mathfrak A$ is neither regular nor b-idempotent. This equally concerns the following quite important result:

Theorem 4.60 (cf. [21] for the case $\Sigma = \Sigma_0$). Suppose C is both \sim -subclassical and not maximally \sim -paraconsistent, while, for every $\varsigma \in \Sigma$, $\varsigma^{\mathfrak{A}_{\eta'}}$ is either regular or both b -idempotent and no more than binary (in particular, $\Sigma = \Sigma_{0[1]}$). Then, proper consistent extensions of $C^{\mathrm{EM}} = C^{\eta'}$ form the two-valued chain $C^{\mathrm{EM}+\mathrm{NP}} \subsetneq C^{\mathrm{PC}} = C^{\mathrm{EM}+(\mathrm{R/MP})}$. Moreover, in case $\mathfrak{A}_{\eta'}$ is regular (in particular, $\Sigma = \Sigma_{0[1]}$), both proper consistent extensions satisfy same axioms as C^{EM} do, and so are not axiomatic.

Proof. With using Theorems 4.23, 4.24, 4.29(iii|iv|vi) \Rightarrow (i), 4.32, 4.57, Lemma 4.59 and Remark 4.58. First of all, (4.20) is not true in the consistent truth-non-empty Σ -matrix $\mathcal{B} \triangleq (\mathcal{A}_{0'} \times (\mathcal{A} \upharpoonright \{f, t\}))$ under $[x_0/\langle b, t \rangle, x_1/\langle f, t \rangle]$.

Finally, assume \mathfrak{A}_{σ} is regular. Then, by Lemma 4.37, we have $\mathcal{D} \triangleq \langle \mathfrak{B} \upharpoonright K_4^{\mathsf{b}}, K_4^{\mathsf{b}} \cap \pi_1^{-1}[\{\mathsf{t}\}] \rangle$, in which case both $(\pi_1 \upharpoonright K_4^{\mathsf{b}}) \in \text{hom}_{\mathsf{S}}(\mathcal{D}, \mathcal{A}_{\mathsf{f}} \upharpoonright \{\mathsf{f}, \mathsf{t}\})$ and $(\pi_0 \upharpoonright K_4^{\mathsf{b}}) \in \text{hom}^{\mathsf{S}}(\mathcal{D}, \mathcal{A}_{\sigma})$, and so (2.5) and (2.6) complete the argument.

In view of Lemma 4.30, Theorem 4.60 shows that $(\mathcal{C} \cap \operatorname{Fm}_{\Sigma}^{\omega}) \cup (\sigma_{+1}[\mathcal{C} \setminus \operatorname{Fm}_{\Sigma}^{\omega}] \vee x_0)$ cannot be replaced by \mathcal{C} in the item (ii)b) of Theorem 3.21, when taking $\mathsf{M} = \{\mathcal{A}_{\emptyset}\}$ and $\mathcal{C} = \{(4.19)\}$, and so the reservations "positive" and "axiomatic" cannot be omitted in its item (iii). In addition, the particular case of Theorem 4.60 with $\Sigma = \Sigma_{01}$ provides the "bounded" extension of [26] void of the rather unnatural restriction by merely non-empty sequents. This point, being essentially beyond the scopes of the present study, is going to be discussed in detail elsewhere.

4.5.2.1. Modus ponens versus truth-singularity.

Lemma 4.61. Let \mathcal{B} be a truth-singular \wedge -conjunctive Σ -matrix. Suppose $(\mathfrak{B} \upharpoonright \Sigma_0) \in \mathsf{DML}$. Then, any $b \in D^{\mathcal{B}}$ is a unit of $\mathfrak{B} \upharpoonright \Sigma^+$, in which case $\sim^{\mathfrak{B}} b$ is a zero of it, and so \mathcal{B} is a model of (4.20).

Proof. In that case, $\mathfrak{B} \upharpoonright \Sigma^+$ is a distributive lattice and $D^{\mathcal{B}}$ is a filter of it. Then, for any $a \in B$, we have $b \leqslant^{\mathfrak{B}} (a \vee^{\mathfrak{B}} b)$, in which case we get $(a \vee^{\mathfrak{B}} b) \in D^{\mathcal{B}}$, and so $(a \vee^{\mathfrak{B}} b) = b$, as required.

As the truth-singularity is preserved under \Re , by the \wedge -conjunctivity of \mathcal{A} (cf. Remark 3.28 with j=0), (2.5), Lemmas 4.61, 3.5 and Corollary 2.16, we immediately get:

Corollary 4.62. Any truth-singular model of C is a model of C^{MP} .

Lemma 4.63. $\Upsilon_0 \triangleq \{\sim^i x_0 \lor x_1 \mid i \in 2\}$ is a unitary congruence determinant for any \land -conjunctive Σ_0 -matrix \mathcal{B} such that $\mathfrak{B} \in \mathsf{DML}$.

Proof. Using the distributivity of $\mathfrak{B} \upharpoonright \Sigma^+$, the \land -conjunctivity of \mathcal{B} as well as the identities (3.13), (3.14) and (3.15), it is routine checking that $\theta \triangleq \theta^{\mathcal{B}}_{\varepsilon_{\Upsilon_0}} \in \operatorname{Con}(\mathfrak{B})$. Finally, consider any $\langle a,b \rangle \in \theta$. Then, $\mathcal{B} \models (\bigwedge \varepsilon_{\Upsilon_0})[x_0/a, x_1/b, x_2/(a \wedge^{\mathfrak{B}} b)]$, being a consequence of $\mathcal{B} \models (\forall_{\omega \setminus 2} \bigwedge \varepsilon_{\Upsilon_0})[x_0/a, x_1/b]$, implies $(a \in D^{\mathcal{B}}) \Leftrightarrow (b \in D^{\mathcal{B}})$, as required.

Next, combining Lemmas 2.2, 3.29, 4.51, Remark 2.3 and Corollary 2.7, by the congruence-distributivity of lattice expansions, we get the following quite important non-trivial algebraic inheritance result:

Corollary 4.64. Let $\mathfrak{B} \in \mathbf{V}(\mathfrak{A})$. Then, $\operatorname{Con}(\mathfrak{B}) = \operatorname{Con}(\mathfrak{B} \upharpoonright \Sigma_0)$.

In particular, by (2.5), Lemmas 3.6, 3.5, 4.63, Corollaries 2.16, 4.64 and the \land -conjunctivity of \mathcal{A} (cf. Remark 3.28 with j=0), we also have:

Corollary 4.65. Υ_0 is a unitary congruence [equality] determinant for $\operatorname{Mod}_{[*]}(C)$.

Note that the following rules are satisfied in C^{MP} , in view of (3.3) and (3.4) held in C by its \vee -disjunctivity (cf. Corollary 3.14 and Remark 3.28 with j=0):

$$(4.29) \{x_0, x_1, \sim^i x_0 \lor x_2\} \vdash (\sim^i x_1 \lor x_2),$$

where $i \in 2$. In this way, by Corollary 4.65, we get:

Corollary 4.66. Any $\mathcal{B} \in \operatorname{Mod}_*(C^{\operatorname{MP}})$ is truth-singular.

Theorem 4.67. C^{MP} is defined by $S \triangleq (\mathrm{Mod}(C) \cap \mathbf{P}^{\mathrm{SD}}(\mathbf{S}^*_{+}(\overrightarrow{\mathcal{A}})))$, and so by the class of all truth-singular models of C.

Proof. As $\overrightarrow{\mathcal{A}}$ is truth-singular, while the truth-singularity is preserved under both \mathbf{P} and \mathbf{S} , by Corollary 4.62, we have $\mathbf{S} \subseteq \operatorname{Mod}(C^{\operatorname{MP}})$. Conversely, consider any $\mathcal{B} \in (\operatorname{Mod}_*(C^{\operatorname{MP}}) \cap \Re(\mathbf{P}^{\operatorname{SD}}(\mathbf{S}_*(\mathcal{A}))))$, in which case $\mathcal{B} \in \operatorname{Mod}(C)$, while, by Corollary 4.66, \mathcal{B} is truth-singular, whereas $(\mathfrak{B} \upharpoonright \Sigma_0) \in \operatorname{DML}$, and so, by the \land -conjunctivity of \mathcal{A} (cf. Remark 3.28 with j=0) and Lemma 4.61, $\mathcal{D}^{\mathcal{B}} = \{b\}$, whereas b is a unit of $\mathfrak{B} \upharpoonright \Sigma^+$. Moreover, $\mathfrak{B} \in \mathbf{V}(\mathfrak{A})$, in which case, by Remark 2.3 and Lemma 4.51, \mathfrak{B} is isomorphic to a subdirect product of some $\overline{\mathfrak{C}} \in (\mathbf{S}_{>1}\mathfrak{A})^I$, where I is a set, and so there is some embedding e of \mathfrak{B} into $\prod_{i \in I} \mathfrak{C}_i$ such that, for each $i \in I$, $h_i \triangleq (\pi_i \circ e) \in \operatorname{hom}(\mathfrak{B}, \mathfrak{C}_i)$ is surjective, in which case C_i , being non-one-element, contains both t and t, and so, by Lemma 3.27, $h_i(b) = t$. And what is more, for every $a \in B$ distinct from b, by the injectivity of e, there is some $i \in I$ such that $h_i(a) \neq h_i(b) = t$. In this way, e is an isomorphism from \mathcal{B} onto the subdirect product $(\prod_{i \in I} \langle \mathfrak{C}_i, \{t\} \rangle) \upharpoonright (\operatorname{img} e)$ of $\langle \langle \mathfrak{C}_i, \{t\} \rangle \rangle_{i \in I} \in \mathbf{S}_*^*(\overrightarrow{\mathcal{A}})^I$. Hence, by (2.5), we get $\mathcal{B} \in \mathbf{I}(\mathbf{S})$. Then, Theorem 2.20, Corollary 4.62 and (2.5) complete the argument.

4.6. Self-extensionality.

Theorem 4.68. The following are equivalent:

- (i) C is self-extensional;
- (ii) C has the property of Weak Contraposition with respect to \sim ;
- (iii) \overline{A} is a model of C;
- (iv) C is defined by $\{A, A\}$;
- (v) $(\psi \in C(\phi)) \Leftrightarrow (\mathfrak{A} \models (\phi \lessapprox \psi)), \text{ for all } \phi, \psi \in \operatorname{Fm}_{\Sigma}^{\omega};$
- (vi) there is some class K of Σ -algebras satisfying semilattice identities for \wedge such that $(\psi \in C(\phi)) \Leftrightarrow (\mathsf{K} \models (\phi \lessapprox \psi))$, for all $\phi, \psi \in \mathrm{Fm}_{\Sigma}^{\omega}$;
- (vii) $(\psi \equiv_C \phi) \Leftrightarrow (\overline{\mathfrak{A}} \models (\phi \approx \psi)), \text{ for all } \phi, \psi \in \operatorname{Fm}_{\Sigma}^{\omega};$
- (viii) there is some class K of Σ -algebras such that $(\psi \equiv_C \phi) \Leftrightarrow (\mathsf{K} \models (\phi \approx \psi))$, for all $\phi, \psi \in \mathrm{Fm}_{\Sigma}^{\omega}$;
- (ix) there is an injective homomorphism from \overline{A} to A;
- (x) \mathfrak{A} is specular;
- (xi) μ is an isomorphism from $\overline{\mathcal{A}}$ onto \mathcal{A} ;
- (xii) \mathcal{A} is isomorphic to \mathcal{A} ;
- (xiii) C is defined by $\overline{\mathcal{A}}$;
- (xiv) \overrightarrow{A} is a model of C;
- (xv) any \land -conjunctive truth-non-empty Σ -matrix \mathcal{B} such that $\mathfrak{B} \in \mathbf{V}(\mathfrak{A})$ is a model of C;

in which case $IV(C) = \mathbf{V}(\mathfrak{A})$.

Proof. First, (i) \Rightarrow (ii) is by Claim 4.45. Next, (v) \Rightarrow (xv) is by Claim 4.46, while (ii) \Rightarrow (iii) is by Corollary 4.47 and Remark 3.28 with j = 1.

Likewise, assume (xiv) holds. Consider any $\phi \in \operatorname{Fm}_{\Sigma}^{\omega}$, any $\psi \in C(\phi)$, and any $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$ such that $h(\phi) \in D^{\mathcal{A}}$. Then, by the structurality of C, Corollary 3.14(3.9) and Remark 3.28 with j = 0, $(\sigma_{+1}(\psi) \vee x_0) \in C(\sigma_{+1}(\phi) \vee x_0)$. Let $g \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A})$ extend $[x_0/\mathfrak{b}; x_{i+1}/h(x_i)]_{i \in \omega}$, in which case $(g \circ \sigma_{+1}) = h$, and so we have $g(\sigma_{+1}(\phi) \vee x_0) = (h(\phi) \vee^{\mathfrak{A}} \mathfrak{b}) = \mathfrak{t}$.

Hence, by (xiv), we get $(h(\psi) \vee^{\mathfrak{A}} \mathsf{b}) = g(\sigma_{+1}(\psi) \vee x_0) = \mathsf{t}$. Therefore, we eventually get $h(\psi) \in D^{\overleftarrow{\mathcal{A}}}$. Thus, by Claim 4.46 and Remark 3.28 with j = 1, (iii) holds.

On the other hand, $D^{\mathcal{A}}$ and $D^{\overline{\mathcal{A}}}$ are exactly all non-empty proper prime filters of $\mathfrak{A}\upharpoonright \Sigma^+$ (cf. Remark 3.28). Therefore, $(iv)\Rightarrow(v)$ is by the Prime Ideal Theorem for distributive lattices (in particular, for $(\mathfrak{A}\upharpoonright\Sigma^+)=\mathfrak{D}_2^2$). In addition, both $(v)\Rightarrow(vii)$ and $(vi) \Rightarrow (viii)$ are by the semilattice identities for \land that are true in \mathfrak{A} , while (vi/viii) is a particular case of (v/vii), respectively, whereas $(viii) \Rightarrow (i)$ is immediate.

Now, assume (iii) holds.

In that case, (iv) is evident.

Moreover, \overline{A} is consistent and, being finite, is finitely generated. In addition, by Lemma 3.4 and Remark 3.28 with j=1, $\overline{\mathcal{A}}$ is simple and \vee -disjunctive. Then, by Lemma 2.19, there is some finite set I, some I-tuple $\overline{\mathcal{C}}$ of submatrices of \mathcal{A} , some subdirect product \mathcal{D} of $\overline{\mathcal{C}}$ and some $g \in \text{hom}_{S}^{S}(\mathcal{D}, \overline{\mathcal{A}})$, in which case, by Remark 3.12 and (2.5), \mathcal{D} is consistent and \vee disjunctive, and so, by Corollary 3.13, there is some $i \in I$ such that $h \triangleq (\pi_i \upharpoonright D) \in \text{hom}_S^S(\mathcal{D}, \mathcal{C}_i)$. Moreover, by Lemmas 3.4, 3.6 and Remark 3.28 with j=0, C_i is simple. Hence, by Proposition 2.15, $(\ker h)=\partial(\mathcal{D})=(\ker g)$. Therefore, by Proposition 2.14, $e \triangleq (h \circ g^{-1}) \in \text{hom}_{S}(\overline{\mathcal{A}}, \mathcal{C}_{i}) \subseteq \text{hom}(\overline{\mathcal{A}}, \mathcal{A})$ is injective, and so (ix) holds.

Furthermore, (ix) \Rightarrow (x) is by Corollary 4.49.

Finally, $(x) \Rightarrow (xi)$ is immediate, while (xii/iii/xiv) is a particular case of (xi/xiii/xv), respectively, whereas $(xii) \Rightarrow (xiii)$ is by (2.5). After all, (vii) implies $IV(C) = V(\mathfrak{A})$, as required.

As a first immediate generic consequence of Theorems 4.23, $4.68(i) \Rightarrow (x)$ and Lemma 4.38 with $B = \{b, n\}$ applicable to all bilattice expansions at once (cf. Subsubsection 6.1.2), we have:

Corollary 4.69. Suppose {f,t} does not form a subalgebra of $\mathfrak A$. Then, C is not self-extensional. In particular, C is \sim -subclassical, whenever it is self-extensional.

Corollary 4.70. Suppose C is self-extensional. Then, $\{n(f,t)\}$ forms a subalgebra of \mathfrak{A} iff $\{b(f,t)\}$ does so. In particular, the following hold:

- (i) the following are equivalent:
 - a) C satisfies Relevance Principle;
 - **b)** C is purely inferential;
 - c) C has no inconsistent formula;
 - **d)** $\{n\}$ forms a subalgebra of \mathfrak{A} ;
 - e) $\{b\}$ forms a subalgebra of \mathfrak{A} ;
 - f) there is no $\psi \in \operatorname{Fm}_{\Sigma}^1$ such that $\psi^{\mathfrak{A}}[A] = \{t\};$
- g) there is no φ∈ Fm_Σ such that φ^A[A] = {f}.
 (ii) [providing C is not purely inferential] C^{EM} is { maximally} ~-paraconsistent iff C^R is [non-]inferentially paracomplete, in which case, when $\mathfrak{A}_{b'}$ is regular (in particular, $\Sigma = \Sigma_{0[1]}$), C^R is maximally [non-]inferentially paracomplete, while any extension of C is both \sim -paraconsistent and [non-]inferentially paracomplete iff it is a sublogic of $C^{\mathrm{EM}} \cap C^{\mathrm{R}}$, in its turn, being an axpansion of $LP \cap K_3$.

Proof. Since $\mu[\{n(f,t)\}] = \{b(f,t)\}$, in view of Theorems 4.16(i) \Leftrightarrow (iii), 4.29, 4.39, 4.40, 4.68(i) \Rightarrow (x), Lemmas 4.14, 4.15 and Corollary 4.27, it only remains to prove the equivalence of the subitems f) and g) to others within (i).

First, **f**) is a particular case of **b**). Next, **f**) \Leftrightarrow **g**) is by the fact $\sim^{\mathfrak{A}}(f/t) = (t/f)$.

Finally, assume $\{b\}$ does not form a subalgebra of \mathfrak{A} . Then, there is some $\varphi \in \mathrm{Fm}_{\Sigma}^1$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \neq \mathsf{b}$, in which case $\varphi^{\mathfrak{A}}(\mathsf{n}) = \mu(\varphi^{\mathfrak{A}}(\mathsf{b}))$ and $\varphi^{\mathfrak{A}}[\{\mathsf{f},\mathsf{t}\}] \subseteq \{\mathsf{f},\mathsf{t}\}$, by Lemma 4.38 and Theorem 4.68(i) \Rightarrow (x), and so $\psi^{\mathfrak{A}}[A] = \{\mathsf{t}\}$, where $\psi \triangleq (x_0 \vee (\varphi \vee \sim \varphi)) \in \operatorname{Fm}_{\Sigma}^1$. Thus, $\mathbf{f}) \Rightarrow \mathbf{e}$ holds, as required.

Corollary $4.70(i)\mathbf{b}) \Leftarrow \mathbf{f}) \Leftrightarrow \mathbf{g})$ collectively with Theorem 4.8 imply:

Corollary 4.71. Any self-extensional four-valued expansion of C_B is not purely inferential iff it is definitionally equivalent to an expansion of $C_{\rm BB}$.

This clarifies the meaning of the bounded version $C_{\rm BB}$ of $C_{\rm B}$ (a much deeper justification of it is provided by Corollary 6.4 below). Subsubsection 6.1.3 shows that the condition of self-extensionality cannot be omitted in the formulations of Corollaries 4.70 and 4.71. As for Corollary 4.70(ii) (in case $\mathfrak{A}_{b'}$ is regular), it clarifies the meaning of the self-extensional (in view of Theorems 4.68 and 4.44) meet $C^{\text{EM}} \cap C^{\text{R}}$ to be studied far more in Paragraph 6.1.4.1.

4.6.1. Self-extensional extensions. After all, combining Propositions 2.17, 2.18, Remarks 2.8, 2.9, 3.28 with j=0, Theorems 4.23, 4.24, 4.29, 4.44, 4.68, Lemma 4.14, Corollaries 4.43, 4.69, 4.52 and Example 2.11, we eventually get:

Theorem 4.72. Suppose C is self-extensional and [not] maximally \sim -paraconsistent (as well as purely inferential). Then, there is no inferentially consistent proper self-extensional (non-pseudo-axiomatic/purely-inferential) extension of C other than $C_{(/+0)}^{\mathrm{PC}}$ [and $C_{(/+0)}^{\mathrm{EM}} \cap C_{(/+0)}^{\mathrm{R}}$], being, in its[their] turn, both so and inductive [while the former being a proper extension of the latter].

On the other hand, any logic is either purely-inferential or, otherwise, non-pseudo-axiomatic. Therefore, by Remarks 2.8, 2.10, 3.28 with j = 0, 3.12, Corollaries 3.14, 4.43, 4.69, 4.70 and Theorems 3.21, 4.23, 4.44 and 4.72, we also get the following interesting non-trivial consequence:

Corollary 4.73. Suppose C is self-extensional [and maximally \sim -paraconsistent]. Then, any extension of C is \vee -disjunctive if/f/it is self-extensional.

4.6.2. Semantics of miscellaneous extensions versus self-extensionality. By Theorems 4.67, 4.68(i) \Leftrightarrow (xiv) and (2.5), we first get:

Corollary 4.74. C is self-extensional iff C^{MP} is defined by \overrightarrow{A} .

Likewise, we also have the following one more characterization of the self-extensionality of C:

Theorem 4.75. C is self-extensional iff C^{NP} is defined by $\mathcal{A} \times \overrightarrow{\mathcal{A}}$.

Proof. We use Theorem 4.68(i) \Leftrightarrow (xiv) tacitly. First, $\Delta_A \times \Delta_A$ is an embedding of \overrightarrow{A} into $A \times \overrightarrow{A}$. In this way, (2.5) yields the "if" part. Conversely, assume C is self-extensional. Then, $A \times \overrightarrow{A}$ is a model of C. Moreover, $\{a, \sim^{\mathfrak{A}} a\} \subseteq \{t\}$, for no $a \in A$. Therefore, $A \times \overrightarrow{A}$ is not \sim -paraconsistent, so it is a model of C^{NP} . Finally, consider any finite set I, any $\overline{C} \in \mathbf{S}(A)^I$ and any subdirect product $\mathcal{D} \in \mathrm{Mod}(C')$ of \overline{C} , in which case \mathcal{D} is a non- \sim -paraconsistent submatrix of A^I . Put $J \triangleq \mathrm{hom}(\mathcal{D}, A \times \overrightarrow{A})$. Consider any $a \in (D \setminus D^{\mathcal{D}})$, in which case \mathcal{D} is consistent, and so, by Lemma 4.55, there is some $g \in \mathrm{hom}(\mathcal{D}, \overrightarrow{A}) \neq \emptyset$. Moreover, there is some $i \in I$, in which case $f \triangleq (\pi_i | D) \in \mathrm{hom}(\mathcal{D}, A)$, such that $f(a) \notin D^A$. Then, $h \triangleq (f \times g) \in J$ and $h(a) \notin D^{A \times \overrightarrow{A}}$. In this way, $(\prod \Delta_J) \in \mathrm{hom}_{\mathbf{S}}(\mathcal{D}, (A \times \overrightarrow{A})^J)$. Thus, by (2.5) and Theorem 2.20, C^{NP} is finitely-defined by $A \times \overrightarrow{A}$. Then, the finiteness of A completes the argument.

4.7. Axiomatic extensions.

Lemma 4.76. Suppose \mathfrak{A} is regular and $\{f,t\}$ forms a subalgebra of it. Then, so does $\{f,b,t\}$.

Proof. By contradiction. For suppose $\{f,b,t\}$ does not form a subalgebra of \mathfrak{A} , in which case there is some $\varphi \in \operatorname{Fm}_{\Sigma}^3$ such that $A \ni \varphi^{\mathfrak{A}}(f,b,t) \not\in \{f,b,t\} = (A \setminus \{n\})$, and so we have $\varphi^{\mathfrak{A}}(f,b,t) = n$. Therefore, as $t \sqsubseteq b$, by the regularity of \mathfrak{A} and the reflexivity of \sqsubseteq , we get $\varphi^{\mathfrak{A}}(f,t,t) \sqsubseteq n$. Hence, $\varphi^{\mathfrak{A}}(f,t,t) = n \not\in \{f,t\}$. This contradicts to the assumption that $\{f,t\}$ forms a subalgebra of \mathfrak{A} , as required.

By Theorems 4.23, 4.29(i)⇒(iv), Corollary 4.69 and Lemma 4.76, we first have:

Corollary 4.77. Suppose C is \sim -subclassical (in particular, self-extensional) and maximally \sim -paraconsistent. Then, $\mathfrak A$ is not regular.

Lemma 4.78. Let $\mathcal{B} \in \mathbf{S}(\mathcal{A})$. Suppose $B \cup \{b\}$ forms a regular subalgebra of \mathfrak{A} . Then, $\mathrm{Cn}^{\omega}_{\mathcal{B}}(\varnothing) \subseteq \mathrm{Cn}^{\omega}_{\mathcal{A}\restriction (B \cup \{b\})}(\varnothing)$.

Proof. Consider any $\varphi \in (\operatorname{Fm}_{\Sigma}^{\omega} \setminus \operatorname{Cn}_{\mathcal{A} \upharpoonright (B \cup \{b\})}^{\omega}(\varnothing))$, in which case there is some $h \in \operatorname{hom}(\mathfrak{Fm}_{\Sigma}^{\omega}, \mathfrak{A} \upharpoonright (B \cup \{b\}))$ such that $h(\varphi) \in \{f, n\}$. Take any $b \in B \neq \varnothing$. Define a $g : V_{\omega} \to B$ by setting:

$$g(x_i) \triangleq \begin{cases} b & \text{if } h(x_i) = \mathsf{b}, \\ h(x_i) & \text{otherwise,} \end{cases}$$

for all $i \in \omega$. Let $e \in \text{hom}(\mathfrak{F}\mathfrak{m}_{\Sigma}^{\omega}, \mathfrak{B})$ extend g. Then, $e(x_i) = g(x_i) \sqsubseteq h(x_i)$, for all $i \in \omega$, in which case, by the regularity of $\mathfrak{A} \upharpoonright (B \cup \{b\})$, we have $e(\varphi) \sqsubseteq h(\varphi)$, and so we eventually get $e(\varphi) \in \{f, n\}$, as required.

Theorem 4.79. [Providing \mathfrak{A} is regular/has no three-element subalgebra] C has a proper consistent axiomatic extension if[f] $\{f, b, t\}/\{f, t\}$ forms a subalgebra of \mathfrak{A} [in which case the logic of $\mathcal{A}_{\eta'/\eta b'}$ is the only proper consistent axiomatic extension of C and is relatively axiomatized by (4.8)].

Proof. The "if" part is by Lemma 4.28. [Conversely, consider any $\mathcal{A} \subseteq \operatorname{Fm}_{\Sigma}$ such that the axiomatic extension C' of C relatively axiomatized by \mathcal{A} is both proper and consistent, in which case $\mathcal{A} \neq \emptyset$, while, by Corollary 2.21, C' is the logic of $S \triangleq (\operatorname{Mod}(\mathcal{A}) \cap S_*(\mathcal{A}))$, so $\mathcal{A} \notin S \neq \emptyset$. Take any $\mathcal{B} \in S$, in which case it is both consistent and, as $\mathcal{A} \neq \emptyset$, truth-nonempty. Hence, by Lemma 4.19, $\{f,t\}\subseteq B$. Therefore, if f was in f, then f would be equal to f would belong to f would belong to f. Thus, f in which case, by Lemma 4.78/the fact that f in three-element, does not form a subalgebra of f in the fact that f in that f is more, in that case, by Lemma 4.78/the fact that f is more, in that case, by Lemma 4.78/the fact that f is more, in that case, by Lemma 4.78/the fact that f is more, in that case, by Lemma 4.78/the fact that f is more, in that case, by Lemma 4.78/the fact that f is more, in that case, by Lemma 4.78/the fact that f is more, in that case, by Lemma 4.78/the fact that f is more, in view of (2.5). In this way, Lemma 4.28 completes the argument.]

Subsubsection 6.1.3 collectively with the respective part of the paragraph following Theorem 6.10 show that the optional precondition cannot, generally speaking, be omitted in the formulation of Theorem 4.79.

5. Paraconsistent finitely-many-valued logics

The present section collectively with Subsection 6.2 exemplifying the former incorporates the material prepared by and announced in 1995 (cf. the paragraph after Theorem 2.1 in [17] and the reference [Pyn 95b] therein).

5.1. Three-valued paraconsistent logics with subclassical negation. Fix any unary connective \wr of Σ .

A Σ -matrix \mathcal{A} is said to be \wr -superclassical, provided $A = \{f, b, t\}$, $D^{\mathcal{A}} = \{b, t\}$, $\ell^{\mathfrak{A}} f = t$ and $\ell^{\mathfrak{A}} b \in D^{\mathcal{A}}$, in which case it is three-valued, both consistent and false-singular with $\exists^{\mathcal{A}} = f$ as well as \wr -paraconsistent, while $\{f, t\}$ forms a subalgebra of $\mathfrak{A} \upharpoonright \{\ell\}$, in which case ℓ is clearly a subclassical negation for the logic of \mathcal{A} , in view of (2.5). In this way, we have argued the routine part (viz., (ii) \Rightarrow (i)) of the following preliminary marking the framework of the present subsection:

Proposition 5.1. Let C be a Σ -logic. Then, the following are equivalent:

(i) C is both three-valued and \cdot -paraconsistent, while \cdot\ is a subclassical negation for C;

(ii) C is defined by a \wr -superclassical Σ -matrix.

Proof. Assume (i) holds. Let \mathcal{B} be any three-valued Σ-matrix defining C. Define an $e: \{f, b, t\} \to B$ as follows. In that case, \mathcal{B} is \sim -paraconsistent, so there are some $e(b) \in D^{\mathcal{B}}$ such that $\sim^{\mathfrak{B}} e(b) \in D^{\mathcal{B}}$ and some $e(f) \in (B \setminus D^{\mathcal{B}})$, in which case $e(f) \neq e(b)$. Next, by (2.7) with m = 1 and n = 0, there is some $e(t) \in D^{\mathcal{B}}$ such that $\sim^{\mathfrak{B}} e(t) \notin D^{\mathcal{B}}$, in which case $e(f) \neq e(b)$. In this way, $e: \{f, b, t\} \to B$ is injective, and so bijective, for |B| = 3. Hence, it is an isomorphism from $\mathcal{A} \triangleq \langle e^{-1}[\mathfrak{B}], \{b, t\} \rangle$ onto \mathcal{B} . Therefore, by (2.5), C is defined by \mathcal{A} . Furthermore, $\sim^{\mathfrak{A}} b \in D^{\mathcal{A}}$, while $\sim^{\mathfrak{A}} t \notin D^{\mathcal{A}}$, in which case $\sim^{\mathfrak{A}} t = f$, and so it only remains to show that $\sim^{\mathfrak{A}} f = t$. We do it by contradiction. For suppose $\sim^{\mathfrak{A}} f \neq t$, in which case we have the following two exhaustive cases:

- (1) $\sim^{\mathfrak{A}} f = f$.
 - This contradicts to (2.7) with m = 0 and n = 1.
- (2) $\sim^{\mathfrak{A}} f = b$.

As $\sim^{\mathfrak{A}} b \in \{b,t\}$, we then have the following two exhaustive subcases:

- (a) $\sim^{\mathfrak{A}} b = b$.
 - Then, $\sim^{\mathfrak{A}} \sim^{\mathfrak{A}} a = b \in D^{\mathcal{A}}$, for each $a \in D^{\mathcal{A}}$. This contradicts to (2.7) with m = 3 and n = 0.
- (b) $\sim^{\mathfrak{A}} b = t$. Then, $\sim^{\mathfrak{A}} \sim^{\mathfrak{A}} f = f$. This contradicts to (2.7) with m = 0 and n = 3.

Thus, in any case, we come to a contradiction, as required.

Proposition 5.2. Any three-valued $\$ -paraconsistent Σ -logic C with subclassical negation $\$ is minimally three-valued.

Proof. By contradiction. For supposed C is defined by a Σ -matrix \mathcal{A} such that |A| < 3, in which case it is \mathcal{L} -paraconsistent, and so both consistent and truth-non-empty. Therefore, there is some $a \in A$ such that $D^{\mathcal{A}} = \{a\}$. Hence, $\sim^{\mathfrak{A}} a = a$. This contradicts to (2.7) with m = 1 and n = 0, as required.

Remark 5.3. By Example 3.3 with j=0 and $\vec{k}=\Delta_2$, Υ_{l} is a unary unitary equality determinant for any l-superclassical Σ -matrix \mathcal{A} .

Unless otherwise specified, fix any \cdot\-superclassical \Sigma-matrix \mathcal{A}\). Let C be the logic of \mathcal{A} .

5.1.1. Maximal paraconsistency of three-valued paraconsistent logics with subclassical negation. Then, a ternary b-relative (weak classical) conjunction for $\mathfrak A$ is any $\varphi \in \operatorname{Fm}_{\Sigma}^3$ such that both $\varphi^{\mathfrak A}(\mathsf{b},\mathsf{f},\mathsf{t}) = \mathsf{f}$ and $\varphi^{\mathfrak A}(\mathsf{b},\mathsf{t},\mathsf{f}) \neq \mathsf{t}$.

We start from proving the following key lemma "killing two birds (both the sufficiency part of the characterization of the maximal $\$ -paraconsistency of three-valued $\$ -paraconsistent logics with subclassical negation $\$ and the uniqueness of a $\$ -superclassical matrix defining any given maximally $\$ -paraconsistent three-valued logic with subclassical negation $\$) with one stone":

Lemma 5.4 (Three-Valued Key Lemma). Let \mathcal{B} a (simple) finitely-generated \wr -paraconsistent model of C. Suppose either \mathfrak{A} has a ternary b-relative conjunction or $\{b\}$ does not form a subalgebra of \mathfrak{A} . Then, \mathcal{A} is embeddable into $\mathcal{B}/\mathfrak{D}(\mathcal{B})$ (resp., into \mathcal{B}).

Proof. Put $\mathcal{E} \triangleq (\mathcal{B}/\mathbb{D}(\mathcal{B}))$ (resp., $\mathcal{E} \triangleq \mathcal{B}$). Then, by Lemma 2.19 with $\mathsf{M} = \{\mathcal{A}\}$, there are some set I, some I-tuple $\overline{\mathcal{C}}$ constituted by submatrices of \mathcal{A} , some subdirect product \mathcal{D} of $\overline{\mathcal{C}}$ and some $g \in \mathsf{hom}_{\mathsf{S}}^{\mathsf{S}}(\mathcal{D}, \mathcal{E})$, in which case, by (2.5), \mathcal{D} is \mathcal{E} -paraconsistent, and so there are some $a \in \mathcal{D}^{\mathcal{D}}$ such that $\sim^{\mathfrak{D}} a \in \mathcal{D}^{\mathcal{D}}$ and some $b \in (\mathcal{D} \setminus \mathcal{D}^{\mathcal{D}})$. Then, by Lemma 4.1, $\mathcal{D} \ni a = (I \times \{\mathsf{b}\})$. Consider the following complementary cases:

- (1) $\{b\}$ forms a subalgebra of \mathfrak{A} .
 - Then, \mathfrak{A} has a ternary b-relative conjunction $\varphi \in \operatorname{Fm}_{\Sigma}^{\Sigma}$. Put $c \triangleq \varphi^{\mathfrak{D}}(a,b,\wr^{\mathfrak{D}}b) \in D$, $d \triangleq \wr^{\mathfrak{D}}c \in D$, $J \triangleq \{i \in I \mid \pi_{i}(b) = t\}$ and $K \triangleq \{i \in I \mid \pi_{i}(b) = f\} \neq \emptyset$, for $b \notin D^{\mathcal{D}}$. Given any $\vec{a} \in A^{3}$, set $(a_{0}|a_{1}|a_{2}) \triangleq ((J \times \{a_{0}\}) \cup (K \times \{a_{1}\}) \cup ((I \setminus \{J \cup \{A_{0}\})) \cup (A_{0}) \cup (A_{0})$
 - (K) (a_2) (b|b) and (b|b) and (b|b). Consider the following complementary subcases:
 - (a) $\varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{t},\mathsf{f})=\mathsf{f}$
 - In that case, we have c = (f|f|b) and d = (t|t|b). Then, since $K \neq \emptyset$, while $\{b\}$ forms a subalgebra of \mathfrak{A} , $\{\langle e, (e|e|b) \rangle \mid e \in A\}$ is an embedding of \mathcal{A} into \mathcal{D} .
 - (b) $\varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{t},\mathsf{f}) \neq \mathsf{f}$, in which case we have $\varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{t},\mathsf{f}) = \mathsf{b}$, and so we get $c = (\mathsf{b}|\mathsf{f}|\mathsf{b})$ and $d = (\mathsf{b}|\mathsf{t}|\mathsf{b})$. Then, since $K \neq \emptyset$, while $\{\mathsf{b}\}$ forms a subalgebra of \mathfrak{A} , $\{\langle e, (\mathsf{b}|e|\mathsf{b})\rangle \mid e \in A\}$ is an embedding of \mathcal{A} into \mathcal{D} .
- (2) $\{b\}$ does not form a subalgebra of \mathfrak{A} .

Then, there is some $\varphi \in \operatorname{Fm}^1_{\Sigma}$ such that $\varphi^{\mathfrak{A}}(\mathsf{b}) \neq \mathsf{b}$, in which case $\{\mathsf{b}, \varphi^{\mathfrak{A}}(\mathsf{b}), \wr^{\mathfrak{A}}\varphi^{\mathfrak{A}}(\mathsf{b})\} = A$, and so $D \supseteq \{a, \varphi^{\mathfrak{D}}(a), \wr^{\mathfrak{D}}\varphi^{\mathfrak{D}}(a)\} = \{I \times \{e\} \mid e \in A\}$. Therefore, as $I \neq \emptyset$, for $b \notin D^{\mathcal{D}}$, $\{\langle e, I \times \{e\} \rangle \mid e \in A\}$ is an embedding of \mathcal{A} into \mathcal{D} .

Thus, anyway, there is a $f \in \text{hom}_{S}(\mathcal{A}, \mathcal{D})$, in which case $(g \circ f) \in \text{hom}_{S}(\mathcal{A}, \mathcal{E})$, and so Corollary 2.13, Lemma 3.4 and Remark 5.3 complete the argument.

Lemma 5.5. Suppose \mathfrak{A} has no ternary b-relative conjunction, while $\{b\}$ forms a subalgebra of \mathfrak{A} [whereas C is \sim -subclassical]. Then, C has a proper \geq -paraconsistent [\geq -subclassical] extension [in which case \geq is a subclassical negation for this].

Proof. In that case $\ell^{\mathfrak{A}} b = b$. Let \mathcal{B} be the submatrix of \mathcal{A}^2 generated by $D \triangleq \{\langle \mathsf{b}, \mathsf{b} \rangle, \langle \mathsf{f}, \mathsf{t} \rangle, \langle \mathsf{t}, \mathsf{f} \rangle\}$. If $\langle \mathsf{f}, \mathsf{f} \rangle$ was in B, then there would be some $\varphi \in \mathrm{Fm}_{\Sigma}^3$ such that $\varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{f},\mathsf{t}) = \mathsf{f} = \varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{t},\mathsf{f})$, in which case it would be a ternary b-relative conjunction for \mathfrak{A} . Likewise, if either $\langle \mathsf{b}, \mathsf{f} \rangle$ or $\langle \mathsf{f}, \mathsf{b} \rangle$ was in B, then there would be some $\varphi \in \mathrm{Fm}_{\Sigma}^3$ such that $\varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{f},\mathsf{t}) = \mathsf{f}$ and $\varphi^{\mathfrak{A}}(\mathsf{b},\mathsf{t},\mathsf{f}) = \mathsf{b}$, in which case it would be a ternary b-relative conjunction for \mathfrak{A} . Therefore, as $\ell^{\mathfrak{A}} \mathsf{t} = \mathsf{f}$ and $\ell^{\mathfrak{A}} \mathsf{b} = \mathsf{b}$, we conclude that $(\{\langle \mathsf{f}, \mathsf{b} \rangle, \langle \mathsf{b}, \mathsf{f} \rangle, \langle \mathsf{b}, \mathsf{f} \rangle, \langle \mathsf{f}, \mathsf{f} \rangle, \langle \mathsf{f}, \mathsf{f} \rangle, \langle \mathsf{f}, \mathsf{f} \rangle) = \emptyset$. Thus, B = D, in which case $D^{\mathcal{B}} = \{\langle \mathsf{b}, \mathsf{b} \rangle\} \neq B$, and so, as $\ell^{\mathfrak{A}} \mathsf{b} = \mathsf{b}$, \mathcal{B} is

Theorem 5.6. [Providing C is $\$ -subclassical] C has no proper $\$ -paraconsistent [$\$ -subclassical] extension iff either $\mathfrak A$ has a ternary b-relative conjunction or $\{b\}$ does not form a subalgebra of $\mathfrak A$.

Proof. Assume either \mathfrak{A} has a ternary b-relative conjunction or $\{b\}$ does not form a subalgebra of \mathfrak{A} . Consider any \mathcal{L} -paraconsistent extension C' of C, in which case $x_1 \notin T \triangleq C'(\{x_0, \lambda x_0\}) \supseteq \{x_0, \lambda x_0\}$, while, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a model of C' (in particular, of C), and so is its finitely-generated \mathcal{L} -paraconsistent submatrix $\mathcal{B} \triangleq \langle \mathfrak{Fm}_{\Sigma}^2, T \cap \mathrm{Fm}_{\Sigma}^2 \rangle$, in view of (2.5). Then, by Lemma 5.4, \mathcal{A} is embeddable into $\mathcal{B}/\partial(\mathcal{B})$, in which case, by (2.5), it is a model of C', and so C' = C. Thus, C is maximally \mathcal{L} -paraconsistent. In this way, Lemma 5.5 completes the argument.

On the other hand, Subsubsections 6.1.1 and 6.1.2 definitely show that the maximal paraconsistency is not at all a prerogative of merely three-valued logics. And what is more, as it is shown in the next subsection, there is no limit of the number of truth values, for which minimally many-valued maximally paraconsistent logics exist.

 $\textbf{Lemma 5.7.} \ \textit{Let \mathcal{A} and \mathcal{B} be two \wr-superclassical Σ-matrices and $e \in \hom_S(\mathcal{A},\mathcal{B})$. Then, e is diagonal. In particular, $\mathcal{A} = \mathcal{B}$.}$

Proof. In that case, $(A \upharpoonright \{l\}) = (B \upharpoonright \{l\})$ is l-superclassical and $e \in \text{hom}_S(A \upharpoonright \{l\}, B \upharpoonright \{l\})$. Therefore, by Lemma 3.7 and Remark 5.3, e is diagonal, and so A = B, for A = B, as required.

After all, the second "bird" is as follows:

Theorem 5.8. Let \mathcal{B} be a $\$ -superclassical Σ -matrix. Suppose \mathcal{B} is a model of C (in particular, C is defined by \mathcal{B}) and C is maximally $\$ -paraconsistent. Then, $\mathcal{B} = \mathcal{A}$.

Proof. Then, by Lemma 3.4 and Remark 5.3, \mathcal{B} is a simple finite (and so finitely-generated) \geq -paraconsistent model of C. Hence, by Lemma 5.4 and Theorem 5.6, \mathcal{A} is embeddable into \mathcal{B} . In this way, Lemma 5.7 completes the argument.

In view of Proposition 5.1 and Theorem 5.8, the unique \wr -superclassical Σ -matrix defining a given three-valued maximally \wr -paraconsistent Σ -logic C with subclassical negation \wr is said to be *characteristic for/of* C.

Corollary 5.9. Let $\Sigma' \supseteq \Sigma$ be a signature and C' a three-valued Σ' -expansion of C. Suppose C is maximally \wr -paraconsistent. Then, C' is defined by a unique Σ' -expansion of A and is maximally \wr -paraconsistent.

Proof. In that case, C' is $\$ -paraconsistent, while $\$ is a subclassical negation for C'. Hence, by Proposition 5.1, C' is defined by a $\$ -superclassical Σ' -matrix \mathcal{A}' , in which case C is defined by the $\$ -superclassical Σ -matrix \mathcal{A}' | Σ , and so $(\mathcal{A}'$ | Σ) = \mathcal{A} , in view of Theorem 5.8. Finally, Theorems 5.6 and 5.8 complete the argument.

Finally, we have the following negative instance:

Example 5.10. Suppose $\Sigma = \{l\}$ and $l^{\mathfrak{A}} b = b$, in which case $\{b\}$ forms a subalgebra of \mathfrak{A} . Then, it is routine checking that no element of $\operatorname{Fm}_{\Sigma}^3 = \{l^n x_i \mid n \in \omega, i \in 3\}$ is a ternary b-relative conjunction for \mathfrak{A} , in which case, by Theorem 5.6, C is not maximally l-paraconsistent.

5.1.2. Weakly conjunctive three-valued paraconsistent logics with subclassical negation. Fix (in addition to ℓ) any (possibly, secondary) binary connective \diamond of Σ .

Remark 5.11. Suppose either \mathcal{A} is weakly \diamond -conjunctive or both $\{0,2\}$ forms a subalgebra of \mathfrak{A} and $\mathcal{A} \upharpoonright \{0,2\}$ is weakly \diamond -conjunctive. Then, $(x_1 \diamond x_2)$ is a ternary b-relative conjunction for \mathfrak{A} .

By Proposition 5.1, Theorems 5.6, 5.8 and Remark 5.11, we immediately get:

Corollary 5.12. Any three-valued \properties -paraconsistent weakly \properties -conjunctive Σ -logic C with subclassical negation \properties is maximally \properties -paraconsistent.

Corollary 5.13. Let \mathcal{B} be a \wr -superclassical Σ -matrix. Suppose \mathcal{B} is a model of C (in particular, C is defined by \mathcal{B}) and C is weakly \diamond -conjunctive. Then, $\mathcal{B} = \mathcal{A}$.

Since the three-valued submatrix arising in the formulation of the following corollary is both ∧-conjunctive and ∼-superclassical, Proposition 5.1 and Corollary 5.12 yield a supplementary generic insight into the following particular case of Corollary 4.27.

Corollary 5.14. Let \mathcal{A} be as in Section 4. Suppose $\{f,b,t\}$ forms a subalgebra of \mathfrak{A} . Then, the logic of $\mathcal{A}_{n'}$ is maximally \sim -paraconsistent.

5.1.2.1. Subclassical three-valued paraconsistent weakly conjunctive logics.

Lemma 5.15. Let \mathcal{B} a (simple) finitely generated consistent model of C. Suppose \mathcal{A} is weakly \diamond -conjunctive. Then, the following hold:

- (i) \mathcal{B} is \wr -paraconsistent, if $\{f,t\}$ does not form a subalgebra of \mathfrak{A} ;

Proof. Put $\mathcal{E} \triangleq (\mathcal{B}/\mathcal{O}(\mathcal{B}))$ (resp., $\mathcal{E} \triangleq \mathcal{B}$). Then, by Lemma 2.19 with $M = \{\mathcal{A}\}$, there are some $n \in \omega$, some n-tuple $\overline{\mathcal{C}}$ constituted by consistent submatrices of \mathcal{A} , some subdirect product \mathcal{D} of $\overline{\mathcal{C}}$ and some $g \in \text{hom}_{S}^{S}(\mathcal{D}, \mathcal{E})$, in which case, by (2.5), \mathcal{D} is consistent, and so, in particular, $n \neq 0$. Hence, by Lemma 3.8, $D \ni a \triangleq (n \times \{f\})$, in which case $D \ni b \triangleq \sim^{\mathfrak{D}} a = (n \times \{t\})$. Consider the following respective cases:

- (i) $\{f,t\}$ does not form a subalgebra of \mathfrak{A} . Then, there is some $\varphi \in \operatorname{Fm}^2_{\Sigma}$ such that $\varphi^{\mathfrak{A}}(f,t) = b$. Then, $D \ni c \triangleq \varphi^{\mathfrak{D}}(a,b) = (I \times \{b\})$, in which case $\ell^{\mathfrak{D}}c \in D^{\mathcal{D}}$, and so \mathcal{D} , being consistent, is ℓ -paraconsistent, and so is \mathcal{B} , in view of (2.5), as required.
- (ii) $\{f,t\}$ forms a subalgebra of \mathfrak{A} . Then, $\mathcal{F} \triangleq (\mathcal{A} \upharpoonright \{f,t\})$ is \mathcal{E} -classical, in which case it is simple, in view of Example 3.2 and Lemma 3.4. Finally, as $\{n \times \{d\} \mid d \in F\} \subseteq D \text{ and } n \neq 0, e \triangleq \{\langle d, n \times \{d\} \rangle \mid d \in F\} \text{ is an embedding of } \mathcal{F} \text{ into } \mathcal{D}, \text{ in which case, } (g \circ e) \in \text{hom}_{\mathbb{S}}(\mathcal{F}, \mathcal{E}), \text{ and so Corollary 2.13 completes the argument.}$

Theorem 5.16. Suppose A is weakly \diamond -conjunctive. Then, C is \wr -subclassical iff $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case any \wr -classical model of C is isomorphic to $A \upharpoonright \{f,t\}$, and so its logic is the only \wr -classical extension of C.

Proof. Let \mathcal{B} be a \wr -classical model of C, in which case it is two-valued, and so finite (in particular, finitely generated), consistent and simple (cf. Example 3.2 and Lemma 3.4), but not \sim -paraconsistent.

First, by Lemma 5.15(i), $\{f, t\}$ forms a subalgebra of \mathfrak{A} .

Conversely, assume $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case $\mathcal{D} \triangleq (\mathcal{A} \upharpoonright \{f,t\})$ is a \wr -classical model of C, by (2.5), and is embeddable into \mathcal{B} , by Lemma 5.15(ii), and so is isomorphic to it, for they are both two-valued. In this way, (2.5) completes the argument.

In view of Theorem 5.16, the unique $\colon C$ -classical extension of C (if any) is referred to as *characteristic for/of* C and is denoted by C^{PC} , the maximality nature of which is as follows:

Theorem 5.17. Let C' be a consistent extension of C. Suppose $\{f,t\}$ forms a subalgebra of \mathfrak{A} . Then, $\mathcal{A} \upharpoonright \{f,t\}$ is a model of C'.

Proof. Then, $x_0 \notin C'(\varnothing)$, while, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, C'(\varnothing) \rangle$ is a model of C' (in particular, of C), and so is its consistent finitely generated submatrix $\langle \mathfrak{Fm}_{\Sigma}^1, \operatorname{Fm}_{\Sigma}^1 \cap C'(\varnothing) \rangle$, in view of (2.5). In this way, (2.5) and Lemma 5.15(ii) complete the argument.

5.1.3. Disjunctive three-valued paraconsistent logics with subclassical negation. Fix (in addition to \wr) a (possibly, secondary) binary connective \veebar of Σ . Then, by Corollary 3.15, we first have:

Corollary 5.19. Any \wr -classical extension of C is [weakly] \veebar -disjunctive, whenever C is so.

Theorem 5.20. Let \mathcal{B} be a \wr -superclassical Σ -matrix. Suppose \mathcal{B} is a model of C (in particular, C is defined by \mathcal{B}) and C is \veebar -disjunctive. Then, $\mathcal{B} = \mathcal{A}$.

Proof. In that case, by Corollary 3.15, Lemma 3.4 and Remark 5.3, \mathcal{B} is a \veebar -disjunctive simple \wr -paraconsistent finite (in particular, finitely-generated) model of C. Hence, by Lemma 2.19 with $\mathsf{M} = \{\mathcal{A}\}$, there are some finite set I, some I-tuple $\overline{\mathcal{C}}$ of consistent submatrices of \mathcal{A} , some subdirect product \mathcal{D} of $\overline{\mathcal{C}}$ and some $g \in \hom_S^S(\mathcal{D}, \mathcal{B})$. Then, by Remark 3.12 and (2.5), \mathcal{D} is \veebar -disjunctive and \wr -paraconsistent, in which case it is consistent, and so, by Corollary 3.13, there is some $i \in I$ such that $h \triangleq (\pi_i \upharpoonright D) \in \hom_S^S(\mathcal{D}, \mathcal{C}_i)$. Moreover, as \mathcal{C}_i is consistent, we have $\mathsf{f} \in C_i$, and so $\mathsf{t} = \wr^{\mathfrak{A}} \mathsf{f} \in C_i$. And what is more, since \mathcal{D} is \wr -paraconsistent, there is some $a \in \mathcal{D}^{\mathcal{D}}$ such that $\wr^{\mathfrak{D}} a \in \mathcal{D}^{\mathcal{D}}$, in which case, by Lemma 4.1, $C_i \ni \pi_i(a) = \mathsf{b}$, and so $\mathcal{C}_i = \mathcal{A}$. On the other hand, by Lemma 3.4 and Remark 5.3, \mathcal{A} is simple. Therefore, by Proposition 2.15, we have $(\ker h) = \mathcal{O}(\mathcal{D}) = (\ker g)$. In this way, by Proposition 2.14, we eventually conclude that $g \circ h^{-1}$ is an isomorphism from \mathcal{A} onto \mathcal{B} , in which case Lemma 5.7 completes the argument.

5.1.3.1. Subclassical three-valued paraconsistent disjunctive logics. Note that $S_*(A) \setminus \{A\}$ is either the singleton $\{A \mid \{f, t\}\}\}$, if $\{f, t\}$ forms a subalgebra of \mathfrak{A} , or empty, otherwise. In this way, the fact that \mathcal{E} -[super]classical matrices are not [resp., are] \mathcal{E} -paraconsistent, by Corollary 5.18, Lemma 4.30 and Theorem 3.21, we then get:

Theorem 5.21. Suppose C is \succeq -disjunctive and $\{f,t\}$ does not form [resp., forms] a subalgebra of \mathfrak{A} . Then, there is no [resp., a unique] proper consistent \succeq -disjunctive extension of C [in which case it is defined by $A \upharpoonright \{f,t\}$ and relatively axiomatized by (4.11)].

Recall that (4.11) is nothing but the *Resolution* rule. Since any \wr -classical Σ -logic is consistent but not \wr -paraconsistent, as opposed to C, by (2.5), Corollary 5.19 and Theorem 5.21, we eventually get the following "disjunctive" analogue of Theorem 5.16:

Corollary 5.22. [Providing C is \vee -disjunctive] C is \vee -subclassical if[f] $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case the logic of $A \upharpoonright \{f,t\}$ is a [unique] \vee -classical extension of C.

Remark 5.23. Suppose $\{f,t\}$ forms a subalgebra of $\mathfrak A$ and $\mathcal A \upharpoonright \{f,t\}$ is weakly \veebar -disjunctive. Then, $\ell(\ell x_1 \veebar \ell x_2)$ is clearly a ternary b-relative conjunction for $\mathfrak A$.

Combining Corollaries 5.18, 5.22, Remarks 3.12, 5.23, Propositions 3.23, 5.1 and Theorem 5.6, we eventually get:

Theorem 5.24. Any either \veebar -disjunctive or having DDT \wr -subclassical three-valued \wr -paraconsistent Σ -logic is maximally \wr -paraconsistent.

5.1.4. Three-valued paraconsistent logics with subclassical negation and lattice conjunction and disjunction. Fix (in addition to \wr) binary (possibly, secondary) connectives $\overline{\land}$ and $\underline{\lor}$ of Σ and a \wr -superclassical Σ -matrix \mathcal{A} . Let C be the logic of \mathcal{A} .

A Σ -algebra \mathfrak{B} is said to be a $(\overline{\wedge}, \underline{\vee})$ -lattice, provided $(\mathfrak{B}, \overline{\wedge}^{\mathfrak{B}}, \underline{\vee}^{\mathfrak{B}})$ is a lattice (in the standard algebraic sense; cf. [3]), whose partial ordering is denoted by $\leq^{\mathfrak{B}}$.

Here, it is supposed that \mathfrak{A} is a $(\bar{\wedge}, \underline{\vee})$ -lattice, in which case $\langle A, \leq^{\mathfrak{A}} \rangle$ is a chain poset for |A| = 3, while \mathcal{A} is $\bar{\wedge}$ -conjunctive, in which case f is the least element of the poset involved, and so \mathcal{A} is $\underline{\vee}$ -disjunctive. Now, we explore the least non- ℓ -paraconsistent extension C^{NP} of C, viz., that which is relatively axiomatized by the Ex

Now, we explore the least non- ℓ -paraconsistent extension C^{NP} of C, viz., that which is relatively axiomatized by the Ex Contradictione Quadlibet rule:

$$(5.1) \{x_0, \lambda x_0\} \vdash x_1.$$

Lemma 5.25. Let I be a finite set and \mathcal{B} a consistent non- ℓ -paraconsistent submatrix of \mathcal{A}^I . Suppose $\ell^{\mathfrak{A}} \mathsf{b} \leq^{\mathfrak{A}} \mathsf{b}$. Then, $\{\mathsf{f},\mathsf{t}\}$ forms a subalgebra of \mathfrak{A} and $\mathsf{hom}(\mathcal{B},\mathcal{A} \upharpoonright \{\mathsf{f},\mathsf{t}\}) \neq \emptyset$.

Proof. In general, $b(\leq / \geq)^{\mathfrak{A}}t$. Moreover, \mathfrak{B} is a $(\bar{\wedge}, \vee)$ -lattice, for \mathfrak{A} is so. On the other hand, since \mathcal{A} is \vee -disjunctive, the Σ -axiom $x_0 \vee \wr x_0$ is true in it, and so in \mathcal{B} . In particular, $D^{\mathcal{B}} \neq \varnothing$, for $B \neq \varnothing$. After all, $B \subseteq A^I$ is finite, for both A and I are so, and so is $D^{\mathcal{B}} \subseteq B$. Therefore, this has a least/greatest element a with respect to $\leq^{\mathfrak{B}}$, because \mathcal{B} is $\bar{\wedge}$ -conjunctive, for \mathcal{A} is so. Then, as \mathcal{B} is not \wr -paraconsistent but is consistent, $\wr^{\mathfrak{B}}a \notin D^{\mathcal{B}}$. Hence, there is some $i \in I$, in which case $h \triangleq (\pi_i \upharpoonright B) \in \text{hom}(\mathcal{B}, \mathcal{A})$, and so $D \triangleq (\text{img } h)$ forms a subalgebra of \mathfrak{A} , while $h \in \text{hom}(\mathcal{B}, \mathcal{A} \upharpoonright D)$, such that $\wr^{\mathfrak{A}}h(a) = h(\wr^{\mathfrak{B}}a) \notin D^{\mathcal{A}}$, in which case $\wr^{\mathfrak{A}}h(a) = f$, and so h(a) = f. Let us prove, by contradiction, that $f \notin D$. For suppose $f \notin D$, in which case there is some $f \in D$ such that $f \in D$ in which case $f \in D$, in which case $f \in D$ in which case $f \in D$, in which case $f \in D$ in which case $f \in D$.

Theorem 5.26. Suppose $\ell^{\mathfrak{A}} \mathsf{b} \leq^{\mathfrak{A}} \mathsf{b}$. Then, C^{NP} is consistent iff C is \sim -subclassical, in which case $\{\mathsf{f},\mathsf{t}\}$ forms a subalgebra of \mathfrak{A} and C^{NP} is defined by $\mathcal{A} \times (\mathcal{A} \upharpoonright \{\mathsf{f},\mathsf{t}\})$.

Proof. First, assume $C^{\rm NP}$ is consistent, in which case $x_0 \notin T \triangleq C^{\rm NP}(\varnothing)$, while, by the structurality of $C^{\rm NP}$, $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a model of $C^{\rm NP}$ (in particular, of C), and so is its consistent finitely-generated submatrix $\mathcal{B} \triangleq \langle \mathfrak{Fm}_{\Sigma}^1, T \cap \mathrm{Fm}_{\Sigma}^1 \rangle$, in view of (2.5). Hence, by Lemma 2.19, there are some finite set I, some $\overline{C} \in \mathbf{S}_*(\mathcal{A})^I$, some subdirect product \mathcal{D} of it, in which case this is a submatrix of \mathcal{A}^I , and some $h \in \mathrm{hom}_{\mathbb{S}}^{\mathrm{S}}(\mathcal{D}, \mathcal{B}/\mathcal{D}(\mathcal{B}))$, in which case, by (2.5), \mathcal{D} is a consistent model of C^{NP} , so it is not \sim -paraconsistent. Thus, by Lemma 5.25 and Theorem 5.16, C is \sim -subclassical.

Conversely, assume C is \sim -subclassical.

Then, any \sim -classical extension of C is both consistent and non- \sim -paraconsistent extension of C, and so a consistent extension of C^{NP} , in which case this is consistent too.

Moreover, by Theorem 5.16, $\{f,t\}$ forms a subalgebra of \mathfrak{A} , in which case we have the Σ -matrix $\mathcal{B} \triangleq (\mathcal{A} \times (\mathcal{A} \upharpoonright \{f,t\}))$. Consider any finite set I, any $\overline{\mathcal{C}} \in \mathbf{S}_*(\mathcal{A})^I$ and any subdirect product $\mathcal{D} \in \mathrm{Mod}(C^{\mathrm{NP}})$ of $\overline{\mathcal{C}}$, in which case \mathcal{D} is a non- \sim -paraconsistent submatrix of \mathcal{A}^I . Put $J \triangleq \mathrm{hom}(\mathcal{D}, \mathcal{B})$. Consider any $a \in (D \setminus D^{\mathcal{D}})$, in which case \mathcal{D} is consistent, and so, by Lemma 5.25, there is some $g \in \mathrm{hom}(\mathcal{D}, \mathcal{A} \upharpoonright \{f,t\}) \neq \emptyset$. Moreover, there is some $i \in I$, in which case $f \triangleq (\pi_i \upharpoonright D) \in \mathrm{hom}(\mathcal{D}, \mathcal{A})$, such that $f(a) \notin \mathcal{D}^{\mathcal{A}}$. Then, $h \triangleq (f \times g) \in J$ and $h(a) \notin \mathcal{D}^{\mathcal{B}}$. In this way, $(\prod \Delta_J) \in \mathrm{hom}_{\mathbf{S}}(\mathcal{D}, \mathcal{B}^J)$. Thus, by (2.5) and Theorem 2.20, C^{NP} is finitely-defined by the six-valued \mathcal{B} , and so, being finitary, for the three-valued C is so, is defined by \mathcal{B} , as required.

5.2. Minimally *n*-valued maximally paraconsistent subclassical logics versus the logic of paradox. Fix any $n \in (\omega \setminus 3)$. Put $\mathcal{K}_n \triangleq \langle \mathfrak{K}_n, n \setminus 1 \rangle$.

Then, the logic of paradox LP [14], being defined by the \land -conjunctive \sim -superclassical Σ_0 -matrix $\mathcal{DM}_{4,p}$, is equally defined by \mathcal{K}_3 (cf., e.g., [17]), in view of (2.5), for $e_{3,1}$ is an isomorphism from the latter onto the former, in which case, by Proposition 5.1 and Corollary 5.12, LP is maximally \sim -paraconsistent that has been proved ad hoc in Theorem 2.1 of [17].

Let $\Sigma_{[+]} \triangleq ([\Sigma^+ \cup] \{ \supset, \sim \} \cup \{ \nabla_i \mid i \in ((n-1) \setminus 1) \})$, where \supset is binary, while other connectives [beyond Σ^+] are unary, $\mathcal{A}_{[+]}$ the $\Sigma_{[+]}$ -matrix such that $A_{[+]} \triangleq n$, $D^{\mathcal{A}_{[+]}} \triangleq (n \setminus 1)$, $\sim^{\mathfrak{A}_{[+]}} \triangleq \sim^{\mathfrak{K}_n}$ [while $(\mathfrak{A}_{[+]} \mid \Sigma^+) \triangleq \mathfrak{D}_n$], whereas

$$\nabla_i^{\mathfrak{A}_{[+]}}(a) \triangleq \begin{cases} a & \text{if } a \in \{0, n-1\}, \\ i & \text{otherwise,} \end{cases}$$

for all $i \in ((n-1) \setminus 1)$ and all $a \in n$, and

$$(a \supset^{\mathfrak{A}_{[+]}} b) \triangleq \begin{cases} n-1 & \text{if } a \leqslant b, \\ 0 & \text{otherwise,} \end{cases}$$

for all $a, b \in n$, and $C_{[+]}$ the logic of $\mathcal{A}_{[+]}$, in which case it is \sim -paraconsistent [and both \wedge -conjunctive and \vee -disjunctive], for $\mathcal{A}_{[+]}$ is so [in view of Corollary 3.14]. Note that $\mathcal{A}_{[+]} \upharpoonright \{0, n-1\}$ is \sim -classical, in which case, by (2.5), $C_{[+]}$ is \sim -subclassical, so, in particular, \sim is a subclassical negation for $C_{[+]}$.

The following key result "kills two birds (both minimal n-valuedness and maximal paraconsistency of $C_{[+]}$) with one stone":

Lemma 5.27 (Many-Valued Key Lemma). Let \mathcal{B} be a \sim -paraconsistent model of $C_{[+]}$. Then, there is a submatrix \mathcal{D} of \mathcal{B} such that $\mathcal{A}_{[+]}$ is embeddable into $\mathcal{D}/\partial(\mathcal{D})$.

Proof. In that case, there are some $a \in D^{\mathcal{B}}$ such that $\sim^{\mathfrak{B}} a \in D^{\mathcal{B}}$ and some $b \in (B \setminus D^{\mathcal{B}})$. Let \mathfrak{D} be the subalgebra of \mathfrak{B} generated by $\{a,b\}$. Then, in view of (2.5), the submatrix $\mathcal{D} \triangleq (\mathcal{B} \upharpoonright D)$ of \mathcal{B} is a finitely-generated \sim -paraconsistent model of $C_{[+]}$. Therefore, by Lemma 2.19 with $M = \{\mathcal{A}_{[+]}\}$, there are some set I, some I-tuple $\overline{\mathcal{C}}$ constituted by submatrices of $\mathcal{A}_{[+]}$,

some subdirect product \mathcal{E} of $\overline{\mathcal{C}}$ and some $g \in \text{hom}_{\mathbb{S}}^{\mathbb{S}}(\mathcal{E}, \mathcal{D}/\partial(\mathcal{D}))$, in which case, by (2.5), \mathcal{E} is \sim -paraconsistent (in particular, consistent), and so $I \neq \emptyset$. Take any $c \in D^{\mathcal{E}}$ such that $\sim^{\mathfrak{C}} c \in D^{\mathcal{E}}$. Then, by Lemma 4.1, $c \in ((n-1) \setminus 1)^I$. Hence, for every $j \in ((n-1) \setminus 1)$, we have $E \ni \nabla_j^{\mathfrak{E}} c = (I \times \{j\})$. Moreover, $E \ni (c \supset^{\mathfrak{E}} c) = (I \times \{n-1\})$ and $E \ni \sim^{\mathfrak{E}} (c \supset^{\mathfrak{E}} c) = (I \times \{0\})$. Thus, $\{I \times \{k\} \mid k \in n\} \subseteq E$, in which case, as $I \neq \emptyset$, $e \triangleq \{\langle k, I \times \{k\} \rangle \mid k \in n\}$ is an embedding of $\mathcal{A}_{[+]}$ into \mathcal{E} , and so $(g \circ e) \in \text{hom}_{\mathbb{S}}(\mathcal{A}_{[+]}, \mathcal{D}/\partial(\mathcal{D}))$. Moreover, $\{x_0 \supset x_1, x_1 \supset x_0\}$ is clearly a binary equality determinant for $\mathcal{A}_{[+]}$. In this way, Corollary 2.13 and Lemma 3.4 complete the argument.

Theorem 5.28. $C_{[+]}$ is maximally \sim -paraconsistent.

Proof. Consider any \sim -paraconsistent extension C' of $C_{[+]}$, in which case $x_1 \notin T \triangleq C'(\{x_0, \sim x_0\})$, and so, by the structurality of C', $\langle \mathfrak{Fm}_{\Sigma}^{\omega}, T \rangle$ is a \sim -paraconsistent model of C', and so of $C_{[+]}$. Then, by Lemma 5.27 and (2.5), $\mathcal{A}_{[+]}$ is a model of C', as required.

Theorem 5.29. Let M be a class of $\Sigma_{[+]}$ -matrices. Suppose $C_{[+]}$ is defined by M. Then, there is some $\mathcal{B} \in M$ such that $n \leq |B|$. In particular, $C_{[+]}$ is minimally n-valued.

Proof. As $C_{[+]}$ is \sim -paraconsistent, there must be some \sim -paraconsistent $\mathcal{B} \in M$, in which case it is a model of $C_{[+]}$, and so, by Lemma 5.27, there is some submatrix \mathcal{D} of \mathcal{B} such that $\mathcal{A}_{[+]}$ is embeddable into $\mathcal{D}/\partial(\mathcal{D})$. Thus, $n = |A_{[+]}| \leq |D/\partial(\mathcal{D})| \leq |D| \leq |B|$, as required.

On the other hand, we have:

Proposition 5.30. Let $\Sigma'_{[+]} \triangleq (\Sigma_{[+]} \setminus \{\supset\})$. Then, the $\Sigma'_{[+]}$ -fragment of $C_{[+]}$ is defined by a [both \land -conjunctive and \lor -disjunctive] \sim -superclassical $\Sigma'_{[+]}$ -matrix [being a definitional expansion of $\mathfrak{DM}_{4,p'}$, and so the fragment is a definitional expansion of LP]. In particular, it is not minimally n-valued, unless n=3.

Proof. Let $S_{[+]}$ be the [both ∧-conjunctive and ∨-disjunctive] ~-superclassical $\Sigma'_{[+]}$ -matrix given by $\sim^{\mathfrak{S}_{[+]}} \mathbf{b} \triangleq \mathbf{b}$ [while $(\mathfrak{S}_{[+]} \upharpoonright \Sigma^+) \triangleq (\mathfrak{D}_2^2 \upharpoonright \{\mathbf{f}, \mathbf{b}, \mathbf{t}\})$], whereas $\nabla_i^{\mathfrak{S}_{[+]}}(a) \triangleq a$, for all $a \in \{\mathbf{f}, \mathbf{b}, \mathbf{t}\}$ and all $i \in ((n-1)\backslash 1)$ [in which case S_+ is an expansion of $\mathfrak{D}\mathfrak{M}_{4,\mathbf{p}'}$ by diagonal operations, and so a definitional one]. Then, $(\{\langle n-1,\mathbf{t}\rangle,\langle 0,\mathbf{f}\rangle\}\cup(((n-1)\backslash 1)\times \{\mathbf{b}\}))\in \hom_S^S(\mathcal{A}_{[+]}\upharpoonright \Sigma'_{[+]},\mathcal{S}_{[+]})$. In this way, (2.5) completes the argument.

This highlights the special role of involving the implication connective \supset and shows that the implication-less fragment of $C_{[+]}$ yields nothing else that the logic of paradox had done in this connection. More precisely, LP, being defined by \mathcal{K}_3 , is equally defined by \mathcal{K}_n , in view of (2.5), for $\hbar_n \in \text{hom}_S^S(\mathcal{K}_n, \mathcal{K}_3)$, in which case, in particular, since \mathcal{A}_+ is an expansion of \mathcal{K}_n (actually arisen by proper expanding \mathcal{K}_n with providing both minimal n-valuedness and maximal \sim -paraconsistency of C_+), C_+ is an expansion of LP, C being its fragment. Thus, LP is an n-valued maximally \sim -paraconsistent logic but is not minimally n-valued, unless n=3, as opposed to $C_{[+]}$. This highlights the particular meaning of the present subsection.

6. Applications and Examples

- 6.1. Four-valued expansions of Belnap's logic. Here, we consider applications of Theorems 4.13, 4.16, 4.20, 4.23, 4.29, $4.68(i) \Leftrightarrow (x)$, 4.79, Lemmas 4.14, 4.15 and Corollaries 4.69 and 4.70 normally not mentioning them explicitly and implicitly following the conventions adopted in Section 4.
- 6.1.1. Fragments of the classical expansion. Here, we deal with the basic signature $\Sigma \triangleq (\Sigma_{01} \cup \{\neg\})$, where \neg (classical negation) is unary, and its subsignature $\Sigma' \supseteq \Sigma_0$. Put $\neg^{\mathfrak{A}} \vec{a} \triangleq \langle 1 a_i \rangle_{i \in \mathbb{Z}}$, for all $\vec{a} \in 2^2$. Then, $\mu \in \text{hom}(\mathfrak{A}, \mathfrak{A})$. Moreover, $\{f, b, t\}$ forms a subalgebra of $\mathfrak{A} \upharpoonright \Sigma'$ iff $\neg \not\in \Sigma'$. Likewise, $\{n\}$ forms a subalgebra of $\mathfrak{A} \upharpoonright \Sigma'$ iff $\Sigma' = \Sigma_0$. In this way, we have:

Corollary 6.1. Let $\Sigma_0 \subseteq \Sigma' \subseteq \Sigma$. Then, the logic of $\mathcal{A} \upharpoonright \Sigma'$:

- (i) is self-extensional, and so \sim -subclassical;
- (ii) is maximally \sim -paraconsistent iff $\neg \in \Sigma'$;
- (iii) is purely inferential iff it has no consistent formula iff it satisfies Relevance Principle iff $\Sigma' = \Sigma_0$.

In this way, the classical expansion of $C_{\rm B}$ becomes a first instance of a minimally four-valued maximally paraconsistent subclassical logic (further but non-subclassical ones are provided by the next subsubsection). In this connection, we should like to highlight that, as opposed to the generic examples provided by Subsection 5.2, the four-valued ones provided by this and the next subsubsections are not definable by false-singular matrices (cf. Corollary 4.6).

6.1.1.1. Specular functional completeness. As usual, *Boolean algebras* are supposed to be of the signature $\Sigma^- \triangleq (\Sigma \setminus \{\sim\})$, the ordinary one over 2 being denoted by \mathfrak{B}_2 .

Lemma 6.2. Let $n \in \omega$ and $f: 2^n \to 2$. [Suppose f is \leqslant -monotonic.] (Suppose f is 2-idempotent, in which case n > 0.) Then, there is some $\vartheta \in \operatorname{Fm}_{\Sigma^-[\setminus \{\neg\}](\setminus \{\bot, \top\})}^n$ such that $g = \vartheta^{\mathfrak{B}_2}$.

Proof. Then, by the functional completeness of \mathfrak{B}_2 , there is some $\vartheta \in \operatorname{Fm}_{\Sigma^-}^n$ such that $g = \vartheta^{\mathfrak{B}_2}(\not\in \{2^n \times \{i\} \mid i \in 2\})$, in which case, without loss of generality, one can assume that $\vartheta = (\land \langle \vec{\varphi}, \top \rangle)$, where, for each $m \in \ell \triangleq (\operatorname{dom} \vec{\varphi}) \in (\omega(\backslash 1))$, $\varphi_m = (\lor \langle (\neg \circ \vec{\phi}^m) * \vec{\psi}^m, \bot \rangle)$, for some $\vec{\phi}^m \in V_n^{k_m}$, some $\vec{\psi}^m \in V_n^{l_m}$ and some $k_m, l_m \in \omega$ such that $((\operatorname{img} \vec{\phi}^m) \cap (\operatorname{img} \vec{\psi}^m)) = \varnothing$ (and $(k_m + l_m) > 0$, so $g = \vartheta'^{\mathfrak{B}_2}$, where $\vartheta' \triangleq (\land \vec{\varphi}')$, whereas, for each $m \in (\operatorname{dom} \vec{\varphi}') \triangleq \ell$, $\varphi'_m \triangleq (\lor ((\neg \circ \vec{\phi}^m) * \vec{\psi}^m)))$. [Respectively, set $\vartheta'' \triangleq (\land \langle \vec{\varphi}'', \top \rangle)$, where, for each $m \in (\operatorname{dom} \vec{\varphi}'') \triangleq \ell$, $\varphi''_m \triangleq (\lor \langle \vec{\psi}^m, \bot \rangle)$. Consider any $\bar{a} \in A^n$ and the following exhaustive cases:

- (1) $g(\bar{a}) = 0$, in which case we have $\vartheta''^{\mathfrak{B}_2}[x_i/a_i]_{i \in n} \leq \vartheta^{\mathfrak{B}_2}[x_i/a_i]_{i \in n} = 0$, and so we get $\vartheta''^{\mathfrak{B}_2}[x_i/a_i]_{i \in n} = 0$.
- (2) $g(\bar{a}) = 1$, in which case, for every $m \in \ell$, as $\bar{a} \leqslant \bar{b} \triangleq ((\bar{a} \upharpoonright (n \setminus N)) \cup (N \times \{1\})) \in A^n$, where $N \triangleq \{j \in n \mid x_j \in (\operatorname{img} \vec{\phi}^m)\}$, by the \leqslant -monotonicity of g, we have $1 \leqslant g(\bar{b}) \leqslant \varphi_m^{\mathfrak{B}_2}[x_j/b_j]_{j \in n} = \varphi_m''^{\mathfrak{B}_2}[x_j/a_j]_{j \in n}$, and so we get $\vartheta''^{\mathfrak{B}_2}[x_j/a_j]_{j \in n} = 1$.

Thus, $g = \vartheta''^{\mathfrak{B}_2}$. (And what is more, since, in that case, $\ell > 0$ and $l_m > 0$, for each $m \in \ell$, we also have $g = \vartheta'''^{\mathfrak{B}_2}$, where $\vartheta''' \triangleq (\wedge \vec{\varphi}''')$, whereas, for each $m \in (\operatorname{dom} \vec{\varphi}''') \triangleq \ell$, $\varphi'''_m \triangleq (\vee \vec{\psi}^m)$.)] This completes the argument.

Theorem 6.3. Let $n \in (\omega(\backslash 1))$ and $f: A^n \to A$. Then, f is specular [and regular] (as well as $\{n, b\}$ -idempotent) iff there is some $\tau \in \operatorname{Fm}^n_{\Sigma[\backslash \{\neg\}](\backslash \{\bot, \top\})}$ such that $f = \tau^{\mathfrak{A}}$.

Proof. The "if" part is immediate. Conversely, assume f is specular [and regular] (as well as $\{\mathsf{n},\mathsf{b}\}$ -idempotent). Then, $g:2^{2\cdot n}\to 2, \bar{a}\mapsto \pi_0(f(\langle\langle a_{2\cdot j},1-a_{(2\cdot j)+1}\rangle\rangle_{j\in n}))$ [is \leqslant -monotonic (and)] (is 2-idempotent). Therefore, by Lemma 6.2, there is some $\vartheta\in\mathrm{Fm}_{\Sigma^-[\backslash\{\neg\}](\backslash\{\bot,\top\})}^{2\cdot n}$ such that $g=\vartheta^{\mathfrak{B}_2}$. Put $\tau\triangleq(\vartheta[x_{2\cdot j}/x_j,x_{(2\cdot j)+1}/(\sim x_j)]_{j\in n})\in\mathrm{Fm}_{\Sigma[\backslash\{\neg\}](\backslash\{\bot,\top\})}^n$. Consider any $\bar{c}\in A^n$. Then, since, for each $i\in 2$, we have $\pi_i\in\mathrm{hom}(\mathfrak{A}\upharpoonright\Sigma^-,\mathfrak{B}_2)$, we get $\pi_0(\tau^{\mathfrak{A}}[x_j/c_j]_{j\in n})=\vartheta^{\mathfrak{B}_2}[x_{2\cdot j}/\pi_0(c_j),x_{(2\cdot j)+1}/(1-\pi_0(c_j))]_{j\in n}=\pi_0(f(\bar{c}))$ and, likewise, as f is specular, $\pi_1(\tau^{\mathfrak{A}}[x_j/c_j]_{j\in n})=\vartheta^{\mathfrak{B}_2}[x_{2\cdot j}/\pi_1(c_j),x_{(2\cdot j)+1}/(1-\pi_0(c_j))]_{j\in n}=\pi_0(f(\mu\circ))=\pi_0(\mu(f(\bar{c})))=\pi_1(f(\bar{c}))$, as required.

As an immediate consequence of Theorems $4.68(i) \Leftrightarrow (x)$, 6.3 and Corollary 4.70(i), we eventually get:

Corollary 6.4. A four-valued expansion of C_B is self-extensional iff it is a fragment of a definitional copy of C. Moreover, [non-]purely-inferential regular self-extensional expansions of C_B are exactly definitional copies of $C_{[B]B}$.

This definitely justifies both C_{BB} and its classical expansion C. And what is more, it essentially shows that $C_{[B]B}$ actually exhaust all regular self-extensional expansions of C_{B} .

6.1.2. Bilattice expansions. Here, it is supposed that $\{\sqcap, \sqcup\} \subseteq \Sigma$, where \sqcap and \sqcup are binary (knowledge conjunction and disjunction, respectively), while $(\langle a,b\rangle\sqcap^{\mathfrak{A}}\langle c,d\rangle) = \langle \min(a,c),\max(b,d)\rangle$, for all $a,b,c,d\in 2$, in which case $(\mathsf{f}\sqcap^{\mathfrak{A}}\mathsf{t}) = \mathsf{n}$, whereas $(\langle a,b\rangle\sqcup^{\mathfrak{A}}\langle c,d\rangle) = \langle \max(a,c),\min(b,d)\rangle$, for all $a,b,c,d\in 2$, in which case $(\mathsf{f}\sqcup^{\mathfrak{A}}\mathsf{t}) = \mathsf{b}$. In that case, neither $\{\mathsf{f},\mathsf{b},\mathsf{t}\}$ nor $\{\mathsf{f},\mathsf{t}\}$ forms a subalgebra of \mathfrak{A} . And what is more, $\{\mathsf{b}\}$ and $\{\mathsf{n}\}$ are exactly all proper subalgebras of \mathfrak{A} in the purely-bilattice case $\Sigma = (\Sigma_0 \cup \{\sqcap, \sqcup\})$, $\mathcal{A} \upharpoonright \{\mathsf{n}\}$ being the only proper consistent submatrix of \mathcal{A} , in that case. Hence, we immediately obtain the following universal negative and positive results, respectively:

Corollary 6.5. Any bilattice expansion of C_B is not \sim -subclassical, and so not self-extensional.

Corollary 6.6. Any [purely-]bilattice expansion of C_B [satisfies Relevance Principle and] is inferentially maximal, and so both is maximally \sim -paraconsistent and has no proper consistent axiomatic extensions.

And what is more, in case $\Sigma_{01} \subseteq \Sigma$, \mathcal{A} has no proper submatrix at all. Thus, by Theorem 4.20 and Lemma 4.14, we also get:

Corollary 6.7. C is maximal iff it is not purely inferential if $\Sigma_{01} \subseteq \Sigma$.

6.1.3. Implicative expansions. Here, it is supposed that Σ contains a binary \supset (implication) such that

$$(a \supset^{\mathfrak{A}} b) = \begin{cases} b & \text{if } \pi_0(a) = 1, \\ \mathsf{t} & \text{otherwise,} \end{cases}$$

for all $a, b \in 2^2$ (cf. [19]), in which case \mathcal{A} is \supset -implicative. Then, $(\mathsf{n} \supset^{\mathfrak{A}} \mathsf{n}) = \mathsf{t} \neq \mathsf{b} = (\mathsf{b} \supset^{\mathfrak{A}} \mathsf{b})$, so $\mu \notin \mathrm{hom}(\mathfrak{A}, \mathfrak{A})$, in which case we immediately get:

Corollary 6.8. The logic of A is neither self-extensional nor purely-inferential, ad so does not satisfy Relevance Principle.

It is remarkable that, as opposed to bilattice expansions, implicative ones are not, generally speaking, covered by Corollary 4.69 because $\{f(,b/n),t\}$ does form a subalgebra of $\mathfrak{B}_{[01]} \triangleq (\mathfrak{A} \upharpoonright (\Sigma_{0[1]} \cup \{\supset\}))$, in which case, by Theorem(s) 4.23 (and 4.29), C is \sim -subclassical (and is not maximally \sim -paraconsistent), whenever $\Sigma \subseteq (\Sigma_{01} \cup \{\supset\})$. It is also remarkable that $\{b\}$ does [not] form a subalgebra of $\mathfrak{B}_{[01](p)}$, while $\{n\}$ does not form a subalgebra of $\mathfrak{B}_{[01]}$. On the other hand, $\supset^{\mathfrak{B}_{01(p)}}$, being the only non-regular operation of $\mathfrak{B}_{01(p)}$, for $\mathfrak{DM}_{4,01}$ is regular, and so is $\mathfrak{DM}_{4,01,p}$, while $(f \supset^{\mathfrak{A}} f) = t \not\sqsubseteq f = (b \supset^{\mathfrak{A}} f)$, whereas $f \sqsubseteq b$, is both binary and b-idempotent. This is why Theorem 4.60 has proved equally applicable to both bounded and unbounded purely-implicational cases that have been due to [27] (collectively with both [18] and [21]) ad hoc.

6.1.4. Disjunctive extensions of expansions of Belnap's logic. In view of Corollary 4.43, C is hereditary iff (under identification of submatrices of A with the underlying algebras of their carriers)

$$\mathbf{S}_*^*(\mathcal{A}) \supseteq \mathsf{S}_{01} \triangleq \mathbf{S}(\mathcal{DM}_{4,01}) = \{\{\mathsf{f},\mathsf{t},\mathsf{b},\mathsf{n}\},\{\mathsf{f},\mathsf{t},\mathsf{n}\},\{\mathsf{f},\mathsf{t},\mathsf{b}\},\{\mathsf{f},\mathsf{t}\}\}$$

(the inverse inclusion always holds), in which case $C^{\text{EM}[+R]}[=C^{\text{PC}}]$ is defined by $\mathcal{A}_{\mathfrak{p}[\mathfrak{p}]}$, in view of Theorem[s] 4.29 [resp., 4.23 and 4.32], while $C^{(\text{EM}\times)R}$ is defined by $\{\mathcal{A}_{\mathfrak{p}}\}(\cup\{\mathcal{A}_{\mathfrak{p}}\})$, in view of Corollary 4.35 (resp., 4.43). In particular, (the purely-implicative expansion of) $B_{4[01]}$ is hereditary (cf. Subsubsection 6.1.3). In this connection, note that, in view of Theorem 4.1 of [16], \vee -disjunctive extensions of B_4 are exactly De Morgan logics in the sense of the reference [Pyn 95a] of [17]. In this way, the present subsection incorporates the material announced therein advancing it much towards (mainly but not exclusively, hereditary) expansions. Set $S \triangleq S_*(\mathcal{DM}_4) = (S_{01} \cup \{\{n\}\})$.

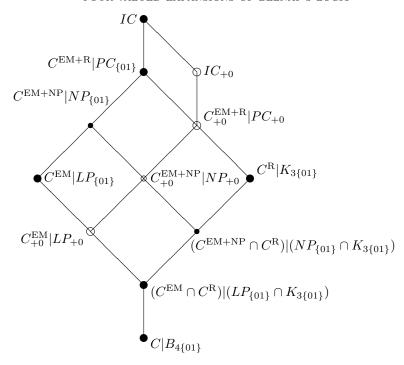


FIGURE 1. The lattice of \vee -disjunctive/Kleene extensions of hereditary/strongly hereditary $C|B_{4\{01\}}|$ with solely large/non-lowest circles.

Remark 6.9. The mappings $C \mapsto C_{S_{[01]}}^{\triangledown}$ and $C \mapsto (C \cap S_*^{[*]}(\mathcal{A}))$ form a dual Galois retraction between the posets of all lower than $C \mapsto (C \cap S_*^{[*]}(\mathcal{A}))$ cones of $\mathbf{S}_{*}^{[*]}(\mathcal{A})$ and those of $\mathsf{S}_{[01]}$, the former/latter mapping preserving generating subsets/relative axiomatizations.

There are exactly nine [six] lower cones of $S_{[01]}$ [but those containing $\{n\}$, viz., including C_1 , i.e., the last three ones]:

$$\begin{split} C_{4[01]} &\triangleq \{\{f,t,b,n\}\}_{S_{[01]}}^{\nabla}, & C_{3[01]}^{b} \triangleq \{\{f,t,b\}\}_{S_{[01]}}^{\nabla}, & C_{3[01]}^{n} \triangleq \{\{f,t,n\}\}_{S_{[01]}}^{\nabla}, \\ C_{3[01]} &\triangleq (C_{3[01]}^{b} \cup C_{3[01]}^{n}), & C_{2} &\triangleq \{\{f,t\}\}, & C_{0} &\triangleq \varnothing, \\ C_{1} &\triangleq \{\{n\}\}, & C_{3 \uplus 1}^{b} \triangleq (C_{3}^{b} \cup C_{1}), & C_{2 \uplus 1} &\triangleq (C_{2} \cup C_{1}). \end{split}$$

Those eight [five] ones, which are proper (viz., distinct from $S_{[01]} = C_{4[01]}$) are relatively axiomatized by the following Σ_{\sim} calculi (actually arisen according to the constructive proof of Lemma 3.24, and so demonstrating its practical applicability), respectively:

(6.1)	(4.8),
(6.2)	(4.19),
(6.3)	$\{x_0, \sim x_0\} \vdash (x_1 \lor \sim x_1),$
(6.4)	$\{(4.8), (4.19)\},\$
(6.5)	$x_0,$
(6.6)	$x_0 \vdash x_1,$
(6.7)	$x_0 \vdash (x_1 \lor \sim x_1),$
(6.8)	$\{(4.19), (6.7)\}.$

And what is more, $\sigma_{+1}(6.6) \vee x_0$ is equivalent to (6.6) under (3.3) and (3.5). Likewise, $\sigma_{+1}(6.7) \vee x_0$ is equivalent to (6.7) under (3.3), (3.4) and (3.5). By IC we denote the inconsistent Σ -logic. Moreover, put $PC_{[01]} \triangleq B_{4[01]}^{PC}$. In this way, taking Remarks 2.8, 2.10, 6.9, Proposition 2.18, Lemma 4.14, Theorems 3.21, 3.25 and Lemma 4.30 into account, we eventually get:

Theorem 6.10. Suppose C is (not) hereditary and has a/no theorem. Then, \vee -disjunctive [non-pseudo-axiomatic] extensions of C form (a Galois retract — in particular, a sublattice — of) the six/nine/six/-element non-chain distributive lattice depicted at Figure 1 (with not necessarily distinct nodes) with solely solid circles/with solely solid circles. Moreover, those of them, whose relative axiomatizations are not given by upper indices, are axiomatized relatively to C by the following calculi:

In view of Theorems 3.21, 3.25 and Remark 6.9, Theorem 6.10, being immediately applicable to hereditary four-valued expansions of B_4 (in particular, to implicative ones — cf. Subsubsection 6.1.3 — whose \vee -disjunctive extensions are exactly axiomatic ones; cf. Remark 3.22, constructively providing, in particular, their finite axiomatic relative axiomatizations), is

equally well-applicable to non-hereditary ones, in which case the lattice depicted at Figure 1 is properly degenerated under the corresponding dual Galois retraction. For instance, when dealing with any classically-negative (viz., Boolean) expansion CB_4 (cf. Subsubsection 6.1.1), $\mathbf{S}_*(\mathcal{A})$ becomes equal to $\{A\}[\cup\{\{\mathbf{f},\mathbf{t}\}\}]$, in which case \vee -disjunctive (viz., axiomatic; cf. Remark 3.22, for \mathcal{A} is $(\neg x_0 \lor x_1)$ -implicative in that case) extensions of CB_4 form the two[three]-element chain $CB_4 \subsetneq CB_4^{\mathrm{EM}(+R)} = CB_4^{\mathrm{R}} = [CB_4^{\mathrm{PC}} \subsetneq]IC$. Likewise, given any bilattice expansion BL_4 (cf. Subsubsection 6.1.2), $\mathbf{S}_*(\mathcal{A})$ becomes equal to $\{A\}[\cup\{\{\mathbf{n}\}\}]$, in which case \vee -disjunctive extensions of BL_4 form the two-[three-]element chain $BL_4[\subsetneq IC_{+0}] \subsetneq IC = BL_4^{\mathrm{EM}}$ with $IC_{[+0]} = BL_4^{\mathrm{R}}$, exhausting all extensions of BL_4 , in view of its inferential maximality proved in Corollary 6.6.

It is remarkable that, in view of Theorem 5.2 of [16] providing an axiomatization of B_4 given by Definition 5.1 therein,⁵ Theorem 6.10 yields axiomatizations of all \vee -disjunctive extensions of B_4 (in particular, of K_3 relatively axiomatized by the Resolution rule (4.9)).

On the other hand, to find all extensions of C is a much more complicated problem, a first idea of which having been due to Theorems 4.75, 4.39, 4.60 and Corollaries 4.4 and 4.74. A partial solution of it is presented below.

6.1.4.1. Kleene extensions. Next, C is said to be *strongly hereditary*, provided $\{f, n, t\}$ forms a regular specular subalgebra of \mathfrak{A} , in which case, since $\mu \circ \mu$ is diagonal, $\{f, b, t\} = \mu[\{f, n, t\}]$ forms a specular subalgebra of \mathfrak{A} as well, and so a regular one, for μ is anti-regular, and so C is hereditary, in view of Corollary 4.43, according to which collectively with Theorem 4.44, C is strongly hereditary iff it is hereditary, $C^{\text{EM}\times R}$ is self-extensional and $\mathcal{A}_{b'}$ is regular. By symmetry between n and n and n is strongly hereditary iff $\{f, b, t\}$ forms a regular specular subalgebra of n, whenever n is both regular and specular, while $\{f, (b/n), t\}$ forms a subalgebra of n (in particular, n and n are n and n and n are n are n are n and n are n are n are n are n are n and n are n are n are n are n are n and n are n are n are n are n are n are n and n are n are n are n are n are n and n are n and n are n are n are n are n are n and n are n and n are n are n are n are n are n and n are n and n are n a

Example 6.11. If $\Sigma \triangleq (\Sigma_{0[1]} \cup \{ \uplus \})$, where \uplus is binary, and $\uplus^{\mathfrak{A}} \triangleq ((\vee^{\mathfrak{A}} \upharpoonright (A_{p'}^2 \cup A_{p'}^2)) \cup \{\langle \langle \mathsf{n}, \mathsf{b} \rangle, \mathsf{t} \rangle, \langle \langle \mathsf{b}, \mathsf{n} \rangle, \mathsf{f} / \mathsf{b} \rangle\})$, C is strongly hereditary, and \mathfrak{A} is not specular, as opposed to $\mathfrak{DM}_{4[01]}$, and non-regular/regular.

Throughout the rest of this paragraph, C is supposed to be strongly hereditary. First, as an immediate consequence of Theorems 4.27, 4.29 and 4.39, we have:

Corollary 6.12. $C^{\text{EM}} \cap C^{\text{R}}$ is the greatest both inferentially paracomplete and \sim -paraconsistent extension of C.

Lemma 6.13. $(\mathcal{A}_{p'} \times \mathcal{A}_{b'}) \in \operatorname{Mod}(C^{\operatorname{EM}+\operatorname{NP}} \cap C^{\operatorname{R}}).$

Proof. Since, by Theorem 4.57 and Corollary 4.35, $C^{\text{EM}+\text{NP}} \cap C^{\text{R}}$ is defined by $\{\mathcal{A}_{b'}, \mathcal{A}_{\eta'} \times \mathcal{A}_{\eta b'}\}$, $\mathcal{A}_{\eta'} \times (\mathcal{A}_{b'} \times \mathcal{A}_{\eta b'})$, being isomorphic to $\mathcal{A}_{b'} \times (\mathcal{A}_{\eta'} \times \mathcal{A}_{\eta b'})$, is a model of $C^{\text{EM}+\text{NP}} \cap C^{\text{R}}$, in view of (2.5). Moreover, by Lemma 4.37, $(\mathcal{A}_{b'} \times \mathcal{A}_{\eta b'}) \upharpoonright K_4^n$ is a submatrix of $\mathcal{A}_{\eta'} \times (\mathcal{A}_{b'} \times \mathcal{A}_{\eta b'})$, and so it is a model of $C^{\text{EM}+\text{NP}} \cap C^{\text{R}}$, in view of (2.5). And what is more, $h \triangleq (\pi_0 \upharpoonright K_4^n) \in \text{hom}_{\mathbb{S}}((\mathcal{A}_{b'} \times \mathcal{A}_{\eta b'}) \upharpoonright K_4^n, \mathcal{A}_{b'})$ is surjective, and so is $g: (\mathcal{A}_{\eta'} \times K_4^n) \to (\mathcal{A}_{\eta'} \times \mathcal{A}_{b'}), \langle a, b \rangle \mapsto \langle a, h(b) \rangle$, belonging to $\text{hom}_{\mathbb{S}}(\mathcal{A}_{\eta'} \times (\mathcal{A}_{h'} \times \mathcal{A}_{\eta b'}) \upharpoonright K_4^n), \mathcal{A}_{\eta'} \times \mathcal{A}_{b'})$, as required, by (2.5). \square

Corollary 6.14. Let I be a finite set, $\overline{C} \in \{A_{b'}, A_{g'}\}^{I}$, and \mathcal{B} a consistent non- \sim -paraconsistent submatrix of $\prod_{i \in I} C_i$. Then, $hom(\mathcal{B}, \mathcal{A}_{b'}) \neq \varnothing$.

Proof. In that case, by Lemma 4.55, there is some $h \in \text{hom}(\mathcal{B}, \langle \mathfrak{A}, \{t\} \rangle) \neq \emptyset$, in which case $\mathfrak{D} \triangleq (\mathfrak{A} \upharpoonright (\text{img } h))$ satisfies (3.16) for \mathfrak{B} does so, because both $\mathfrak{A}_{b'}$ and $\mathfrak{A}_{b'}$ do so, while $h \in \text{hom}(\mathfrak{B}, \mathfrak{D})$ is surjective. Hence, $\{\mathsf{n}, \mathsf{b}\} \not\subseteq D$, for otherwise, (3.16) would not be true in \mathfrak{D} under $[x_0/\mathsf{n}, x_1/\mathsf{b}]$. Thus, $\mathcal{D} \triangleq (\langle \mathfrak{A}, \{t\} \rangle \upharpoonright D)$ is a submatrix of $\langle \mathfrak{A}, \{t\} \rangle \upharpoonright A_{b'}$, for some $a \in \{\mathsf{n}, \mathsf{b}\}$, in which case $h \in \text{hom}(\mathcal{B}, \langle \mathfrak{A}, \{t\} \rangle \upharpoonright A_{b'})$, and so the fact that $\mu \upharpoonright A_{b'}$ is an isomorphism from $\langle \mathfrak{A}, \{t\} \rangle \upharpoonright A_{b'}$ onto $(\langle \mathfrak{A}, \{t\} \rangle \upharpoonright A_{b'}) = \mathcal{A}_{b'}$ completes the argument.

Corollary 6.15. $C^{\text{EM}+\text{NP}} \cap C^{\text{R}}$ is axiomatized by (4.19) relatively to $C^{\text{EM}} \cap C^{\text{R}}$.

Proof. By Corollary 4.35 and Theorem 4.29 [resp., 4.57], $C^{\text{EM}[+\text{NP}]} \cap C^{\text{R}}$ is defined by $\{\mathcal{A}_{\eta}[\times \mathcal{A}_{\eta \eta}], \mathcal{A}_{\eta}\}$. Consider any model $\mathcal{B} \in \mathbf{S}(\mathbf{P}_{\omega}(\{\mathcal{A}_{\flat}, \mathcal{A}_{\eta}\}))$ of (4.19), in which case there is some finite set I, some $\overline{\mathcal{C}} \in \{\mathcal{A}_{\flat}, \mathcal{A}_{\eta}\}^{I}$ such that \mathcal{B} is a submatrix of $\prod_{i \in I} \mathcal{C}_{i}$. Put $J \triangleq \text{hom}(\mathcal{B}, \mathcal{A}_{\eta} \times \mathcal{A}_{\flat})$ and $K \triangleq \text{hom}(\mathcal{B}, \mathcal{A}_{\flat})$. Consider any $a \in (B \setminus D^{\mathcal{B}})$, in which case \mathcal{B} is consistent and there is some $i \in I$ such that $\pi_{i}(a) \notin D^{\mathcal{C}_{i}}$. Consider the following complementary cases:

- (1) $\mathfrak{C}_i = \mathcal{A}_{\mathfrak{p}'}$.
- Then, by Corollary 6.14, there is some $h \in \text{hom}(\mathcal{B}, \mathcal{A}_{b'}) \neq \emptyset$, in which case $g \triangleq ((\pi_i \upharpoonright B) \times h) \in J$ and $g(a) \notin D^{\mathcal{A}_{b'} \times \mathcal{A}_{b'}}$.
- (2) $\mathfrak{C}_i \neq \mathcal{A}_{\mathfrak{p}'}$, in which case $\mathfrak{C}_i = \mathcal{A}_{\mathfrak{b}'}$, and so $(\pi_i \upharpoonright B) \in K$.

In this way, $f \triangleq ((\prod \Delta_J) \times (\prod \Delta_K)) \in \text{hom}_S(\mathcal{B}, (\mathcal{A}_{p'} \times \mathcal{A}_{b'})^J \times \mathcal{A}_{b'}^K)$, and so (2.5), Theorem 2.20, Lemma 6.13 and the finiteness of A complete the argument.

By $NP_{[01]}$ we denote the extension of $LP_{[01]}$ relatively axiomatized by (4.19) (cf. [21]).

Theorem 6.16. Suppose C has a/no theorem. Then, Kleene [non-pseudo-axiomatic] extensions of C form the seven/eleven[seven]-element non-chain distributive lattice depicted at Figure 1 with solely solid circles/[with solely solid circles], both $C^{\mathrm{EM}+(\mathrm{NP}|\mathrm{R})}$ and $\{C^{\mathrm{EM}+\mathrm{NP}}\cap\}C^{\mathrm{R}}$ as well as theorem-less proper ones being non-axiomatic extensions of both $C^{\mathrm{EM}}\cap C^{\mathrm{R}}$ and C, and so C^{EM} is the only proper axiomatic extension of $C^{\mathrm{EM}}\cap C^{\mathrm{R}}$ and, providing either $\mathfrak A$ is regular or C has no theorem, of C. Moreover, those of them, which are neither \vee -disjunctive nor equal to $C^{\mathrm{EM}+\mathrm{NP}}$, are relatively axiomatized as follows:

$$C^{\mathrm{EM+NP}} \cap C^{\mathrm{R}} \quad by \quad (4.19),$$

 $^{^{5}}$ In this connection, we should also like to take the opportunity to notice that Footnote 3 on p. 443 of [16] has proved absolutely irrelevant and is to be disregarded, simply because Font did never find the Hilbert-style axiomatization of $C_{\rm B}$ independently as he falsely claimed, but rather just plagiarized it, being in the vantage position of learning it from me first.

$$C_{+0}^{\mathrm{EM+NP}}$$
 by $\{(4.19), (6.7)\},\$

others inheriting the above axiomatizations relatively to C with possible relacing (4.9) by (4.20).

Proof. We use (2.5), Theorems 4.29, 4.32, 6.10, 4.57, 4.60, Propositions 2.18, 3.17, 4.14, Corollaries 4.35, 6.15, Lemma 4.78 with $\mathcal{B} = \mathcal{A}_{\mathsf{b}'}$ and Remarks 2.8 and 4.58 tacitly. First, as C^{EM} is \sim -paraconsistent, $(C^{\mathrm{EM}+\mathrm{NP}} \cap C^{\mathrm{R}})/C_{+0}^{\mathrm{EM}+\mathrm{NP}}/C^{\mathrm{EM}+\mathrm{NP}}$ is distinct from $(C^{\text{EM}} \cap C^{\text{R}})/C_{+0}^{\text{EM}}/C^{\text{EM}}$, respectively. Likewise, since (4.20) is not true in $\mathcal{A}_{\eta'} \times \mathcal{A}_{\eta\eta b'}$ under $[x_0/\langle \mathsf{b}, \mathsf{t} \rangle, x_1/\langle \mathsf{f}, \mathsf{t} \rangle]$, $(C^{\text{EM}+\text{NP}} \cap C^{\text{R}})/C_{+0}^{\text{EM}+\text{NP}}/C^{\text{EM}+\text{NP}}$ is distinct from $C^{\text{R}}/C_{+0}^{\text{EM}+\text{R}}/C^{\text{EM}+\text{R}}$, respectively. Finally, consider any [non-pseudo-axiomatic] extension C' of $C^{\text{EM}} \cap C^{\text{R}}$ and the following exhaustive cases [but (3) and (4)]:

- (1) $IC \subseteq C'$.
 - Then, C' = IC.
- (2) $C^{PC} \subseteq C'$ but $IC \not\subset C'$.

Then, C' is consistent, and so inferentially consistent, for (4.8), being satisfied in C^{PC} , is so in its extension C', in which case, by Theorem 4.23, $C' = C^{PC}$.

(3) $IC_{+0} \subseteq C'$ but $C^{PC} \nsubseteq C'$.

Then, IC, being an extension of C^{PC} , is not a sublogic of C', so, by the following claim, C' has no theorem:

Claim 6.17. Let C'' and C''' be Σ -logics. Suppose $C'' \nsubseteq C'''$ is non-pseudo-axiomatic and $C''_{+0} \subseteq C'''$. Then, C''' has

Proof. By contradiction. For suppose C''' has a theorem, in which case it is non-pseudo-axiomatic, and so, by Remark 2.8, we get $C'' = (C''_{+0})_{-0} \subseteq C'''_{-0} = C'''$. This contradiction completes the proof.

In this way, as $C'_{-0} \subseteq IC$, we have $C' = (C'_{-0})_{+0} \subseteq IC_{+0}$, and so we get $C' = IC_{+0}$.

- (4) $C_{+0}^{PC} \subseteq C'$ but both $C^{PC} \nsubseteq C'$ and $IC_{+0} \nsubseteq C'$.
 - Then, by Claim 6.17, C' has no theorem. Moreover, (6.7), being satisfied in $C_{\pm 0}^{PC}$, is so in its extension C', in which case, by the structurality of C', $(x_1 \vee \sim x_1) \in (\bigcap_{k \in \omega} C'(x_k)) = C'_{-0}(\varnothing)$, and so $C^{PC} \subseteq C'_{-0}$. On the other hand, $IC = (IC_{+0})_{-0} \nsubseteq C'_{-0}$, so C'_{-0} is consistent, and so inferentially consistent, for it satisfies (4.8). Hence, by Theorem 4.23, $C'_{-0} = C^{PC}$. In this way, $C' = (C'_{-0})_{+0} = C^{PC}_{+0}$.
- (5) $(C_{+0}^{PC}[\cup C^{PC}]) \nsubseteq C'$ but $C^{R} \subseteq C'$.

Then, [(4.8), and so, in view of the non-pseudo-axiomaticity of <math>C'] [(6.7) is not satisfied in C', in which case, by Theorem

(6) $C^{\mathbb{R}} \nsubseteq C'$.

Then, (4.20) is not satisfied in C', in which case, by Lemma 4.59, $C' \subseteq C^{\text{EM+NP}}$, and so we have the following exhaustive subcases [but (c) and (d)]:

- (a) $C^{\text{EM+NP}} \subseteq C'$.
 - Then, $C' = C^{\text{EM+NP}}$.
- (b) $C^{\text{EM}+\text{NP}} \nsubseteq C'$ but $C^{\text{EM}} \subseteq C'$.

Then, C' is \sim -paraconsistent, so, by Theorem 4.27, $C' = C^{\text{EM}}$.

- (c) $C_{+0}^{\text{EM}+\text{NP}} \subseteq C'$ but $C^{\text{EM}} \nsubseteq C'$.
 - Then, $C^{\text{EM}+\text{NP}} \nsubseteq C'$, so, by Claim 6.17, C' has no theorem. Therefore, $C^{\text{EM}+\text{NP}} = (C^{\text{EM}+\text{NP}}_{+0})_{-0} \subseteq C'_{-0}$, $(C^{\mathrm{EM}} \cap C^{\mathrm{R}}) = (C^{\mathrm{EM}} \cap C^{\mathrm{R}})_{-0} \subseteq C'_{-0}$ and $C^{\mathrm{R}} \nsubseteq C'_{-0}$, for, otherwise, we would have $C^{\mathrm{R}} = (C^{\mathrm{R}})_{+0} \subseteq (C'_{-0})_{+0} = C'$. Hence, by Lemma 4.59, we have $C'_{-0} \subseteq C^{\text{EM}+\text{NP}}$, in which case we get $C' = (C'_{-0})_{+0} \subseteq C^{\text{EM}+\text{NP}}_{+0}$, and so $C' = C_{+0}^{\text{EM+NP}}.$
- (d) $C_{+0}^{\text{EM}} \subseteq C'$ but both $C^{\text{EM}} \nsubseteq C$ and $C_{+0}^{\text{EM}+\text{NP}} \nsubseteq C'$. Then, by Claim 6.17, C' has no theorem. Moreover, (6.7), being satisfied in C_{+0}^{EM} , is so in C', in which case, by the structurality of C', $(x_1 \vee \sim x_1) \in (\bigcap_{k \in \omega} C'(x_k)) = C'_{-0}(\varnothing)$, and so $C^{\mathrm{EM}} \subseteq C'_{-0}$, while $(C^{\mathrm{EM}} \cap C^{\mathrm{R}}) = (C^{\mathrm{EM}} \cap C^{\mathrm{R}})_{-0} \subseteq C'_{-0}$. Also, $C^{\mathrm{EM}+\mathrm{NP}} = (C^{\mathrm{EM}+\mathrm{NP}}_{+0})_{-0} \nsubseteq C'_{-0}$, so C'_{-0} is \sim -paraconsistent. Hence, by Theorem 4.27, $C'_{-0} = C^{\mathrm{EM}}$. In this way, $C' = (C'_{-0})_{+0} = C^{\mathrm{EM}}_{+0}$.

 (e) $(C^{\mathrm{EM}+\mathrm{NP}} \cap C^{\mathrm{R}}) \subseteq C'$ but $(C^{\mathrm{EM}+\mathrm{NP}}_{+0}) \sqcup C^{\mathrm{EM}+\mathrm{NP}} = (C^{\mathrm{EM}+\mathrm{NP}}_{+0}) \sqcup C'$.

Then, [(4.8), and so, in view of the non-pseudo-axiomaticity of C' (6.7) is not satisfied in C', in which case, by Theorem 4.39, $C' = (C^{\text{EM+NP}} \cap C^{\text{R}}).$

- (f) $(C^{\text{EM}+\text{NP}} \cap C^{\text{R}}) \nsubseteq C'$ and $(C^{\text{EM}}_{+0}[\cup C^{\text{EM}}]) \nsubseteq C'$.
 - Then, C' is both \sim -paraconsistent and inferentially paracomplete [in view of the non-pseudo-axiomaticity of C'], and so, by Corollary 6.12, $C' = (C^{\text{EM}} \cap C^{\text{R}})$.

As an immediate consequence of Theorems 6.10 and 6.16, as opposed to both $C^{\text{EM}}[\cap C^{\text{R}}]$ and C, we have:

Corollary 6.18. All extensions of $C^{\mathbb{R}}$ are \vee -disjunctive.

Concluding this discussion, we should like to highlight that the technique elaborated here has proved well-applicable to finding all extensions of LP that has been done in [17] with using an advanced algebraic method based upon finding the lattice of all subprevarieties of KL going back to finding that of ones of DML being due to [20]. However, the mentioned method is not applicable to K_3 (as well as to both $LP_{[01]} \cap K_{3[01]}$ and $C_{[B|B]}$) at all. This highlights the special value of the technique elaborated here.

6.1.4.1.1. Some proper non-Kleene extensions. Finally, we explore some of proper non-Kleene (and so non- \vee -disjunctive, in view of Theorem 6.10) extensions of C to be assumed self-extensional. First of all, notice that (4.18) is not true in \overrightarrow{A} under $[x_0/\mathsf{n}, x_1/\mathsf{b}, x_2/\mathsf{n}]$. Therefore, by Theorems 4.60 and 4.74, C^{MP} and C^{NP} become first distinct examples of such a kind. (In particular, this shows that Remark 4.58 is not inherited by non-Kleene extensions of C). Moreover, by Theorem 4.60, we get two more distinct proper non-Kleene extensions $C^{\mathrm{EM}[+\mathrm{NP}]} \cap C^{\mathrm{MP}}$, for $C^{\mathrm{EM}} \cap C^{\mathrm{MP}}$ is \sim -paraconsistent (cf. Theorem 4.29), while $C^{\mathrm{EM}+\mathrm{NP}} \cap C^{\mathrm{MP}}$ is an extension of C^{NP} . Then, a one more example of such a kind is as follows:

Theorem 6.19. $C^{\text{EM}}[\cap C^{\text{R}}] \cap C^{\text{NP}}$ is the proper extension of C relatively axiomatized by the rule (4.1).

Proof. Let C' be the extension of C relatively axiomatized by the rule (4.1). Since (4.1) is a logical consequence of (4.19) and is true in C_3 , $C^{\mathrm{EM}} \cap C^{\mathrm{R}} \cap C^{\mathrm{NP}}$ is an extension of C'. Conversely, consider any $\mathcal{B} \in (\mathrm{Mod}(C') \cap \mathsf{K})$, where $\mathsf{K} \triangleq \mathbf{P}^{\mathrm{SD}}(\mathbf{S}_*(\mathcal{A}))$. Assume, (4.19) is not true in \mathcal{B} , in which case there is some $a \in D^{\mathcal{B}}$ such that $\sim^{\mathfrak{A}} a \in D^{\mathcal{B}}$, and so, by (4.1) [and (3.3)], $(x_0 \vee \sim x_0)[\vee x_1]$ is true in \mathcal{A} [and so is the rule (4.18)]. Thus, $(\mathrm{Mod}(C') \cap \mathsf{K}) \subseteq ((\mathrm{Mod}(C^{\mathrm{NP}}) \cap \mathsf{K}) \cup (\mathrm{Mod}(C^{\mathrm{EM}}[\cap C^{\mathrm{R}}]) \cap \mathsf{K}))$. Hence, by Theorem 2.20, we eventually conclude that $C' = (C^{\mathrm{EM}}[\cap C^{\mathrm{R}}] \cap C^{\mathrm{NP}})$. Finally, recall that (4.1) is not true in \mathcal{A} under $[x_0/\mathsf{b}, x_1/\mathsf{n}]$, as required.

And what is more, we also have:

Theorem 6.20. The extension of $C^{\text{EM}} \cap C^{\text{MP}}$ relatively axiomatized by (4.19), i.e., the join of $C^{\text{EM}} \cap C^{\text{MP}}$ and C^{NP} is defined by $\{\overrightarrow{A}, A_{n'} \times \overrightarrow{A}\}$.

Proof. By Theorem[s 4.29 and] 4.74, $[C^{\text{EM}} \cap] C^{\text{MP}}$ is defined by $\{\overrightarrow{\mathcal{A}}[,\mathcal{A}_{\eta}]\}$. In particular, $\overrightarrow{\mathcal{A}}$ is a model of (4.19). Moreover, by (2.5) and Theorem 4.75, $\mathcal{A}_{\eta'} \times \overrightarrow{\mathcal{A}}$, being a submatrix of $\mathcal{A} \times \overrightarrow{\mathcal{A}}$, is a model of (4.19) too. Conversely, consider any finite set I, any $\overline{\mathcal{C}} \in \mathbf{S}_*(\{\overrightarrow{\mathcal{A}},\mathcal{A}_{\eta'}\})^I$ and any subdirect product \mathcal{D} of it being a model of (4.19). Put $J \triangleq \text{hom}(\mathcal{D},\mathcal{A}_{\eta'} \times \overrightarrow{\mathcal{A}})$ and $K \triangleq \text{hom}(\mathcal{D},\overrightarrow{\mathcal{A}})$. Consider any $a \in (\mathcal{D} \setminus \mathcal{D}^{\mathcal{D}})$, in which case \mathcal{D} is consistent and there is some $i \in I$, in which case $h \triangleq (\pi_i | \mathcal{D}) \in \text{hom}(\mathcal{D},\mathcal{C}_i)$, such that $h(a) \notin \mathcal{D}^{\mathcal{C}_i}$. Consider the following exhaustive cases:

(1) $C_i = A_{\eta'}$.

Then, by Lemma 4.55, there is some $g \in \text{hom}(\mathcal{D}, \overrightarrow{\mathcal{A}}) \neq \emptyset$, in which case $f \triangleq (h \times g) \in J$ and $f(a) \notin \mathcal{D}^{\mathcal{A}_{\eta} \times \overrightarrow{\mathcal{A}}}$.

(2) $C_i = \overrightarrow{A}$. Then, $h \in K$.

In this way, $((\prod \Delta_J) \times (\prod \Delta_K)) \in \text{hom}_S(\mathcal{D}, (\mathcal{A}_{n'} \times \overrightarrow{\mathcal{A}})^J \times \overrightarrow{\mathcal{A}}^K)$. Hence, by (2.5) and Theorem 2.20, the extension involved is finitely-defined by $\{\overrightarrow{\mathcal{A}}, \mathcal{A}_{n'} \times \overrightarrow{\mathcal{A}}\}$. Then, the finiteness of A completes the argument.

Finally, note that the rule:

$$\{x_0, \sim x_0 \lor x_2\} \vdash ((\sim x_1 \lor x_1) \lor x_2),$$

being satisfied in $C^{\text{EM}} \cap C^{\text{MP}}$, in view of (3.3) and (3.4), is not true in $\mathcal{A} \times \overrightarrow{\mathcal{A}}$ under $[x_0/\langle \mathsf{b}, \mathsf{t} \rangle, x_1/\langle \mathsf{n}, \mathsf{t} \rangle, x_2/\langle \mathsf{f}, \mathsf{t} \rangle]$. Therefore, by Theorem 4.75, we get:

Corollary 6.21. $C^{\text{EM}[+\text{NP}]} \cap C^{\text{R/MP}}$ is a proper extension of $(C^{\text{EM}} \cap C^{\text{R}} \cap C^{\text{NP}})[\cup C^{\text{NP}}]$.

- 6.2. Three-valued paraconsistent logics. Here, we follow Subsection 5.1 supposing that $\lambda \triangleq \infty \in \Sigma$.
- 6.2.1. Three-valued expansions of the logic of paradox. Here, it is supposed that $\Sigma_0 \subseteq \Sigma$ and $(A \upharpoonright \Sigma_0) = \mathcal{DM}_{4,p'}$ (in which case A is \land -conjunctive) that defines LP, so C is an expansion of LP. This covers both the logic of antinomies LA [2] and J3 [5], the maximal \sim -paraconsistency of both of which having been due to [27] collectively with the general part of [21], proved ad hoc therein. And what is more, this exhausts all three-valued expansions of LP, as it ensues from Corollaries 5.9 and 5.12, also yielding the following universal result subsuming Theorem 2.1 of [17]:

Corollary 6.22. Any three-valued expansion of LP is maximally \sim -paraconsistent.

Finally, \mathfrak{A} is clearly a (\land, \lor) -lattice, so Subsection 5.1.4 is well-applicable to C, subsuming some results obtained in [21] and [27] $ad\ hoc$.

6.2.2. Three-valued expansions of Sette's logic. Let $\{\supset, \sim\} \subseteq \Sigma$, where \supset (implication) is binary, and \mathcal{A} a \sim -superclassical Σ -matrix such that $\sim^{\mathfrak{A}} \mathsf{b} \triangleq \mathsf{t}$, in which case $\{\mathsf{b}\}$ does not form a subalgebra of \mathfrak{A} , and

$$(a \supset^{\mathfrak{A}} b) \triangleq \begin{cases} \mathsf{t} & \text{if } (a \neq \mathsf{f}) \Rightarrow (b \neq \mathsf{f}), \\ \mathsf{f} & \text{otherwise,} \end{cases}$$

for all $a, b \in \{f, b, t\}$. In this way, this exhaust all three-valued expansions of the logic P^1 [28] of $S_3' \triangleq (A \upharpoonright \{\supset, \sim\})$, as it ensues from Theorem 5.6 and Corollary 5.9, also yielding the following one more universal result:

Corollary 6.23. Any three-valued expansion of P^1 is maximally \sim -paraconsistent.

This subsumes the maximality result of [28], according to which P^1 itself has no proper \sim -paraconsistent axiomatic extension, properly strengthened in [15] by proving the fact that the \sim -classical logic of $S'_2 \triangleq (S'_3 \upharpoonright \{f, t\})$ is the only proper axiomatic extension of P1, equally ensuing from Corollary 2.21 and the fact S'_2 is the only proper submatrix of S'_3 and is a model of the axiom $x_0 \supset \sim \sim x_0$, not being true in S'_3 under $[x_0/b]$, in which case the classical logic involved is axiomatized by the axiom involved relatively to P1.

And what is more, \mathcal{A} is $\overline{\wedge}$ -conjunctive, where $(x_0 \overline{\wedge} x_1) \triangleq \sim (x_0 \supset (x_1 \supset \sim (x_0 \supset x_0)))$, so this case is equally covered by Corollary 5.12.

6.2.3. Three-valued expansions of Hałkowska-Zajac' logic. Let $\Sigma_0 \subseteq \Sigma$ and \mathcal{A} a \sim -superclassical Σ -matrix such that $\sim^{\mathfrak{A}} b = b$, while $\wedge^{\mathfrak{A}}$ and $\vee^{\mathfrak{A}}$ are defined as min and max, respectively, but with respect to rather the chain partial ordering \leq given by $b \le f \le t$ than the partial ordering given point-wise by the natural one \le on 2, as in the case of the logic of paradox. Then, $\{0,2\}$ forms a subalgebra of the underlying algebra of $\mathcal{HZ} \triangleq (\mathcal{A} \upharpoonright \Sigma_0)$, while $\mathcal{HZ} \upharpoonright \{0,2\}$ is \land -conjunctive. In this way, this exhausts all three-valued expansions of the logic HZ [7] of \mathcal{HZ} , as it ensues from Theorem 5.6, Corollary 5.9 and Remark 5.11, also yielding the following one more universal result:

Corollary 6.24. Any three-valued expansion of HZ is maximally \sim -paraconsistent.

This subsumes the maximality result of [22] concerning HZ alone and proved $ad\ hoc$ therein.

Finally, though $\mathfrak A$ is a (\wedge, \vee) -lattice, $\mathcal A$ is neither \wedge -conjunctive nor \vee -disjunctive, because $(f \wedge^{\mathfrak H} b) = b$ and $(f \vee^{\mathfrak H} b) = f$. Nevertheless, \mathfrak{A} is a $(\overline{\wedge}, \underline{\vee})$ -lattice, where

$$(x_0 \veebar x_1) \triangleq \sim (\sim x_0 \land \sim x_1),$$

 $(x_0 \bar{\land} x_1) \triangleq \sim (\sim x_0 \lor \sim x_1),$

because these secondary connectives correspond to min and max, respectively, with regard to the chain partial ordering \(\lambda \) given by $f \lesssim t \lesssim b$, while \mathcal{A} is $\bar{\wedge}$ -conjunctive, and so \vee -disjunctive. In particular, this case is equally covered by Corollary 5.12. And what is more, Subsection 5.1.4 is well-applicable to C, yielding some results obtained in [22] and [27] ad hoc.

7. Conclusions

Aside from the quite non-trivial general results and their numerous illustrative applications, the present paper demonstrates the special value of the conception of congruence/equality determinant, initially suggested in [23] just for the sake of construction of two-side sequent calculi (like those found in [16] and [19]) for many-valued logics.

- 1. A. R. Anderson and N. D. Belnap, Entailment, vol. 1, Princeton University Press, Princeton, 1975.
- 2. F. G. Asenjo and J. Tamburino, Logic of antinomies, Notre Dame Journal of Formal Logic 16 (1975), 272–278.
- 3. R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia (Missouri), 1974.
- 4. N. D. Belnap, Jr, A useful four-valued logic, Modern uses of multiple-valued logic (J. M. Dunn and G. Epstein, eds.), D. Reidel Publishing Company, Dordrecht, 1977, pp. 8-37.
- 5. I. M. L. D'Ottaviano and R. L. Epstein, A paraconsistent many-valued propositional logic: J3, Reports on Mathematical Logic 22 (1988),
- 6. G. Grätzer, Universal Algebra, 2nd ed., Springer-Verlag, Berlin, 1979.
- 7. K. Hałkowska and A. Zajac, O pewnym, trójwartościowym systemie rachunku zdań, Acta Universitatis Wratislaviensis. Prace Filozoficzne 57 (1988), 41-49.
- 8. S. C. Kleene, Introduction to metamathematics, D. Van Nostrand Company, New York, 1952.
- 9. J. Loś and R. Suszko, Remarks on sentential logics, Indagationes Mathematicae 20 (1958), 177-183.
- 10. J. Łukasiewicz, O logice trójwartościowej, Ruch Filozoficzny 5 (1920), 170–171.
- 11. A. I. Mal'cev, Algebraic systems, Springer Verlag, New York, 1965.
- 12. E. Mendelson, Introduction to mathematical logic, 2nd ed., D. Van Nostrand Company, New York, 1979.
- 13. A. G. Pinus, Congruence-modular varieties of algebras, Irkutsk University Press, Irkutsk, 1986, In Russian.
- 14. G. Priest, The logic of paradox, Journal of Philosophical Logic 8 (1979), 219–241.
- 15. A. P. Pynko, Algebraic study of Sette's maximal paraconsistent logic, Studia Logica 54 (1995), no. 1, 89–128.
- 16. _____, Characterizing Belnap's logic via De Morgan's laws, Mathematical Logic Quarterly 41 (1995), no. 4, 442-454.
- 17. _____, On Priest's logic of paradox, Journal of Applied Non-Classical Logics 5 (1995), no. 2, 219–225.
- 18. _____, Definitional equivalence and algebraizability of generalized logical systems, Annals of Pure and Applied Logic 98 (1999), 1-68.
- _, Functional completeness and axiomatizability within Belnap's four-valued logic and its expansions, Journal of Applied Non-Classical Logics 9 (1999), no. 1/2, 61–105, Special Issue on Multi-Valued Logics.
- 20. _____, Implicational classes of De Morgan lattices, Discrete mathematics 205 (1999), 171–181.
- 21. _____, Subprevarieties versus extensions. Application to the logic of paradox, Journal of Symbolic Logic 65 (2000), no. 2, 756–766.
- 22. _____, Extensions of Halkowska-Zajac's three-valued paraconsistent logic, Archive for Mathematical Logic 41 (2002), 299–307.
- 23. ______, Sequential calculi for many-valued logics with equality determinant, Bulletin of the Section of Logic 33 (2004), no. 1, 23–32.

 24. _____, A relative interpolation theorem for infinitary universal Horn logic and its applications, Archive for Mathematical Logic 45 (2006),
- 25. _____, Distributive-lattice semantics of sequent calculi with structural rules, Logica Universalis 3 (2009), no. 1, 59-94.
- 26. _____, Gentzen's cut-free calculus versus the logic of paradox, Bulletin of the Section of Logic 39 (2010), no. 1/2, 35-42.
- _, Subquasivarieties of implicative locally-finite quasivarieties, Mathematical Logic Quarterly 56 (2010), no. 6, 643–658.
- 28. A. M. Sette, On the propositional calculus P^1 , Mathematica Japonica 18 (1973), 173–180.

V.M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Glushkov prosp. 40, Kiev, 03680, Ukraine Email address: pynko@i.ua