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Abstract—As the emerging field of machine learning, deep 

learning shows excellent ability in solving complex learning 

problems. However, the size of the networks becomes 

increasingly large scale due to the demands of the practical 

applications, which poses significant challenge to construct a high 

performance implementations of deep learning neural networks. In 
order to improve the performance as well to maintain the low 

power cost, in this paper we design DLAU, which is a scalable 

accelerator architecture for large-scale deep learning networks 

using FPGA as the hardware prototype. The DLAU accelerator 

employs three pipelined processing units to improve the 

throughput and utilizes tile techniques to explore locality for deep 
learning applications. Experimental results on the state-of-the-art 

Xilinx FPGA board demonstrate that the DLAU accelerator is able 

to achieve up to 36.1x speedup comparing to the Intel Core2 

processors, with the power consumption at 234mW.  
Index Terms—FPGA; Deep Learning; neural network; hard-

ware accelerator. 

 
I. INTRODUCTION  

IN the past few years, machine learning has become perva-

sive in various research fields and commercial applications, 
and achieved satisfactory products. The emergence of deep 
learning speeded up the development of machine learning and 
artificial intelligence. Consequently, deep learning has become 
a research hot spot in research organizations [1].  
 
 
 
In general, deep learning uses a multi-layer neural network 
model to extract high-level features which are a combination of 
low-level abstractions to find the distributed data features, in 
order to solve complex problems in machine learning. 
Currently the most widely used neural models of deep learning 
are Deep Neural Networks (DNNs) [2] and Convolution Neural 
Net-works (CNNs) [3], which have been proved to have 
excellent capability in solving picture recognition, voice 
recognition and  
other complex machine learning tasks.  

 

However, with the increasing accuracy requirements and 

complexity for the practical applications, the size of the neural 

networks becomes explosively large scale, such as the Baidu 

Brain with 100 Billion neuronal connections, and the Google 

cat-recognizing system with 1 Billion neuronal connections. 

The explosive volume of data makes the data centers quite 
 

 
 
 
 
 

power consuming. In particular, the electricity consumption of 

data centers in U.S. are projected to increase to roughly 140 

billion kilowatt-hours annually by 2020 [4]. Therefore, it poses 

significant challenges to implement high performance deep 

learning networks with low power cost, especially for large-

scale deep learning neural network models. So far, the state-

of-the-art means for accelerating deep learning algorithms are 

Field-Programmable Gate Array (FPGA), Application Spe-cific 

Integrated Circuit (ASIC), and Graphic Processing Unit (GPU). 

Compared with GPU acceleration, hardware accel-erators like 

FPGA and ASIC can achieve at least moderate performance 

with lower power consumption. However, both FPGA and 

ASIC have relatively limited computing resources, memory, 

and I/O bandwidths, therefore it is challenging to develop 

complex and massive deep neural networks using hardware 

accelerators. For ASIC, it has a longer development cycle and 

the flexibility is not satisfying. Chen et al presents a ubiquitous 

machine-learning hardware accelerator called DianNao [6], 

which initiated the field of deep learning pro-cessor. It opens a 

new paradigm to machine learning hardware accelerators 

focusing on neural networks. But DianNao is not implemented 

using reconfigurable hardware like FPGA, therefore it cannot 

adapt to different application demands. Currently around 

FPGA acceleration researches, Ly and Chow  
[5] designed FPGA based solutions to accelerate the Re-stricted 

Boltzmann Machine (RBM). They created dedicated hardware 

processing cores which are optimized for the RBM algorithm. 

Similarly Kim et al [7] also developed a FPGA based accelerator 

for the restricted Boltzmann machine. They use multiple RBM 

processing modules in parallel, with each module responsible for a 

relatively small number of nodes. Other similar works also present 

FPGA based neural network accelerators [9]. Qi et al. present a 

FPGA based accelerator [8], but it cannot accommodate changing 

network size and network topologies. To sum up, these studies 

focus on implementing a particular deep learning algorithm 

efficiently, but how to increase the size of the neural networks with 

scalable and flexible hardware architecture has not been properly 

solved. 
 

To tackle these problems, we present a scalable deep 

learning accelerator unit named DLAU to speed up the 

kernel computational parts of deep learning algorithms. 

In particular, we utilize the tile techniques, FIFO buffers, 

and pipelines to minimize memory transfer operations, 

and reuse the comput-ing units to implement the large-

size neural networks. This approach distinguishes itself 

from previous literatures with following contributions:  
1. In order to explore the locality of the deep learning 

 
 
 
 
 
 



 
 
 
 
 
 
 
 
 

TABLE I  
PROFILING OF HOT SPOTS OF DNN 

 

Algorithms Matrix Multiplication Activation Vector 
    

Feedforward 98.60% 1.40%  
    

RBM 98.20% 1.48% 0.30% 
    

BP 99.10% 0.42% 0.48% 
    

 

 
application, we employ tile techniques to partition the large 

scale input data. The DLAU architecture can be configured 

to operate different sizes of tile data to leverage the trade-

offs between speedup and hardware costs. Consequently 

the FPGA based accelerator is more scalable to 

accommodate different machine learning applications.  
2. The DLAU accelerator is composed of three fully 

pipelined processing units, including TMMU, PSAU, and 

AFAU. Different network topologies such as CNN, DNN, or 

even emerging neural networks can be composed from 

these basic modules. Consequently the scalability of FPGA 

based accelerator is higher than ASIC based accelerator. 

 

                     II.  TILE TECHNIQUES AND HOT SPOT PROFILING 
 

Restricted Boltzmann Machines (RBMs) have been widely 

used to efficiently train each layer of a deep network. Normally 

a deep neural network is composed of one input layer, several 

hidden layers and one classifier layer. The units in adja-cent 

layers are all-to-all weighted connected. The prediction 

process contains feedforward computation from given input 

neurons to the output neurons with the current network config-

urations. Training process includes pre-training which locally 

tune the connection weights between the units in adjacent 

layers, and global training which globally tune the connection 

weights with Back Propagation process.  
The large-scale deep neural networks include iterative com-

putations which have few conditional branch operations, there-

fore they are suitable for parallel optimization in hardware. In 

this paper we first explore the hot spot using the profiler. 

Results in Fig. I illustrates the percentage of running time 

including Matrix Multiplication (MM), Activation, and Vector 

operations. For the representative three key operations: feed 

forward, Restricted Boltzmann Machine (RBM), and back 

propagation (BP), matrix multiplication play a significant role of 

the overall execution. In particular, it takes 98.6%, 98.2%, and 

99.1% of the feed forward, RBM, and BP operations. In 

comparison, the activation function only takes 1.40%, 1.48%, 

and 0.42% of the three operations. Experimental results on 

profiling demonstrate that the design and implementation of  
MM accelerators is able to improve the overall speedup 

of the system significantly.  
However, considerable memory bandwidth and computing 

resources are needed to support the parallel processing, con-

sequently it poses a significant challenge to FPGA implemen-

tations compared with GPU and CPU optimization measures. 

In order to tackle the problem, in this paper we employ tile 

techniques to partition the massive input data set into tiled 

subsets. Each designed hardware accelerator is able to buffer 

the tiled subset of data for processing. In order to support the 

 
 
 

 

 

 

large-scale neural networks, the accelerator architecture are 

reused. Moreover, the data access for each tiled subset can 

run in parallel to the computation of the hardware accelerators. 
 
 
Algorithm 1 Pseudocode Code of the Tiled 

Inputs Require: 
 

Ni: the number of the input neurons  
No: the number of the output neurons  
Tile Size: the tile size of the input data 

batchsize: the batch size of the input 

data for n = 0; n < batchsize; n + + do  
for k = 0; k < Ni; k+ = T ile Size do 

for j = 0; j < No; j + + do  
y[n][j] = 0;  
for i = k; i < k + T ile Size&&i < Ni; i + + do 

y[n][j]+ = w[i][j] x[n][i]  
if i == Ni 1 then 

y[n][j] = f(y[n][j]);  
end if  

end for  
end for  

end for  
end for  

 
In particular, for each iteration, output neurons are reused 

as the input neurons in next iteration. To generate the output 

neurons for each iteration, we need to multiply the input 

neurons by each column in weights matrix. As illustrated in 

Algorithm 1, the input data are partitioned into tiles and then 

multiplied by the corresponding weights. Thereafter the 

calculated part sum are accumulated to get the result. Besides 

the input/output neurons, we also divided the weight matrix 

into tiles corresponding to the tile size. As a consequence, the 

hardware cost of the accelerator only depends on the tile size, 

which saves significant number of hardware resources. The 

tiled technique is able to solve the problem by imple-menting 

large networks with limited hardware. Moreover, the pipelined 

hardware implementation is another advantage of FPGA 

technology compared to GPU architecture, which uses 

massive parallel SIMD architectures to improve the overall 

performance and throughput. According to the profiling results 

depicted in Table I, during the prediction process and the 

training process in deep learning algorithms, the common but 

important computational parts are matrix multiplication and 

activation functions, consequently in this paper we implement 

the specialized accelerator to speed up the matrix multiplica-

tion and activation functions. 

 

     III. DLAU ARCHITECTURE AND EXECUTION MODEL 
 

Fig. 1 describes the DLAU system architecture which 

contains an embedded processor, a DDR3 memory controller, 

a DMA module, and the DLAU accelerator. The embedded 

processor is responsible for providing programming interface 

to the users and communicating with DLAU via JTAG-UART. 

In particular it transfers the input data and the weight matrix to 

internal BRAM blocks, activates the DLAU accelerator, and 

returns the results to the user after execution. The DLAU is 

integrated as a standalone unit which is flexible and adaptive 
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Control Bus(AXI-Lite) Fig. 2.  TMMU Schematic Diagram. 
 

  

Fig. 1.  DLAU Accelerator Architecture. 

 
to accommodate different applications with configurations. The 

DLAU consists of 3 processing units organized in a pipeline 

manner: Tiled Matrix Multiplication Unit (TMMU), Part Sum 

Accumula2tion Unit (PSAU), and Activation Function Acceleration 

Unit (AFAU). For execution, DLAU reads the tiled data from the 

memory by DMA, computes with all the three processing units in 

turn, and then writes the results back to the memory.  
In particular, the DLAU accelerator architecture has 

follow-ing key features:  
FIFO Buffer: Each processing unit in DLAU has an input 

buffer and an output buffer to receive or send the data in FIFO. 

These buffers are employed to prevent the data loss caused 

by the inconsistent throughput between each processing unit.  
Tiled Techniques: Different machine learning applications 

may require specific neural net-work sizes. The tile technique 

is employed to divide the large volume of data into small tiles 

that can be cached on chip, therefore the accelerator can be 

adopted to different neural network size. Consequently the 

FPGA based accelerator is more scalable to accommodate 

different machine learning applications.  
Pipeline Accelerator: We use stream-like data passing 

mechanism (e.g. AXI-Stream for demonstration) to transfer data 

between the adjacent processing units, therefore TMMU, PSAU, 

and AFAU can compute in streaming-like manner. Of these three 

computational modules, TMMU is the primary computational unit, 

which reads the total weights and tiled nodes data through DMA, 

performs the calculations, and then transfers the intermediate Part 

Sum results to PSAU. PSAU collects Part Sums and performs 

accumulation. When the accumulation is completed, results will be 

passed to AFAU. AFAU performs the activation function using 

piecewise linear interpolation methods. In the rest of this section, 

we will detail the implementation of these three processing units 

respectively. 

 

A. TMMU architecture 
 

Tiled Matrix Multiplication Unit (TMMU) is in charge of 

multiplication and accumulation operations. TMMU is spe-cially 

designed to exploit the data locality of the weights and is 

responsible for calculating the Part Sums. TMMU employs 
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Fig. 3.  PSAU Schematic Diagram 
 
an input FIFO buffer which receives the data transferred from 

DMA and an output FIFO buffer to send Part Sums to PSAU. 

Fig. 2 illustrates the TMMU schematic diagram, in which we 

set tile size=32 as an example. TMMU firstly reads the weight 

matrix data from input buffer into different BRAMs in 32 by the 

row number of the weight matrix (n=i%32where n refers to the 

number of BRAM, and i is the row number of weight matrix). 

Then, TMMU begins to buffer the tiled node data. In the first 

time, TMMU reads the tiled 32 values to registers Reg a and 

starts execution. In parallel to the computation at every cycle, 

TMMU reads the next node from input buffer and saves to the 

registers Reg b. Consequently the registers Reg a and Reg b 

can be used alternately.  
For the calculation, we use pipelined binary adder tree 

structure to optimize the performance. As depicted in 

Fig. 2, the weight data and the node data are saved in 

BRAMs and registers. The pipeline takes advantage of 

time-sharing the coarse-grained accelerators. As a 

consequence, this im-plementation enables the TMMU 

unit to produce a Part Sum result every clock cycle. 

 

B. PSAU architecture 
 

Part Sum Accumulation Unit (PSAU) is responsible for the 

accumulation operation. Fig. 3 presents the PSAU 

architecture, which accumulates the part sum produced by 

TMMU. If the Part Sum is the final result, PSAU will write the 

value to output buffer and send results to AFAU in a pipeline 

manner. PSAU can accumulate one Part Sum every clock 

cycle, therefore the throughput of PSAU accumulation 

matches the generation of the Part Sum in TMMU. 

 
 

 
 



 
 
 
C. AFAU architecture 

Finally, Activation Function Acceleration Unit (AFAU) im-
plements the activation function using piecewise linear in-

terpolation (y=ai*x+bi, x2[x1,xi+1)). This method has been 

widely applied to implement activation functions with negli-

gible accuracy loss when the interval between xi and xi+1 is 

insignificant. Eq. (1) shows the implementation of sigmoid 
function. For x>8 and x -8, the results are sufficiently close 

to the bounds of 1 and 0, respectively. For the cases in -
8<x 0 and 0<x 8, different functions are configured. In total 

we divide the sigmoid function into four segments.  

f(x) = 8 1 + a[bx
k cx]x b[bx

kx c] if 8 < x  0 (1) 
 

 >         0 if x  8  
 

 a[ k  ]x  + b [ k  ] if 0 < x   8   

 >               

 

< 

             
 

  b  c  b  c if x > 8   
 

       

 >         1   
 

 >              
 

: 
 

Similar to PSAU, AFAU also has both input buffer and 

output buffer to maintain the throughput with other processing 

units. In particular, we use two separate BRAMs to store the 

values of a and b. The computation of AFAU is pipelined to 

operate sigmoid function every clock cycle. As a consequence, 

all the three processing units are fully pipelined to ensure the 

peak throughput of the DLAU accelerator architecture. 
 

IV. EXPERIMENTS AND DATA ANALYSIS 
 

In order to evaluate the performance and cost of the 

DLAU accelerator, we have implemented the hardware 

prototype on the Xilinx Zynq Zedboard development board, 

which equips ARM Cortex-A9 processors clocked at 

667MHz and pro-grammable fabrics. For benchmarks, we 

use the Mnist data set to train the 784 M N 10 Deep Neural 

Networks in Matlab, and use M N layers weights and nodes 

value for the input data of DLAU. For comparison, we use 

Intel Core2 processor clocked at 2.3GHz as the baseline.  
In the experiment we use Tile size=32 considering the 

hardware resources integrated in the Zedboard 

development board. The DLAU computes 32 hardware 

neurons with 32 weights every cycle. The clock of DLAU 

is 200MHz (one cycle takes 5ns). Three network sizes—

64 64, 128 128, and 256 256 are tested. 

 

A. Speedup Analysis 
 

We present the speedup of DLAU and some other similar 

implementations of the deep learning algorithms in Table  
II. Experimental results demonstrate that the DLAU is 

able to achieve up to 36.1x speedup at 256 256 network 

size. In comparison, Ly&Chows work [5] and Kim et.als 

work [7] present the work only on Restricted Boltzmann 

Machine algorithms, while the DLAU is much more 

scalable and flexible. DianNao [6] reaches up to 117.87x 

speedup due to its high working frequency at 0.98GHz. 

Moreover, as DianNao is hardwired instead of 

implemented on a FPGA platform, therefore it cannot 

efficiently adapt to different neural network sizes.  
Fig. 4 illustrates the speedup of DLAU at different network 

sizes-64 64, 128 128, and 256 256 respectively. Experi-mental 

results demonstrate a reasonable ascendant speedup 

 
 

 
 
 

TABLE II  
COMPARISONS BETWEEN SIMILAR APPROACHES 

 

Work  Network Clock Speedup Baseline 

Ly&Chow [5]  256  256 100MHz 32 2.8GHz P4 

Kim et.al [7]  256  256 200MHz 25 2.4GHz Core2 

DianNao [6]  General 0.98GHz 117.87 2GHz SIMD 

Zhang et.al [3]  256  256 100MHz 17.42 2.2GHz Xeon 

DLAU  256  256 200MHz 36.1 2.3GHz Core2  
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.  Speedup at Different Network Sizes and Tile Sizes. 

 
TABLE III  

RESOURCE UTILIZATION OF DLAU AT 32 32 TILE SIZE 
 

Component BRAMs  DSPs FFs LUTs 
TMMU 32  158 25356 32461 

      

PSAU 1  2 754 632 
      

AFAU 2  7 2216 3291 
      

Total 35  167 28326 36384 
      

Available 280  220 106400 53200 
      

Utilization 12.5%  75.9% 26.6% 68.4% 
      

 

with the growth of neural networks sizes. In particular, the 

speedup increases from 19.2x in 64 64 network size to 36.1x 

at the 256 256 network size. The right part of Fig. 4 illustrates 

how the tile size has an impact on the performance of the 

DLAU. It can be acknowledged that bigger tile size means 

more number of neurons to be computed concurrently. At the 

network size of 128 128, the speedup is 9.2x when the tile size 

is 8. When the tile size increases to 32, the speedup reaches 

30.5x. Experimental results demonstrate that the DLAU 

framework is configurable and scalable with dif-ferent tile 

sizes. The speedup can be leveraged with hardware cost to 

achieve satisfying trade-offs. 

 

B. Resource utilization and Power 
 

Table III summarizes the resource utilization of DLAU in 

32 32 tile size including the BRAM resources, DSPs, FFs, 

and LUTs. TMMU is much more complex than the rest two 

hardware modules therefore it consumes most hardware 

resources. Taking the limited number of hardware logic re-

sources provided by Xilinx XC7Z020 FPGA chip, the overall 

utilization is reasonable. The DLAU utilizes 167 DSP blocks 

due to the use of the Floating-point addition and the 

Floating-point multiplication operations.  
Table IV compares the resource utilization of DLAU with 

other two FPGA based literatures. Experimental results depict 
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TABLE IV  

RESOURCE COMPARISONS BETWEEN SIMILAR APPROACHES 
 

Implementation  FPGA  BRAMs DSPs FFs LUTs 
Ly&Chow [5]  XC2VP70  257 N/A 30403 29885 

        

Kim et.al [7]  N/A  589824 18 11790 7662 
        

DLAU  XC7Z020  35 167 28326 36384 
        

 

 
TABLE V  

POWER CONSUMPTION OF THE UNITS 
 

Component Power  Component Power 
Accelerator-TMMU 189mW  Processor 1307mW 

     

Accelerator-PSAU 5mW  DDR Controller 177mW 
     

Accelerator-AFAU 25mW  Peripherals 26mW 
     

Accelerator-DMA 15mW  Clocks 70mW 
     

Accelerator-Total 234mW  System Total 1814mW 
     

 
 
 

that our DLAU accelerator occupies similar number of FFs and 

LUTs to Ly&Chow’s work [5], while it only consumes 

35/257=13.6% on the BRAMs. Comparing to the Kim et.al’s 

work [7], the BRAM utilization of DLAU is insignificant. This is 

due to the tile techniques so that large scale neural networks 

can be divided into small tiles, therefore the scalability and 

flexibility of the architecture is significantly improved. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.  Power and Energy Comparison between FPGA and GPU  
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Fig. 6.  Floorplan of the FPGA Chip 

 

In order to evaluate the power consumption of accelerator, 

we use Xilinx Vivado tool set to achieve power cost of each 

processing unit in DLAU and the DMA module. The results in 

Table IV-B depict that the total power of DLAU is only 234mW, 

which is much lower than that of DianNao (485mW). The 

results demonstrate that the DLAU is quite energy efficient as 

well as highly scalable compared to other accelerating 

techniques. To compare the energy and power between FPGA 

based accelerator and GPU based accelera-tors, we also 

implement a prototype using the state-of-the-art NVIDIA Tesla 

K40c as the baseline. K40c has 2880 stream cores working at 

peak frequency 875MHz, and the Max Memory Bandwidth is 

288 (GB/sec). In comparison, we only employ 1 DLAU on the 

FPGA board working at 100MHz. In order to evaluate the 

speedup of the accelerators in a real deep learning 

applications, we use DNN to model 3 benchmarks, including 

Caltech101, Cifar-10, and MNIST, respectively. Fig. 5 

illustrates the comparison between FPGA based 

GPU+cuBLAS implementations. It reveals that the power 

consumption of GPU based accelerator is 364 times higher 

than FPGA based accelerators. Regarding the total energy 

consumption, the FPGA based accelerator is 10x more energy 

efficient than GPU, and 4.2x than GPU+cuBLAS optimizations. 

 

Finally Fig. 6 illustrates the floor plan of the FPGA chip. The 

left corner depicts the ARM processor which is hard-wired in 

the FPGA chip. Other modules, including different components 

of the DLAU accelerator, the DMA, and memory interconnect, 

are presented in different colors. Regarding the programming 

logic devices, TMMU takes most of the areas as it utilizes a 

significant number of LUTs and FFs. 

  
V. CONCLUSION AND FUTURE WORK 

 
In this article we have presented DLAU, which is a 

scalable and flexible deep learning accelerator based on 

FPGA. The DLAU includes three pipelined processing 

units, which can be reused for large scale neural networks. 

DLAU uses tile techniques to partition the input node data 

into smaller sets and compute repeatedly by time-sharing 

the arithmetic logic. Experimental results on Xilinx FPGA 

prototype show that DLAU can achieve 36.1x speedup with 

reasonable hardware cost and low power utilization.  
The results are promising but there are still some future 

directions, including optimization of the weight matrix and 

memory access. Also the trade-off analysis between FPGA 

and GPU accelerators is another promising direction for 

large scale neural networks accelerations. 
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