
EasyChair Preprint
№ 2206

DLAU: A Scalable Deep Learning Accelerator Unit
on FPGA

Vajja Paramesh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 19, 2019

DLAU: A Scalable Deep Learning Accelerator

Unit on FPGA

 VAJJA PARMESH,PG student,Dept of ECE,MRCE,Hyderabad,mail:-vajjaparamesh12@gmail.com

Abstract—As the emerging field of machine learning, deep

learning shows excellent ability in solving complex learning

problems. However, the size of the networks becomes

increasingly large scale due to the demands of the practical

applications, which poses significant challenge to construct a high

performance implementations of deep learning neural networks. In
order to improve the performance as well to maintain the low

power cost, in this paper we design DLAU, which is a scalable

accelerator architecture for large-scale deep learning networks

using FPGA as the hardware prototype. The DLAU accelerator

employs three pipelined processing units to improve the

throughput and utilizes tile techniques to explore locality for deep
learning applications. Experimental results on the state-of-the-art

Xilinx FPGA board demonstrate that the DLAU accelerator is able

to achieve up to 36.1x speedup comparing to the Intel Core2

processors, with the power consumption at 234mW.
Index Terms—FPGA; Deep Learning; neural network; hard-

ware accelerator.

I. INTRODUCTION

IN the past few years, machine learning has become perva-

sive in various research fields and commercial applications,
and achieved satisfactory products. The emergence of deep
learning speeded up the development of machine learning and
artificial intelligence. Consequently, deep learning has become
a research hot spot in research organizations [1].

In general, deep learning uses a multi-layer neural network
model to extract high-level features which are a combination of
low-level abstractions to find the distributed data features, in
order to solve complex problems in machine learning.
Currently the most widely used neural models of deep learning
are Deep Neural Networks (DNNs) [2] and Convolution Neural
Net-works (CNNs) [3], which have been proved to have
excellent capability in solving picture recognition, voice
recognition and
other complex machine learning tasks.

However, with the increasing accuracy requirements and

complexity for the practical applications, the size of the neural

networks becomes explosively large scale, such as the Baidu

Brain with 100 Billion neuronal connections, and the Google

cat-recognizing system with 1 Billion neuronal connections.

The explosive volume of data makes the data centers quite

power consuming. In particular, the electricity consumption of

data centers in U.S. are projected to increase to roughly 140

billion kilowatt-hours annually by 2020 [4]. Therefore, it poses

significant challenges to implement high performance deep

learning networks with low power cost, especially for large-

scale deep learning neural network models. So far, the state-

of-the-art means for accelerating deep learning algorithms are

Field-Programmable Gate Array (FPGA), Application Spe-cific

Integrated Circuit (ASIC), and Graphic Processing Unit (GPU).

Compared with GPU acceleration, hardware accel-erators like

FPGA and ASIC can achieve at least moderate performance

with lower power consumption. However, both FPGA and

ASIC have relatively limited computing resources, memory,

and I/O bandwidths, therefore it is challenging to develop

complex and massive deep neural networks using hardware

accelerators. For ASIC, it has a longer development cycle and

the flexibility is not satisfying. Chen et al presents a ubiquitous

machine-learning hardware accelerator called DianNao [6],

which initiated the field of deep learning pro-cessor. It opens a

new paradigm to machine learning hardware accelerators

focusing on neural networks. But DianNao is not implemented

using reconfigurable hardware like FPGA, therefore it cannot

adapt to different application demands. Currently around

FPGA acceleration researches, Ly and Chow
[5] designed FPGA based solutions to accelerate the Re-stricted

Boltzmann Machine (RBM). They created dedicated hardware

processing cores which are optimized for the RBM algorithm.

Similarly Kim et al [7] also developed a FPGA based accelerator

for the restricted Boltzmann machine. They use multiple RBM

processing modules in parallel, with each module responsible for a

relatively small number of nodes. Other similar works also present

FPGA based neural network accelerators [9]. Qi et al. present a

FPGA based accelerator [8], but it cannot accommodate changing

network size and network topologies. To sum up, these studies

focus on implementing a particular deep learning algorithm

efficiently, but how to increase the size of the neural networks with

scalable and flexible hardware architecture has not been properly

solved.

To tackle these problems, we present a scalable deep

learning accelerator unit named DLAU to speed up the

kernel computational parts of deep learning algorithms.

In particular, we utilize the tile techniques, FIFO buffers,

and pipelines to minimize memory transfer operations,

and reuse the comput-ing units to implement the large-

size neural networks. This approach distinguishes itself

from previous literatures with following contributions:
1. In order to explore the locality of the deep learning

TABLE I
PROFILING OF HOT SPOTS OF DNN

Algorithms Matrix Multiplication Activation Vector

Feedforward 98.60% 1.40%

RBM 98.20% 1.48% 0.30%

BP 99.10% 0.42% 0.48%

application, we employ tile techniques to partition the large

scale input data. The DLAU architecture can be configured

to operate different sizes of tile data to leverage the trade-

offs between speedup and hardware costs. Consequently

the FPGA based accelerator is more scalable to

accommodate different machine learning applications.
2. The DLAU accelerator is composed of three fully

pipelined processing units, including TMMU, PSAU, and

AFAU. Different network topologies such as CNN, DNN, or

even emerging neural networks can be composed from

these basic modules. Consequently the scalability of FPGA

based accelerator is higher than ASIC based accelerator.

 II. TILE TECHNIQUES AND HOT SPOT PROFILING

Restricted Boltzmann Machines (RBMs) have been widely

used to efficiently train each layer of a deep network. Normally

a deep neural network is composed of one input layer, several

hidden layers and one classifier layer. The units in adja-cent

layers are all-to-all weighted connected. The prediction

process contains feedforward computation from given input

neurons to the output neurons with the current network config-

urations. Training process includes pre-training which locally

tune the connection weights between the units in adjacent

layers, and global training which globally tune the connection

weights with Back Propagation process.
The large-scale deep neural networks include iterative com-

putations which have few conditional branch operations, there-

fore they are suitable for parallel optimization in hardware. In

this paper we first explore the hot spot using the profiler.

Results in Fig. I illustrates the percentage of running time

including Matrix Multiplication (MM), Activation, and Vector

operations. For the representative three key operations: feed

forward, Restricted Boltzmann Machine (RBM), and back

propagation (BP), matrix multiplication play a significant role of

the overall execution. In particular, it takes 98.6%, 98.2%, and

99.1% of the feed forward, RBM, and BP operations. In

comparison, the activation function only takes 1.40%, 1.48%,

and 0.42% of the three operations. Experimental results on

profiling demonstrate that the design and implementation of
MM accelerators is able to improve the overall speedup

of the system significantly.
However, considerable memory bandwidth and computing

resources are needed to support the parallel processing, con-

sequently it poses a significant challenge to FPGA implemen-

tations compared with GPU and CPU optimization measures.

In order to tackle the problem, in this paper we employ tile

techniques to partition the massive input data set into tiled

subsets. Each designed hardware accelerator is able to buffer

the tiled subset of data for processing. In order to support the

large-scale neural networks, the accelerator architecture are

reused. Moreover, the data access for each tiled subset can

run in parallel to the computation of the hardware accelerators.

Algorithm 1 Pseudocode Code of the Tiled

Inputs Require:

Ni: the number of the input neurons
No: the number of the output neurons
Tile Size: the tile size of the input data

batchsize: the batch size of the input

data for n = 0; n < batchsize; n + + do
for k = 0; k < Ni; k+ = T ile Size do

for j = 0; j < No; j + + do
y[n][j] = 0;
for i = k; i < k + T ile Size&&i < Ni; i + + do

y[n][j]+ = w[i][j] x[n][i]
if i == Ni 1 then

y[n][j] = f(y[n][j]);
end if

end for
end for

end for
end for

In particular, for each iteration, output neurons are reused

as the input neurons in next iteration. To generate the output

neurons for each iteration, we need to multiply the input

neurons by each column in weights matrix. As illustrated in

Algorithm 1, the input data are partitioned into tiles and then

multiplied by the corresponding weights. Thereafter the

calculated part sum are accumulated to get the result. Besides

the input/output neurons, we also divided the weight matrix

into tiles corresponding to the tile size. As a consequence, the

hardware cost of the accelerator only depends on the tile size,

which saves significant number of hardware resources. The

tiled technique is able to solve the problem by imple-menting

large networks with limited hardware. Moreover, the pipelined

hardware implementation is another advantage of FPGA

technology compared to GPU architecture, which uses

massive parallel SIMD architectures to improve the overall

performance and throughput. According to the profiling results

depicted in Table I, during the prediction process and the

training process in deep learning algorithms, the common but

important computational parts are matrix multiplication and

activation functions, consequently in this paper we implement

the specialized accelerator to speed up the matrix multiplica-

tion and activation functions.

 III. DLAU ARCHITECTURE AND EXECUTION MODEL

Fig. 1 describes the DLAU system architecture which

contains an embedded processor, a DDR3 memory controller,

a DMA module, and the DLAU accelerator. The embedded

processor is responsible for providing programming interface

to the users and communicating with DLAU via JTAG-UART.

In particular it transfers the input data and the weight matrix to

internal BRAM blocks, activates the DLAU accelerator, and

returns the results to the user after execution. The DLAU is

integrated as a standalone unit which is flexible and adaptive

DDR3

Memory Processor UART

Controller

Data Bus (AXI-Stream) B

 U

 F

 F

 E

DMA R

 DLAU

TMMU PSAU AFAU

Registers Ni1

 Reg_a1 Reg_b1 W1j

 Reg_a2 Reg_b2
Ni2

 Reg_a3 Reg_b3

 W2j

 Reg_a4 Reg_b4

 Ni3

 . . B

Reg_a31 Reg_b31 W3j U

F

 Reg_a32 Reg_b32 Ni4 F

W4j E

R

 Ni31

BRAM

 W31j

W[1][1] W[2][1] W[3][1] W[4][1] W[31][1] W[32][1]

W[1][2] W[2][2] W[3][2] W[4][2] W[31][2] W[32][2]

W[1][3] W[2][3] W[3][3] W[4][3] W[31][3] W[32][3]

W[1][4] W[2][4] W[3][4] W[4][4] W[31][4] W[32][4] Ni32

. .
. . . .

. .
. . . .

. .
. . . .

 W32j

Control Bus(AXI-Lite) Fig. 2. TMMU Schematic Diagram.

Fig. 1. DLAU Accelerator Architecture.

to accommodate different applications with configurations. The

DLAU consists of 3 processing units organized in a pipeline

manner: Tiled Matrix Multiplication Unit (TMMU), Part Sum

Accumula2tion Unit (PSAU), and Activation Function Acceleration

Unit (AFAU). For execution, DLAU reads the tiled data from the

memory by DMA, computes with all the three processing units in

turn, and then writes the results back to the memory.
In particular, the DLAU accelerator architecture has

follow-ing key features:
FIFO Buffer: Each processing unit in DLAU has an input

buffer and an output buffer to receive or send the data in FIFO.

These buffers are employed to prevent the data loss caused

by the inconsistent throughput between each processing unit.
Tiled Techniques: Different machine learning applications

may require specific neural net-work sizes. The tile technique

is employed to divide the large volume of data into small tiles

that can be cached on chip, therefore the accelerator can be

adopted to different neural network size. Consequently the

FPGA based accelerator is more scalable to accommodate

different machine learning applications.
Pipeline Accelerator: We use stream-like data passing

mechanism (e.g. AXI-Stream for demonstration) to transfer data

between the adjacent processing units, therefore TMMU, PSAU,

and AFAU can compute in streaming-like manner. Of these three

computational modules, TMMU is the primary computational unit,

which reads the total weights and tiled nodes data through DMA,

performs the calculations, and then transfers the intermediate Part

Sum results to PSAU. PSAU collects Part Sums and performs

accumulation. When the accumulation is completed, results will be

passed to AFAU. AFAU performs the activation function using

piecewise linear interpolation methods. In the rest of this section,

we will detail the implementation of these three processing units

respectively.

A. TMMU architecture

Tiled Matrix Multiplication Unit (TMMU) is in charge of

multiplication and accumulation operations. TMMU is spe-cially

designed to exploit the data locality of the weights and is

responsible for calculating the Part Sums. TMMU employs

BUFFER

 B

 U

FIFO

F

 F

 E

BRAM R

Fig. 3. PSAU Schematic Diagram

an input FIFO buffer which receives the data transferred from

DMA and an output FIFO buffer to send Part Sums to PSAU.

Fig. 2 illustrates the TMMU schematic diagram, in which we

set tile size=32 as an example. TMMU firstly reads the weight

matrix data from input buffer into different BRAMs in 32 by the

row number of the weight matrix (n=i%32where n refers to the

number of BRAM, and i is the row number of weight matrix).

Then, TMMU begins to buffer the tiled node data. In the first

time, TMMU reads the tiled 32 values to registers Reg a and

starts execution. In parallel to the computation at every cycle,

TMMU reads the next node from input buffer and saves to the

registers Reg b. Consequently the registers Reg a and Reg b

can be used alternately.
For the calculation, we use pipelined binary adder tree

structure to optimize the performance. As depicted in

Fig. 2, the weight data and the node data are saved in

BRAMs and registers. The pipeline takes advantage of

time-sharing the coarse-grained accelerators. As a

consequence, this im-plementation enables the TMMU

unit to produce a Part Sum result every clock cycle.

B. PSAU architecture

Part Sum Accumulation Unit (PSAU) is responsible for the

accumulation operation. Fig. 3 presents the PSAU

architecture, which accumulates the part sum produced by

TMMU. If the Part Sum is the final result, PSAU will write the

value to output buffer and send results to AFAU in a pipeline

manner. PSAU can accumulate one Part Sum every clock

cycle, therefore the throughput of PSAU accumulation

matches the generation of the Part Sum in TMMU.

C. AFAU architecture

Finally, Activation Function Acceleration Unit (AFAU) im-
plements the activation function using piecewise linear in-

terpolation (y=ai*x+bi, x2[x1,xi+1)). This method has been

widely applied to implement activation functions with negli-

gible accuracy loss when the interval between xi and xi+1 is

insignificant. Eq. (1) shows the implementation of sigmoid
function. For x>8 and x -8, the results are sufficiently close

to the bounds of 1 and 0, respectively. For the cases in -
8<x 0 and 0<x 8, different functions are configured. In total

we divide the sigmoid function into four segments.

f(x) = 8 1 + a[bx
k cx]x b[bx

kx c] if 8 < x 0 (1)

 > 0 if x 8

 a[k]x + b [k] if 0 < x 8

 >

<

 b c b c if x > 8

 > 1

 >

:

Similar to PSAU, AFAU also has both input buffer and

output buffer to maintain the throughput with other processing

units. In particular, we use two separate BRAMs to store the

values of a and b. The computation of AFAU is pipelined to

operate sigmoid function every clock cycle. As a consequence,

all the three processing units are fully pipelined to ensure the

peak throughput of the DLAU accelerator architecture.

IV. EXPERIMENTS AND DATA ANALYSIS

In order to evaluate the performance and cost of the

DLAU accelerator, we have implemented the hardware

prototype on the Xilinx Zynq Zedboard development board,

which equips ARM Cortex-A9 processors clocked at

667MHz and pro-grammable fabrics. For benchmarks, we

use the Mnist data set to train the 784 M N 10 Deep Neural

Networks in Matlab, and use M N layers weights and nodes

value for the input data of DLAU. For comparison, we use

Intel Core2 processor clocked at 2.3GHz as the baseline.
In the experiment we use Tile size=32 considering the

hardware resources integrated in the Zedboard

development board. The DLAU computes 32 hardware

neurons with 32 weights every cycle. The clock of DLAU

is 200MHz (one cycle takes 5ns). Three network sizes—

64 64, 128 128, and 256 256 are tested.

A. Speedup Analysis

We present the speedup of DLAU and some other similar

implementations of the deep learning algorithms in Table
II. Experimental results demonstrate that the DLAU is

able to achieve up to 36.1x speedup at 256 256 network

size. In comparison, Ly&Chows work [5] and Kim et.als

work [7] present the work only on Restricted Boltzmann

Machine algorithms, while the DLAU is much more

scalable and flexible. DianNao [6] reaches up to 117.87x

speedup due to its high working frequency at 0.98GHz.

Moreover, as DianNao is hardwired instead of

implemented on a FPGA platform, therefore it cannot

efficiently adapt to different neural network sizes.
Fig. 4 illustrates the speedup of DLAU at different network

sizes-64 64, 128 128, and 256 256 respectively. Experi-mental

results demonstrate a reasonable ascendant speedup

TABLE II
COMPARISONS BETWEEN SIMILAR APPROACHES

Work Network Clock Speedup Baseline

Ly&Chow [5] 256 256 100MHz 32 2.8GHz P4

Kim et.al [7] 256 256 200MHz 25 2.4GHz Core2

DianNao [6] General 0.98GHz 117.87 2GHz SIMD

Zhang et.al [3] 256 256 100MHz 17.42 2.2GHz Xeon

DLAU 256 256 200MHz 36.1 2.3GHz Core2

Fig. 4. Speedup at Different Network Sizes and Tile Sizes.

TABLE III

RESOURCE UTILIZATION OF DLAU AT 32 32 TILE SIZE

Component BRAMs DSPs FFs LUTs
TMMU 32 158 25356 32461

PSAU 1 2 754 632

AFAU 2 7 2216 3291

Total 35 167 28326 36384

Available 280 220 106400 53200

Utilization 12.5% 75.9% 26.6% 68.4%

with the growth of neural networks sizes. In particular, the

speedup increases from 19.2x in 64 64 network size to 36.1x

at the 256 256 network size. The right part of Fig. 4 illustrates

how the tile size has an impact on the performance of the

DLAU. It can be acknowledged that bigger tile size means

more number of neurons to be computed concurrently. At the

network size of 128 128, the speedup is 9.2x when the tile size

is 8. When the tile size increases to 32, the speedup reaches

30.5x. Experimental results demonstrate that the DLAU

framework is configurable and scalable with dif-ferent tile

sizes. The speedup can be leveraged with hardware cost to

achieve satisfying trade-offs.

B. Resource utilization and Power

Table III summarizes the resource utilization of DLAU in

32 32 tile size including the BRAM resources, DSPs, FFs,

and LUTs. TMMU is much more complex than the rest two

hardware modules therefore it consumes most hardware

resources. Taking the limited number of hardware logic re-

sources provided by Xilinx XC7Z020 FPGA chip, the overall

utilization is reasonable. The DLAU utilizes 167 DSP blocks

due to the use of the Floating-point addition and the

Floating-point multiplication operations.
Table IV compares the resource utilization of DLAU with

other two FPGA based literatures. Experimental results depict

.

TABLE IV

RESOURCE COMPARISONS BETWEEN SIMILAR APPROACHES

Implementation FPGA BRAMs DSPs FFs LUTs
Ly&Chow [5] XC2VP70 257 N/A 30403 29885

Kim et.al [7] N/A 589824 18 11790 7662

DLAU XC7Z020 35 167 28326 36384

TABLE V

POWER CONSUMPTION OF THE UNITS

Component Power Component Power
Accelerator-TMMU 189mW Processor 1307mW

Accelerator-PSAU 5mW DDR Controller 177mW

Accelerator-AFAU 25mW Peripherals 26mW

Accelerator-DMA 15mW Clocks 70mW

Accelerator-Total 234mW System Total 1814mW

that our DLAU accelerator occupies similar number of FFs and

LUTs to Ly&Chow’s work [5], while it only consumes

35/257=13.6% on the BRAMs. Comparing to the Kim et.al’s

work [7], the BRAM utilization of DLAU is insignificant. This is

due to the tile techniques so that large scale neural networks

can be divided into small tiles, therefore the scalability and

flexibility of the architecture is significantly improved.

Fig. 5. Power and Energy Comparison between FPGA and GPU

 ARM Processor Core
TMMU
PSAU
AFAU
DMA
Memory Interconnect

Fig. 6. Floorplan of the FPGA Chip

In order to evaluate the power consumption of accelerator,

we use Xilinx Vivado tool set to achieve power cost of each

processing unit in DLAU and the DMA module. The results in

Table IV-B depict that the total power of DLAU is only 234mW,

which is much lower than that of DianNao (485mW). The

results demonstrate that the DLAU is quite energy efficient as

well as highly scalable compared to other accelerating

techniques. To compare the energy and power between FPGA

based accelerator and GPU based accelera-tors, we also

implement a prototype using the state-of-the-art NVIDIA Tesla

K40c as the baseline. K40c has 2880 stream cores working at

peak frequency 875MHz, and the Max Memory Bandwidth is

288 (GB/sec). In comparison, we only employ 1 DLAU on the

FPGA board working at 100MHz. In order to evaluate the

speedup of the accelerators in a real deep learning

applications, we use DNN to model 3 benchmarks, including

Caltech101, Cifar-10, and MNIST, respectively. Fig. 5

illustrates the comparison between FPGA based

GPU+cuBLAS implementations. It reveals that the power

consumption of GPU based accelerator is 364 times higher

than FPGA based accelerators. Regarding the total energy

consumption, the FPGA based accelerator is 10x more energy

efficient than GPU, and 4.2x than GPU+cuBLAS optimizations.

Finally Fig. 6 illustrates the floor plan of the FPGA chip. The

left corner depicts the ARM processor which is hard-wired in

the FPGA chip. Other modules, including different components

of the DLAU accelerator, the DMA, and memory interconnect,

are presented in different colors. Regarding the programming

logic devices, TMMU takes most of the areas as it utilizes a

significant number of LUTs and FFs.

V. CONCLUSION AND FUTURE WORK

In this article we have presented DLAU, which is a

scalable and flexible deep learning accelerator based on

FPGA. The DLAU includes three pipelined processing

units, which can be reused for large scale neural networks.

DLAU uses tile techniques to partition the input node data

into smaller sets and compute repeatedly by time-sharing

the arithmetic logic. Experimental results on Xilinx FPGA

prototype show that DLAU can achieve 36.1x speedup with

reasonable hardware cost and low power utilization.
The results are promising but there are still some future

directions, including optimization of the weight matrix and

memory access. Also the trade-off analysis between FPGA

and GPU accelerators is another promising direction for

large scale neural networks accelerations.

REFERENCES

[1] LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015.

521: p. 436-444.
[2] Hauswald, J., et al. DjiNN and Tonic: DNN as a service and its

implications for future warehouse scale computers. in ISCA 2015.
[3] Zhang, C., et al. Optimizing FPGA-based Accelerator Design for

Deep Convolutional Neural Networks. in FPGA 2015.
[4] Thibodeau, P. Data centers are the new polluters. 2014 [cited 2015.
[5] Ly, D.L. and P. Chow, A high-performance FPGA architecture for

restricted boltzmann machines, in FPGA 2009.
[6] Chen, T., et al., DianNao: a small-footprint high-throughput accelerator

for ubiquitous machine-learning, in ASPLOS 2014. p. 269-284.

[7] Kim, S.K., et al. A highly scalable restricted boltzmann machine
FPGA implementation. in FPL 2009.

[8] Qi Yu, et al. A Deep Learning Prediction Process Accelerator
Based FPGA. CCGRID 2015: 1159-1162

[9] Jiantao Qiu, et al. Going Deeper with Embedded FPGA Platform
for Convolutional Neural Network. FPGA 2016: 26-35

.

