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Abstract
To date, we know only a few handcrafted quantified Boolean formulas (QBFs) that are hard for
central QBF resolution systems such as Q-Res and QU-Res, and only one specific QBF family to
separate Q-Res and QU-Res.

Here we provide a general method to construct hard formulas for Q-Res and QU-Res. The
construction uses simple propositional formulas (e.g. minimally unsatisfiable formulas) in combination
with easy QBF gadgets (Σb

2 formulas without constant winning strategies). This leads to a host of
new hard formulas, including new classes of hard random QBFs.

We further present generic constructions for formulas separating Q-Res and QU-Res, and for
separating Q-Res and LD-Q-Res.
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1 Introduction

The main objective in proof complexity is to study the size of proofs in different formal
proof systems. Proof complexity has its origins in computational complexity [27] with many
important connections to other fields, in particular to logic [26,33] and solving [22]. For the
latter, proof complexity provides the main theoretical tool to assess the strength of modern
solving methods.

The main objective in proof complexity – and often also the most challenging – is to show
lower bounds to the size of proofs and to obtain separations between different calculi. For
this, specific formula families are needed on which the lower bounds are demonstrated. In
propositional proof complexity and in particular for propositional resolution – arguably the
best studied system, not least because of its tight connections to SAT solving [4, 8, 22,36] –
there is a vast literature on hard formulas stemming from diverse areas such as combinatorics
(e.g. [21, 29]), graph theory [39], logic [32], random formulas [7], and many more [33,37].

In comparison, proof complexity of quantified Boolean formulas (QBF) is at an earlier
stage. As in the propositional domain, QBF resolution systems received key attention, of
which Q-Resolution (Q-Res, [31]) and QU-Resolution (QU-Res, [40]) are the most important
base systems. They augment the propositional resolution system by a simple universal
reduction rule allowing to eliminate certain universal variables from clauses.

As in SAT, QBF resolution systems are intricately connected to QBF solving (cf. [18] for
a recent overview), with Q-Res and its extension long-distance Q-Resolution (LD-Q-Res, [5])
corresponding to quantified conflict-driven clause learning (QCDCL) (cf. [14, 18,34,41]).

In contrast to the multitude of hard formulas for propositional resolution, we are somewhat
short of interesting QBF families that are amenable to a proof-theoretic study. Only a handful
of QBF families (and their modifications) have been used for lower bounds and separations
in the QBF literature. The most prominent of these are arguably the KBKF formulas from
the very first article [31] that introduced Q-Res. The other ‘notorious’ QBF families are the
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2 Classes of Hard Formulas for QBF Resolution

equality formulas [11], the parity formulas [15], and the CR formulas [30]. Together these
more or less comprise the formula toolbox of QBF proof complexity and are used for almost
all of the known separations.

It would thus be desirable to have more interesting and natural QBFs that can be shown
to be hard for Q-Res or QU-Res. More such QBFs would not only be valuable for proof
complexity, but also for solving where they can be used as benchmarks to compare different
solving techniques.1

It is also not so easy to tap into the fund of hard propositional formulas. While the
existentially quantified version of each CNF that is hard for propositional resolution is
trivially also hard for Q-Res and QU-Res, we are rather interested in ‘genuine’ QBF hardness
that stems from quantifier alternations and not from the propositional base system.2

Our Contributions. Our contributions can be summarised as follows.
(1) Hard QBFs for Q-Res and QU-Res. We introduce a generic construction to obtain
large classes of QBFs that are hard for Q-Res and QU-Res. The construction uses two key
ingredients: (i) suitable propositional base formulas and (ii) simple QBF gadgets. The
propositional base formula needs to have a sufficiently large set of clauses that we identify
as ‘critical’, e.g. all minimally unsatisfiable formulas meet that requirement. Otherwise, the
base formulas can be quite simple (and in particular can be easy for propositional resolution).
The QBF gadget must be a false Σb

2 formula without a constant winning strategy for the
universal player in the evaluation game for QBFs. Otherwise, the gadgets can again be quite
simple.

We then combine the propositional base formula with the QBF gadgets in a rather
straightforward way to obtain Σb

3 QBFs that require exponential-size proofs in Q-Res and
QU-Res. The lower bound follows by the size-cost lower-bound technique [11] that always
yields ‘genuine’ QBF lower bounds, i.e., our construction yields ‘genuinely’ hard QBFs in the
sense discussed above.

We illustrate our method with a couple of examples. These include the equality for-
mulas [11] (which actually inspired our construction), new circle, equivalence, and XOR
formulas, as well as a large class of random QBFs.
(2) Separations between Q-Res and LD-Q-Res. We show that our construction above
yields QBFs that exponentially separate the systems Q-Res and LD-Q-Res, if the propositional
base formulas are easy for propositional resolution and the QBF gadgets are easy for Q-Res.
These conditions are met by all our examples above.

This should be welcome news as we previously knew of only very few formulas (essentially
KBKF, equality, and parity) that separate Q-Res from LD-Q-Res [11, 15,23,28].
(3) Separations between Q-Res and QU-Res. To obtain separations between Q-Res
and QU-Res, we first modify the Σb

3 prefix of the QBFs constructed in (1) to an unbounded
‘interleaved’ prefix. These ‘interleaved’ QBFs become easy for Q-Res (while still retaining
hardness for treelike Q-Res), but a further ‘tail’ construction (inspired by KBKF) modifies
them into QBFs that become hard for Q-Res, yet easy for QU-Res.

In comparison to our quite transparent method in (1) above, the technical details of
these constructions are somewhat more involved. Yet again we obtain a large class of

1 A track of crafted formulas was introduced into QBFEval 2020 and a tool to generate the mentioned
QBF families was presented in [19].

2 A formal framework for ‘genuine’ QBF hardness was introduced in [17]. All the mentioned QBF
examples – KBKF, equality, and parity – are genuinely hard in this sense.
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Figure 1 The simulation order of QBF proof systems mentioned in this article and our contri-
butions to formulas for lower bounds and separations. A B : A simulates B + exponential
separation; A B : A and B are incomparable; A B : B does not simulate A.

QBFs separating Q-Res and QU-Res. Previously, the KBKF formulas were the only known
separating example [10,31,40]. Interestingly, all formulas we construct in (3) have unbounded
quantifier complexity, which we know must be the case for a separation of QU-Res from
Q-Res [12, 25].

The simulation order of the proof systems mentioned in this paper as well as pointers to
the relevant results are shown in Figure 1.

Organisation. We start in Section 2 with preliminaries on QBF and the relevant proof
systems. Section 3 contains our generic construction of hard QBFs together with a couple of
examples. QBFs separating LD-Q-Res from Q-Res and of QU-Res from Q-Res are constructed
in Sections 4 and 5, respectively. We conclude in Section 6 with some open questions.

2 Preliminaries

A CNF (conjunctive normal form) is a conjunction of disjunctions of literals. The disjunctions
are called clauses. A literal l is a propositional variable x or its negation x, we write vars(l) = x.

QBFs. A quantified Boolean formula (QBF) in closed prenex form ϕ = P · φ consists
of a quantifier prefix P and a propositional formula φ, called the matrix. The prefix is
a series of quantifiers Q ∈ {∀,∃}, each followed by a set of variables. For a closed QBF
(which we only consider here), P quantifies exactly the variables occurring in φ. Thus, for
P = Q1X1Q2X2 . . . QnXn, the matrix φ is a formula in variables

⋃
i∈[n] Xi and we write

vars(P · φ) = vars(φ) =
⋃

i∈[n] Xi. As there are no free variables in a closed QBF, it is either
true or false. We write vars∃(φ) for the set of existential variables in P · φ and vars∀(φ) for
those associated with ∀. A QCNF is a QBF with a CNF matrix.

An assignment assigns truth values to variables. We denote by vα the value of a variable
v under an assignment α. We write ⟨V ⟩ for the set of all possible assignments to V ,
⟨χ⟩ = ⟨vars(χ)⟩ for the assignments of a propositional formula χ and ⟨ϕ⟩ = ⟨P · φ⟩ = ⟨φ⟩ for
those of a QBF ϕ = P · φ. A clause C or a (propositional) formula χ can be restricted by an
assignment α: C↾α := {v ∈ C | vα = 0} ∪ {v ∈ C | vα = 1} and χ↾α := {C↾α | C ∈ χ}.

Closed QBFs can be viewed as a game between an existential and a universal player
generating a total assignment [38]. The players assign truth values to all variables in the order
of the quantifier prefix (the existential player chooses the values for existential variables, the
universal player those for universals). The existential player wins, if the generated assignment
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Axiom

Q-Res

QU-Res

LDQ-Res

∀Red

C
C1 ∪ {x} C2 ∪ {x}

C1 ∪ C2

C1 ∪ {x} C2 ∪ {x}
C1 ∪ C2

C1 ∪ {x} C2 ∪ {x}
C∗

1 ∪ C∗
2 ∪ U∗

C ∪ {u}
C

C is a non-tautologous clause in the matrix φ.

C1 ∪ C2 is non-tautologous; x ∈ vars∃(ϕ).

C1 ∪ C2 is non-tautologous.
l∗ = l ∨ l, {l∗} = {l, l} for any literal l;
C∗

1 = C1 \ (C1 ∩ C2); C∗
2 = C2 \ (C1 ∩ C2);

U∗ = {u∗ | u ∈ vars(C1 ∩ C2)}; x ∈ vars∃(ϕ);
C1 ∪ C2 does not contain any existential tau-
tologies; any u ∈ vars(U∗) is quantified right of
x in P.
u ∈ vars∀(ϕ) and quantified right of each
existential variable in C regarding P.

Figure 2 Rules of the QBF proof systems Q-Res, QU-Res and LD-Q-Res for a QBF ϕ = P.φ.

satisfies the matrix; otherwise the universal player wins. For a closed QBF, there is always a
winning strategy for one of the two players. We call this game the assignment game.

A countermodel is a winning strategy for the universal player. We define strategy size in
accordance with [9]:

▶ Definition 1 (Strategy Size ρ [9]). Let ϕ be a false QBF. We refer to the smallest cardinality
of the range of a countermodel for ϕ as the strategy size ρ(ϕ) of ϕ.

Proof systems. Resolution (Res) is a refutational proof system for propositional formulas
with only two inference rules: For a input formula χ, we can derive any C ∈ χ as an axiom
and from two Clauses C1 ∪ {x}, C2 ∪ {x} we can derive the resolvent C1 ∪ C2 by Resolution
over the pivot x.

Q-Res [31] transfers Resolution from propositional logic to QBF. It uses the resolution rule
(Q-Res) which only allows existential pivots and forbids tautologous resolvents. Universal
variables are eliminated by universal reduction (∀Red). The rules are given in Figure 2.

QU-Res [40] extends the weaker system Q-Res by allowing resolution also over universal
pivots in its resolution rule QU-Res. Nevertheless Q-Res is refutationally sound and complete.

LD-Q-Res [5] is an extension of Q-Res which allows long-distance resolution steps under
certain conditions (see Figure 2 for the definition of the resolution rule LDQ-Res), allowing
tautological resolvents. The ∀Red rule is modified such that merged universal literals from
long distance steps can also be reduced under the same conditions as usual universal variables.

The size of a proof π, denoted |π|, is the number of clauses in π. A proof system S

p-simulates a system S′, if every S′ proof can be transformed in polynomial time into an S

proof of the same formula.

3 Construction of Hard Formulas for QU-Res

We start by recalling the lower-bound technique for QU-Res via cost from [11].

▶ Definition 2 (Cost). We consider all countermodels for a false QBF ϕ and determine
for each of them the largest range on a single universal block. The minimum over these
cardinalities is the cost of ϕ.
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For Σb
3 formulas (i.e., with only one universal block), cost coincides with strategy size

(Definition 1). Cost is an absolute lower bound for proof size in QU-Res (and Q-Res):

▶ Theorem 3 ( [11]). Let ϕ be a false QCNF. Then QU-Res refutations of ϕ have size at
least cost(ϕ).

The equality formulas from [11] have exponential cost and are therefore hard for QU-Res:

▶ Definition 4 (Equality formulas [11]). For n ∈ N we define the nthequality formula as

EQn = ∃x1 . . . xn∀u1 . . . un∃t1 . . . tn ·

 ⋃
i∈[n]

{
{xi, ui, ti}, {xi, ui, ti}

}∪{{t1, . . . , tn}} . (1)

We take the equality formulas as a starting point and then subsequently generalize
their construction. The underlying principle of the equality formulas is to enforce a unique
universal winning strategy of exponential size. In the case of equality, the winning strategy is
to assign ui = xi. The formulas can be understood as being based on a simple propositional
formula consisting of the clause {t1, . . . , tn} and unit clauses {t1}, . . . , {tn}, into which this
exponential size winning strategy is injected through adding the x and u variables.

Based on this intuition, we outline a general construction for hard QBFs, comprising the
following steps:

Find a family (χi)i∈N of propositional formulas whose nthmember χn has at least n critical
clauses (we define that notion in Definition 5).
Find QBF gadgets (defined in Definition 9) that enforce exponential strategy size.
Connect the two components such that any winning strategy has exponential range and
forces the existential player to lose on the propositional formula.

3.1 Suitable Propositional Formulas
Let us first formally define the afore mentioned critical clauses:

▶ Definition 5 (critical clauses). For an unsatisfiable propositional formula χ we call a clause
C ∈ χ critical, if χ \ {C} is satisfiable. We call a set C ⊆ χ critical, if any C ∈ C is critical.

Note that for a minimally unsatisfiable formula, every subset of clauses is critical.
We now have a look at some suitable propositional formula families. We will denote the

critical clauses by C = {Ci | i ∈ [n]} and by D = {Di | i ∈ [|χn| − n]} the remaining clauses.
The subset of critical clauses can be chosen in more than one way, but for each example we
make a specific choice that we will also use later in the construction of the hard QBFs.

The underlying propositional formulas from the equality formulas are:

▶ Example 6 (Simple Contradiction). SCn = {D1} ∪
⋃

i∈[n]{Ci} with D1 = {t1, . . . , tn} and
Ci = {ti} for i ∈ [n]. Note that SCn is minimally unsatisfiable.

In addition, we consider two further running examples.

▶ Example 7 (Implication Chain). ICn =
⋃

i∈[n]{Ci} with Ci = {ti−1, ti} for i ∈ [1, n − 2]
and Cn−1 = {t0}, Cn = {tn−2}. In this minimally unsatisfiable formula we set D = ∅.

▶ Example 8 (Equivalence Chain). ECn =
(⋃

i∈[n]{Ci, Di}
)

∪ {Dn+1, Dn+2} with Ci =
{ti−1, ti}, Di = {ti−1, ti} for i ∈ [n] and Dn+1 = {t0, tn}, Dn+2 = {t0, tn}. Note that even
though the formula is minimally unsatisfiable, we can choose a large set D.
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3.2 QBF Gadgets
We now define the second ingredient of our construction, the QBF gadgets:

▶ Definition 9 (QBF Gadget). A QBF gadget is a false Σb
2 QBF ϕ = P · φ with only

non-constant winning strategies, i.e., there is no strategy to falsify ϕ that uses only one fixed
assignment to the variables in the universal block.

In fact, it is not necessary to restrict gadgets to Σb
2 formulas, but it is sufficient for our

purposes and simplifies constructions and proofs.
The equality formulas can be understood to use the equality gadget:

▶ Example 10 (Equality Gadget). EQ = ∃x∀u · {{x, u}, {x, u}}.

Note that the gadget is equivalent to ∃x∀u · x ̸↔ u, so the unique winning strategy for
the universal player is u = x. Therefore it is a QBF gadget.

To see more clearly, how the equality formulas are composed from the gadget and the
propositional base formulas SCn, we could restate (1) as

∃x1 · · ·xn∀u1 · · ·un∃t1 · · · tn ·

(
n∧

i=1
((xi ↔ ui) → t̄i)

)
∧

(
n∨

i=1
ti

)
. (2)

The formulas (1) are then simply a transformation of (2) into CNF. Note that the gadget is
not inserted into all clauses, but only into the chosen set of critical clauses of SCn.

The equality gadget is arguably the simplest QBF gadget and except for ∃x∀u · x ↔ u

the only one in two variables. Nevertheless, it is easy to construct many further gadgets. As
an example, we consider the XOR gadget ∃x1x2∀u · (x1 ⊕ x2) ̸↔ u, which has the unique
winning strategy u = x1 ⊕ x2.

▶ Example 11 (XOR Gadget). XOR = ∃x1x2∀u·
{{x1, x2, u}, {x1, x2, u}, {x1, x2, u}, {x1, x2, u}}.

It is also possible to construct gadgets with more than one universal variable, e.g. by
using functions with more than one (logical) output variable (e.g. a half adder). We will use
this approach to get random gadgets in Section 3.5.

3.3 Hard Formulas for QU-Res
We now want to combine the described propositional formulas with QBF gadgets.

We need a QBF gadget for each clause in a sufficiently large set of critical clauses. As
we intend to construct families of hard QBFs, for any n ∈ N we first collect a sequence of
n QBF gadgets whose variables are pairwise disjoint. The simplest way to obtain such a
sequence is to choose n instances of the same gadget for each n ∈ N. Another possibility
would be to insert different gadgets into the critical clauses, e.g. we could choose them from
the previously mentioned examples.

We define the product φ×C of a formula φ and a clause C as φ×C := {D∪C | D ∈ φ}.
Our first main result follows:

▶ Theorem 12. Let Φn = (ϕi)i∈[n] = (∃Xi∀Ui · φi)i∈[n] be a sequence of variable disjoint
QBF gadgets and χn a propositional formula with a set C = {C1, . . . , Cn} of critical clauses
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and a set D of remaining clauses. Set Tn = vars(χn) and let χn have no common variables
with

⋃
i∈[n](Xi ∪ Ui). Then

χΦ
n = ∃X1 . . . Xn∀U1 . . . Un∃Tn

 ⋃
i∈[n]

{φi × {Ci}}

 ∪ D

requires QU-Res refutations of size at least 2n.

We first show that the following holds:

▶ Lemma 13. Let Φn, χn, and χΦ
n be as described in Theorem 12. Then any winning strategy

for χΦ
n is a combination of winning strategies of the used gadgets in Φn.

Proof. Obviously, χΦ
n is false: It is sufficient to combine the winning strategies of the gadgets

(these are variable-disjoint and false). The existential player then has to satisfy the formula
χn by assigning the variables in Tn, but he cannot succeed because χn is unsatisfiable.

We now consider an arbitrary winning strategy S for χΦ
n . We first argue that S must

falsify each gadget: If it would satisfy the matrix φi of a gadget ϕi, it would also satisfy
all clauses φi × {Ci} in χΦ

n stemming from φi. This relieves the existential player from the
burden of having to satisfy all the clauses in C. By not satisfying Ci (because the concerned
clauses are already satisfied), he can find a satisfying assignment for the remaining clauses
in χn, since Ci is critical. Since all variables from χn are quantified in the last block, the
existential player can react accordingly. Thus, he succeeds in satisfying the matrix of χΦ

n ,
which means that S is not a winning strategy.

So let us assume that S falsifies the matrix of each gadget. Then S contains a winning
strategy for each gadget contained in χΦ

n , which, due to their variable disjointness, implies
the claim of the lemma. ◀

Proof of Theorem 12. We know from Lemma 13 that any winning strategy S for χΦ
n is

composed of winning strategies for the single gadgets. As the n gadgets in χΦ
n do not have

constant winning strategies and are variable disjoint, the combination of winning strategies
must have range at least 2n, i.e., χΦ

n has cost ≥ 2n. By Theorem 3 this implies QU-Res
refutations of size at least 2n. ◀

In this way, we get a large collection of formulas that are hard for QU-Res (and hence
also for Q-Res). The constructed formulas all have a Σb

3 prefix, which is the result of using
Σb

2 gadgets. The Σb
3 case is probably also the most natural setting as the size-cost technique

from Theorem 3 essentially works for Σb
3 formulas. However, as mentioned, the restriction

to Σb
2-gadgets is not necessary (we then only have to give some thought on how to suitably

compose the prefix and define the non-constant property) This also allows the construction
of formulas with more complex prefixes (incl. unrestricted).

3.4 Examples
Let us look at some example formulas which can be constructed using the propositional base
formulas and the equality gadget, all of them exponentially hard for QU-Res.

▶ Example 14 (Equality Formulas [11]). The equality formulas (Definition 4) arise from
applying the equality gadgets to the simple contradiction formulas: EQn = SCEQ

n .



8 Classes of Hard Formulas for QBF Resolution

▶ Example 15 (Circle Formulas). Consider now the application of equality gadgets to the
implication chain formulas. For n > 1 we obtain the QBFs

ICEQ
n =∃x1, . . . , xn∀u1, . . . , un∃t0, . . . , tn−2·(

n−2⋃
i=1

{
{ui, xi, ti−1, ti}, {ui, xi, ti−1, ti}

})
∪
{

{un−1, xn−1, t0}, {un−1, xn−1, t0}, {un, xn, tn−2}, {un, xn, tn−2}
}

.

▶ Example 16 (Equivalence Formulas). Instead of the implication chain, we can also use the
equivalence chain EC. Applying equality gadgets on these formulas, we get

ECEQ
n = ∃x1 . . . xn∀u1 . . . un∃t0 . . . tn ·

 ⋃
i∈[n]

{Ci,1, Ci,2, Di}

 ∪ {Dn+1, Dn+2}

with clauses Ci,1 = {xi, ui, ti−1, ti}, Ci,2 = {xi, ui, ti−1, ti}, Di = {ti−1, ti} for i ∈ [n] and
Dn+1 = {t0, tn}, Dn+2 = {t0, tn}.

We would argue that the circle and equivalence formulas are almost as canonical and
intuitive as the already familiar equality formulas.

▶ Example 17 (XOR Formulas). We combine the XOR gadgets (Example 11) with SC:

SCXOR
n =∃x1

1x
2
1 . . . x

1
nx

2
n∀u1 . . . un∃t1 . . . tn· ⋃

i∈[n]

{
{x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}

}
∪ {t1, . . . , tn}.

3.5 Random Formulas
Using our construction, it is also quite straightforward to obtain various random QBFs. For
this we construct gadgets from Boolean functions. We need the following notion:

▶ Definition 18 (F -satisfying Assignment). For X = {x1, . . . , xa}, U = {u1, . . . , ub} and a
function F : ⟨X⟩ → ⟨U⟩ we call an assignment α ∈ ⟨X ∪ U⟩ F -satisfying iff F (xα

1 . . . x
α
a ) =

uα
1 . . . u

α
b .

▶ Definition 19 (Fa,b-Gadget). An Fa,b-gadget is built from a non-constant Boolean function
F : {0, 1}a → {0, 1}b as follows: We introduce sets of variables X = {x1, . . . , xa} and U =
{u1, . . . , ub}. Consider F as function from ⟨X⟩ to ⟨U⟩. For any F -satisfying assignment α
we add the clause {v | vα = 0} ∪ {v | vα = 1}. We call the following QBF an Fa,b-gadget:

RGF
a,b = ∃x1 . . . xa∀u1, . . . ub · {{v | vα = 0} ∪ {v | vα = 1} | α is F -satisfying}.

We check that Fa,b-gadgets satisfy the required properties:

▶ Lemma 20. Let RGF
a,b be an Fa,b-gadget based on a Boolean function F : {0, 1}a → {0, 1}b

as described in Definition 19. Then RGF
a,b is a QBF gadget.

Proof. Obviously, any such QBF is a Σb
2 formula. To argue for its falsity, let us consider

the assignment game: First, the existential player assigns the X-variables. Let α be the
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F -satisfying extension of the chosen assignment to X ∪U , i.e., F (xα
1 . . . x

α
a ) = uα

1 . . . u
α
b . The

strategy of the universal player is now to assign U according to α. This will falsify the
clause {v | vα = 0} ∪ {v | vα = 1} and thus the whole QBF. Thus the strategy following F
is apparently a winning strategy. The non-constancy is also clear as the function F is not
constant: Suppose, there was a constant winning strategy and {lu1 , . . . , lub } was its negation
pattern on {u1, . . . , ub} (i.e. lui = ui iff ui is assigned 0 in the strategy and lui = ui else). A
winning strategy always falsifies a clause, so for every possible assignment to the existential
variables, there needs to be a clause containing the inverse negation pattern of this assignment
and {lu1 , . . . , lub }. Since every clause is based on a F -satisfying assignment (by definition), we
see that F is constant, which violates the assumptions. ◀

There are (2b)(2a) − 2b different non-constant functions with a inputs and b outputs. Each
of them leads to an Fa,b-gadget. Such a gadget uses 2a clauses, containing a+ b literals each.

For the construction of random formulas, we need multiple gadgets. A possible procedure
to construct sequences of random gadgets is to set lower and upper bounds for a, b, for each
i ∈ [n] choose parameters ai, bi randomly within the bounds and then obtain a Fai,bi -gadget
from a randomly chosen non-constant function F : {0, 1}ai → {0, 1}bi (repeating this process
for each index n ∈ N).

We also want to randomly choose the propositional base formulas. Each clause of a
minimally unsatisfiable formula is critical, so we focus on generating minimally unsatisfiable
formulas. A full characterization of minimally unsatisfiable 2-CNFs was recently given in [3]
(see also [1, 2]). We can use this characterization to obtain the propositional part of our
construction (thereby restricting ourselves to 2-CNFs). This includes the ICn formulas (the
implication chain formulas), but not the SCn formulas (simple contradiction formulas).

The work [1] also describes a generation procedure for special minimally unsatisfiable
formulas that are 2-CNFs with deficiency one (exactly one clause more than the number
of variables). Using the approach described there with a small modification (allowing C1
and C2 to contain more than one literal) enables us to generate unsatisfiable deficiency one
formulas (which are not necessarily 2-CNFs):

▶ Lemma 21. Consider the following construction method:
Start with F0 := {⊥}. Repeat the following steps for i = 1, . . . , n:
Choose a clause C ∈ Fi−1 at random (set C := {} if Fi−1 = ⊥).
Choose C1 and C2 with C1 ∪ C2 = C.
Build Fi = Fi−1 \ {C} ∪ {C1 ∪ {v}} ∪ {C2 ∪ {v}} for some v /∈ vars(Fi−1).

The formulas constructed according to this method are minimally unsatisfiable.

Proof. We show this by induction: Clearly, F0 = {⊥} is minimally unsatisfiable. No we
consider Fi+1. To get Fi+1 from Fi we choose a new variable v, a clause C ∈ Fi (or C = {}
for F1) and a decomposition C1 ∪ C2 = C. Now we replace C by C1 ∪ {v} and C2 ∪ {v}. At
this point it is very easy to modify a proof of resolution for Fi to one for Fi+1: We just have
to replace any axiom C by the resolution from C1 ∪ {v} and C2 ∪ {v} to C. Thus we already
know that Fi+1 is unsatisfiable.

Now, to show minimality, have a look at the single clauses. We distinguish two cases:
Suppose first, we omit a clause D ∈ Fi \ {C} from Fi+1. We know from induction that Fi

is minimally unsatisfiable, thus Fi \ {D} is satisfiable. A satisfying assignment to Fi \ {D}
satisfies C = C1 ∨ C2, i.e. it satisfies at least one of C1 and C2 resp. C1 ∪ {v} and C2 ∪ {v}.
The second can easily be satisfied by extending the assignment to v (with the appropriate
value). The resulting assignment satisfies Fi+1 \ {D}.
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For the second case, suppose we omit w.l.o.g C1 ∪ {v} (the case of omitting C2 ∪ {v}
is analogous). We know by induction that there is a satisfying assignment to Fi \ {C}.
Extending this assignment by v = 0 satisfies C2 ∪ {v} and thus Fi+1 \ {C1 ∪ {v}}. ◀

Now SCn can be obtained in this way.
Combining random QBF gadgets (according to Lemma 20) with random minimally

unsatisfiable formulas, we get random QBFs, which are hard for QU-Res by Theorem 12:

▶ Proposition 22. Let Φn = (ϕi)i∈[n] be a sequence of random (ai, bi)-gadgets, χn a random
minimally unsatisfiable formula with n clauses and Tn = vars(χn). Then any QU-Res
refutation of χΦ

n (constructed as in Theorem 12) has length at least 2n.

Let us briefly compare our random QBFs with the hard random formulas presented in [11].
The formulas in [11] resemble our formulas, but with one major difference: the QBFs in [11]
are only false and hard with high probability. In contrast, we construct QBFs that are always
hard and false by design. The random formulas from [11] can be understood to be based
on the SC formulas. To this they add a random construction that is akin to a QBF gadget,
but only yields one with high probability. Note that in our construction here, we can choose
both the propositional base formulas and the QBF gadgets randomly.

Finally, let us give a specific construction for random QBFs.

▶ Example 23 (Random SC). To keep the example as simple as possible, we again resort to
the SC formulas. As we assemble the gadgets, we will set a and b fixed at a = 2, b = 1, instead
of randomly choosing these parameters. Thus, all gadgets will be random F1,2-gadgets. There
are 24 − 2 = 16 such gadgets (resp. functions) from which we can choose. We construct
SCRG

n as follows: Let (Fi)i∈[n] be a sequence of randomly chosen non-constant functions
Fi : {0, 1}2 → {0, 1} for i ∈ [n] and RGn = (RGFi

2,1)i∈[n] the sequence of the associated
gadgets in variables x1

i , x
2
i and ui each, i.e. RGFi

2,1 = ∃x1
ix

2
i ∀ui · φi. We build

SCRG
n = ∃x1

1x
2
1 . . . x

1
nx

2
n∀u1 . . . un∃t1 . . . tn ·

 ⋃
i∈[n]

{
φi × {ti}

} ∪ {{t1, . . . , tn}} .

These formulas have n clauses with four literals each (three from the gadget and one from a
critical clause in SCn) and the additional clause with all the positive t literals.

Their hardness follows directly from Proposition 22 and the construction of SCRG
n :

▶ Corollary 24. Any QU-Res refutation of SCRG
n has size at least 2n.

4 Formulas Separating Q-Res and LD-Q-Res

We now prove that most of our constructed QBFs, including all the explicit examples and
the random formulas, separate Q-Res and LD-Q-Res. This requires just one further natural
condition, namely that the propositional base formulas have polynomial-size propositional
resolution refutations and the QBF gadgets have polynomial-size Q-Res refutations.

In fact, instead of LD-Q-Res we can even use a weaker system, so-called reductionless
LD-Q-Res [13,20,35], which is a strict fragment of LD-Q-Res [13]. This system allows merging
as in LD-Q-Res but no universal reduction, i.e., any refutation ends with a purely universal
clause. In other words, it includes LD-Q-Res refutations in which all universal reductions
occur at the end of the derivation.
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▶ Theorem 25. For n ∈ N let Φn be sequences of QBF gadgets with polynomial-size Q-Res
refutations and χn propositional formulas with polynomial-size resolution refutations. Let
Φn = (ϕi)i∈[n] = (∃Xi∀Ui · φi)i∈[n] and χn = C ∪ D with critical clauses C = {C1, . . . , Cn},
additional clauses D, Tn = vars(χn) and vars(χn) ∩

(⋃
i∈[n]{Xi ∪ Ui}

)
= ∅. Then χΦ

n (as in
Theorem 12) has polynomial-size refutations in reductionless LD-Q-Res.

Proof. We consider the formula χΦ
n . Let Rn be polynomial-size resolution refutations of χn

and S1, . . . , Sn polynomial-size LD-Q-Res refutations3 of the gadgets ϕ1, . . . , ϕn. Let S′
i be

as Si, but without the final universal reduction steps. Let U∗
i be the set of (possibly merged)

universal variables in the last clause of the resulting derivation. We can enlarge every clause
in S′

i by Ci and get a derivation S∗
i of Ci ∪ U∗

i from ∃Xi∀Ui∃Tn · φi × {Ci}. Now we can
enlarge every Ci in Rn by U∗

i . This extension runs through the entire proof4 and we obtain
a reductionless LD-Q-Res derivation R∗

n of
⋃

i∈[n] U
∗
i , which we can complete to a refutation

by universal reduction. The composition of the proof is shown in Figure 3. ◀

By Theorem 12 (the formulas are hard for QU-Res) and Theorem 25 (which provides
short LD-Q-Res refutations) the following holds:

▶ Corollary 26. The formulas χΦ
n from Theorem 25 separate QU-Res from (reductionless)

LD-Q-Res.

φ1 × {C1} . . . φn × {Cn}

C1 ∪ U∗
1 . . . Cn ∪ U∗

n D

⋃
i∈[n] U

∗
i

{}

S∗
1 S∗

n

∀red

R∗
n

Figure 3 Polynomial-size LD-Q-Res refuta-
tions for χΦ

n .

Note that all examples from Section 3.4
satisfy the required conditions and are there-
fore separating formulas. Furthermore the ran-
dom formulas from Section 3.5 are based on
either propositional 2-CNFs, which are known
to have short resolution refutations, or a defi-
ciency one formula constructed with the proce-
dure described there, which at the same time
provides a polynomial-size resolution refutation
(viewed backwards, each step of the algorithm
can be transformed into a resolution step with
the newly introduced variable as a pivot). Thus
all the random formulas separate QU-Res from
reductionless LD-Q-Res.

For the next insight we need a result from [16]:

▶ Theorem 27 ( [16]). For any QBF ϕ, if π is a treelike P+∀red proof of ϕ (where P is a
propositional proof system), then |π| ≥ ρ(ϕ) (where ρ(ϕ) is the strategy size from Definition 1).

This implies that all the formulas we have constructed so far, including the random QBFs,
are hard for all tree-like P+∀red systems.

▶ Corollary 28. If χΦ
n is a QBF as described in Theorem 12, then any refutation of χΦ

n in
treelike P+∀red systems has length at least 2n.

3 Note that for Σb
2-formulas the systems Q-Res and LD-Q-Res are equivalent. A Q-Res refutation of such

a formula is just a resolution refutation of the restriction of the formula to its existential variables with
some reductions, which can be moved towards the beginning of the proof (since the universal block is
rightmost). Allowing merging, we can move the reductions to the end without any problems.

4 There can not be any conflicts in form of tautologous resolvents, since the U∗
i are pairwise variable

disjoint.
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This leads to an interesting fact:

▶ Proposition 29. Treelike reductionless LD-Q-Res is not simulated by treelike QBF extended
Frege systems (EF+∀red).

Proof. The polynomial-size reductionless LD-Q-Res refutations shown in the proof of Theo-
rem 25 are treelike, as long as the resolution refutation of the propositional formula and the
reductionless LD-Q-Res refutation of the gadgets are (it is easy to find examples for both).
Since EF+∀red is the extension of propositional extended Frege by universal reduction and
all the formulas we constructed have exponential strategy size, the results immediately follow
from Theorems 25 and 27. ◀

This is surprising because reductionless LD-Q-Res itself is not a very strong proof system;
certainly the treelike variant is not either. Reductionless LD-Q-Res does not even simulate
Q-Res (the two systems are in fact incomparable [35]). This is interesting to contrast with
the recent simulation of LD-Q-Res (and even stronger systems) by QBF Frege [24]. The
simulation there is quite non-trivial and highly dag-like. Proposition 29 above means that it
cannot be strengthened to a tree-preserving simulation.

5 Construction of Separating Formulas between Q-Res and QU-Res

We now want to construct QBFs that separate Q-Res and QU-Res. As an intermediate step,
we will build QBFs that are easy for Q-Res but have exponential strategy size. We will use
the equality QBFs from the previous sections as running example, and, in fact, only change
the prefix (and add some conditions on the underlying propositional formulas for the general
case). We will then use such false QBFs with exponential strategy size and short Q-Res
refutations to construct a large class of formulas to separate Q-Res from QU-Res.

5.1 Formulas with Exponential Strategy Size and Short Q-Res
Refutations

{xi, ui, ti} {t1, . . . , ti} {xi, ui, ti}

{t1, . . . , ti−1, xi, ui} {t1, . . . , ti−1, xi, ui}

{t1, . . . , ti−1, xi} {t1, . . . , ti−1, xi}

{t1, . . . , ti−1}

in
du

ct
io

n
on

i
=
n
,.
..
,1

Figure 4 Polynomial-size Q-Res refutation of ilSCEQ
n .

First we will look at Examples 14,
16, and 17 from Section 3.4 and show
how to obtain formulas from them
that are easy for Q-Res but still have
exponential strategy size. The key
point here is the prefix – while we
leave the matrix unchanged, we re-
sort the Σb

3 prefix into an unrestricted
prefix. Roughly speaking, we do this
by arranging the ‘crucial’ variables
of each critical clause into a separate
existential block to the right of the
variables of the associated gadget, and

the remaining propositional variables into the leftmost existential block. In most of the
examples already given, it is intuitively easy to identify the ‘crucial’ variables of a clause; in
the general case, this is somewhat more involved5, as is to determine the appropriate order of

5 They are in fact the pivots of certain resolution steps in special resolution refutations of the propositional
formula.



A. Schleitzer, O. Beyersdorff 13

the critical clauses (i.e., of their variables in the prefix), which is not arbitrary. We therefore
only verify the desired properties for Examples 14, 16, and 17 from Section 3.4 here, further
details are given in Section 5.2.

We start with the equality formulas. These were already modified in the desired way to
the interleaved equality formulas [11], which have the same matrix as the equality formulas,
but with an interleaved prefix (this also inspired our general construction). We adopt the
name ‘interleaved’ also for our other examples and denote the interleaved variant of a Σb

3-QBF
χΦ

n by ilχΦ
n . We will give short Q-Res refutations for each example.

▶ Example 30 (Interleaved Equality [11]). We build ilSCEQ
n from SCEQ

n by reordering the
prefix in a natural way according to the indices:

SCEQ
n = ∃x1 . . . xn∀u1 . . . un∃t1, . . . , tn · ψ

ilSCEQ
n = (∃x1∀u1∃t1) . . . (∃xn∀un∃tn) · ψ

ψ =
⋃

i∈[n]

{{ti, xi, ui}, {ti, xi, ui}} ∪ {t1, . . . , tn}.

The Q-Res refutation shown in Figure 4 follows closely the resolution proof of SCn.

▶ Example 31 (Interleaved Equivalence). The prefix of ilECEQ
n equals the one of interleaved

equality, additionally quantifying t0 existentially in the leftmost block.

ECEQ
n = ∃x1 . . . xn∀u1 . . . un∃t0 . . . tn · ψ

ilECEQ
n = ∃t0(∃x1∀u1∃t1) . . . (∃xn∀un∃tn) · ψ

ψ =

 ⋃
i∈[n]

{Ci,1, Ci,2, Di}

 ∪ {Dn+1, Dn+2}

with Clauses

Ci,1 = {xi, ui, ti−1, ti}
Di = {ti−1, ti} i ∈ [n]

Ci,2 = {xi, ui, ti−1, ti}

Dn+1 = {t0, tn} Dn+2 = {t0, tn}.

The Q-Res refutation (see Figure 5) is structurally similar to the resolution proof for ECn

here as well, although it can be seen quite clearly that only one side of the proof is blown up
by the refutations of the gadgets, which is due to the choice of the critical clauses.

We now consider using XOR gadgets:

▶ Example 32 (Interleaved XOR). For ilSCXOR
n , the existential blocks in the prefix each

comprise two existential variables, as specified by the XOR gadget. The matrix remains the
same as for SCXOR

n :

SCXOR
n =∃x1

1x
2
1 . . . x

1
nx

2
n∀u1 . . . un∃t1 . . . tn · ψ

ilSCXOR
n =(∃x1

1x
2
1∀u1∃t1) . . . (∃x1

nx
2
n∀un∃tn) · ψ

ψ =

 ⋃
i∈[n]

{
{x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}, {x1

i , x
2
i , ui, ti}

}
∪ {t1, . . . , tn}.

The Q-Res refutations are made slightly more complex by the gadgets, but even here the
structure of the resolution proof of SC shines through, as you can see in Figure 6.
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{xi, ui, ti−1, ti} {t0, ti} {xi, ui, ti−1, ti} {ti−1, ti} {t0, ti}

{xi, ui, t0, ti−1} {xi, ui, t0, ti−1}

{xi, t0, ti−1} {xi, t0, ti−1}

{t0, ti−1} {t0, ti−1}

{t0} {t0}

{}

in
du

ct
io

n
on

i
=
n
,.
..
,1

Figure 5 Polynomial-size Q-Res refutation of ilECEQ
n .

{x1
i , x

2
i , ui, ti} {x1

i , x
2
i , ui, ti} {t1, . . . , ti} {x1

i , x
2
i , ui, ti} {x1

i , x
2
i , ui, ti}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i , ui}

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1,

x1
i , x

2
i }

{t1, . . . , ti−1, x
1
i } {t1, . . . , ti−1, x1

i }

{t1, . . . , ti−1}

in
du

ct
io

n
on

i
=
n
,.
..
,1

Figure 6 Polynomial-size Q-Res refutation of ilSCXOR
n .
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Note, that all the universal reductions in the Q-Res refutations shown in Figures 4–6
comply with the rules thanks to the variable order in the prefixes.

It is readily verified that the interleaved formulas inherit exponential strategy size from
their Σb

3 origins. While the winning strategies of the universal player are no longer unique
for the interleaved formulas, the existential player can nevertheless continue to force a game
that corresponds to the winning strategy of the associated Σb

3 formulas, i.e., ui = xi for all
i ∈ [n] in the case of equality gadgets and ui = x1

i ⊕ x1
i for all i ∈ [n] in the case of XOR

gadgets. Thus, the interleaved formulas retain exponential strategy size.
Note that the circle formulas ICEQ

n from Example 15 can not be modified this way – there
are not even enough propositional t variables to build the prefix accordingly6.

Although we need the interleaved formulas mainly as a basis for separating Q-Res and
QU-Res, they also have some noteworthy property, which follows from Theorem 27 together
with the fact that all these formulas have exponential strategy size:

▶ Proposition 33. The formulas from Examples 30–32 (and all other formulas with short
Q-Res refutations and exponential strategy size) separate treelike from dag-like Q-Res.

5.2 General Construction of Formulas as in Section 5.1
While we show in Section 5.1 that certain variants of the previously introduced examples
satisfy the required conditions, in the following we will give a general construction for such
formulas that are easy for Q-Res but have exponential strategy size. We will use the same
ingredients as in Section 3. In fact, we only have to change the prefix and some requirements
to the underlying propositional formulas and QBF gadgets. This approach is consistent
with the relationship between the examples in Section 3.4 and those in Section 5.1 (e.g the
conventional equality formulas from [11] and interleaved equality).

Knowing this construction will enable us later to perform the construction in Section 5.3
on this basis and thus to find further separating formulas between Q-Res and QU-Res.

We are familiar with exponential strategy size from Section 3, and we will reuse the
procedure described there, refining our requirements to the propositional base formula as
well as to the QBF gadget and reordering the prefix. To get short Q-Res refutations of the
constructed formula, in addition to gadgets with short proofs, of course we need to use a
propositional base formula with short resolution refutations. In fact, the condition is more
complicated:

▶ Definition 34 (refutation and assignment preserving formulas). Let χn be a propositional
formula with at least n clauses and short resolution proofs.

With respect to a set C of critical clauses and a short refutation π of χn, we call a
resolution step in π involving a clause from C a C-step and we call χn (C, π)-refutation
preserving, if C, π satisfy the following properties:

(i) For any C ∈ C there is exactly one C-step in π using C as axiom.
(ii) Every C-step resolves a clause from C with a clause from D = χn \ C or a derived clause.
(iii) The pivots of the C-steps are pairwise different.
(iv) Any resolvent of a C-step contains no pivot which is used in an earlier C-step.

6 The modification becomes straightforward if we choose D = {{t0}, {tn}} and Ci = {ti−1, ti} as clauses
of IC′

n for i ∈ [n] instead of the definition from Example 7 (note that the formula family remains the
same, only the indices of the formulas shift and the partition in C- and D-clauses changes).
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Now let π be as described. We denote by R = (C,D, p) a resolution step with parent
clauses C and D over the pivot variable p. Let R1, . . . , Rn be the sequence of C-steps in
π and C1, . . . , Cn, p1, . . . , pn the according sequences of parent clauses from C respective
pivot variables. Now let ti = pn+1−i and C∗

i = Cn+1−i for i ∈ [n] (so the sequence of
t-variables is exactly the one of p-variables in reverse order, as with C∗- and C-clauses).
Let further T = vars(χn), T0 = T \ {t1, . . . , tn}, Ti = Ti−1 ∪ {ti} for i ∈ [n], α0 ∈ ⟨T0⟩ an
assignment to the variables from T0 and let αi ∈ ⟨Ti⟩ be like αi−1 on their common variables
and additionally assigning a truth value to ti for i ∈ [n]. Let α = (α0, . . . , αn) be built up
from α0 as described. We call χn αC,π-preserving if C∗

i ↾αi−1
is critical in χn↾αi−1

for any
i ∈ [n].

▶ Definition 35 (ilχΦ
n ). Let χn be a (C, π)-refutation preserving and αC,π-preserving proposi-

tional formula with |C| = n and D = χn \ C. Let t1, . . . , tn and C∗
1 , . . . , C

∗
n be the sequences

of pivot variables and C-parent clauses of resolution C-steps in π (i.e., in reverse order) and
T0 = vars(χn) \ {t1, . . . , tn}. Let further Φn = (ϕi)i∈[n] = (Pi · φi)i∈[n] be a sequence of QBF
gadgets. We define

ilχΦ
n =∃T0(P1∃t1) . . . (Pn∃tn)·⋃

i∈[n]

[φi × {C∗
i }] ∪ D.

▶ Lemma 36. For n ∈ N let Φn be a sequence of n QBF gadgets and χn a propositional
formula with polynomial-size resolution refutations. Let χn be (C, π)-refutation preserving
with |C| ≥ n. Then ilχΦ

n has polynomial-size Q-Res refutations.

Proof. Let Φn = (ϕi)i∈[n] = (Pi ·φi)i∈[n] be a sequence of QBF gadgets, χn (C, π)-refutation
preserving with polynomial-size resolution refutations, D = χn \ C, C∗

1 , . . . , C
∗
n and t1, . . . , tn

the sequences of axioms and pivots as described above and T0 = vars(χn) \ {t1, . . . , tn}. We
consider the C-steps performed in π and show, that the resolvents can be derived in only a
few more steps using axioms from ilχΦ

n and Q-Res.
Let C∗

i be an axiom from C and D an axiom from D or a derived clause, where C∗
i and D

are resolved with each other in π to the resolvent E. ti is the pivot element to this resolution
step. ilχΦ

n contains φi × {C∗
i } instead of C∗

i . By first resolving all clauses of φi × {C∗
i } with

D, we obtain φi ×{E}, thereby eliminating the pivot ti. Since ϕi and χn are variable disjoint
and all the T -variables are existential, this is easily possible. Since χn is (C, π)-refutation
preserving, E does not contain any variable tj with j > i. Now we can use the refutation
of φi (note that its size is constant since the size of the gadget is independent from n) by
extending each clause in it by E. Since φi × {E} only contains variables from Pi and T ,
reduction steps within the derivation could – corresponding to the prefix – only be blocked
by variables tj , j ≥ i. However, these are not contained in φi × {E}. So at the end of the
derivation we get the clause E instead of the empty clause – as desired.

Figure 7 illustrates the procedure using an equality sub-formula Pi.φi = ∃xi∀ui ·
{{xi, ui}, {xi, ui}}.

In this way we can replace all resolution steps that use an axiom from C. We get the
same resolvents with only a few more steps (since the φi have short Q-Res refutations) and
can connect the rest of π. Overall, we get a Q-Res refutation for ilχΦ

n of the same order of
magnitude (as π). This method can be found in the Q-Res refutations of all examples from
Section 5.1. ◀
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▶ Lemma 37. For n ∈ N let Φn be a sequence of n QBF gadgets and χn a propositional
formula with polynomial-size resolution refutations. Let χn be αC,π-preserving with |C| ≥ n.
Then ilχΦ

n has exponential strategy size.

Proof. We can use a similar argumentation as in Theorem 12 to show, that any winning
strategy for ilχΦ

n is based on a combination of winning strategies for the ϕi formulas (but
we have to take into account that the prefix does not collect the T -variables at the end and
therefore need the αC,π-preserving property.).

Let χn be αC,π-preserving with respect to a critical set C with size |C| = n and a resolution
refutation π and let Φn = (ϕi)i∈[n] = (Pi · φi)i∈[n] be a sequence of QBF gadgets. It is
obvious, that assigning ui according to a winning strategy for ϕi for each i ∈ [n] is a universal
winning strategy on ilχΦ

n with exponential size (since the gadgets are non-constant). We
assume (for contradiction), there is a winning strategy S assigning ui different from any
winning strategy for ϕi for some i ∈ [n] (we consider the smallest i with this property).
Then all clauses from φi × {C∗

i } are satisfied (since φi is satisfied). We assume that the
existential player has followed αi−1 on T0 and t1, . . . , ti−1. But since χn is αC,π-preserving,
we knowC∗

i ↾αi−1
is critical in χn↾αi−1

. That means χn↾αi−1
\ {C∗

i ↾αi−1
} is satisfiable with

some assignment α′ to the remaining variables ti, . . . , tn. Since the clauses φi × {C∗
i } are

already satisfied by the universal assignment, the existential player wins the assignment game
with α′ and an arbitrary assignment to the remaining existential variables. Thus S is not a
winning strategy. ◀

C∗
i ∪ {xi, ui} D C∗

i ∪ {xi, ui}

E ∪ {xi, ui} E ∪ {xi, ui}

E ∪ {xi} E ∪ {xi}

E

Figure 7 Q-Res derivation of the resolvent E from EQ×∗
i .

The formulas for simple con-
tradiction and equivalence chain
from Section 3 are refutation and
αC,π-preserving, where the naming
of the clauses identifies C and D
and the related π and α should be
obvious. While interleaved equal-
ity formulas ( [11]) are an instan-
tiation of ilχΦ

n -formulas already
known from literature, we present
some new examples in Section 5.1.

▶ Theorem 38. For n ∈ N let Φn

be a sequence of n QBF gadgets
and χn a propositional formula with polynomial-size resolution refutations. Let χn be (C, π)-
refutation preserving and αC,π-preserving with |C| ≥ n. Then ilχΦ

n separate tree-like from
dag-like Q-Res.

Proof. This follows immediately from Lemmas 37 and 47 and Proposition 33. ◀

5.3 Separating Formulas
In the second step we will use the QBFs with short Q-Res refutations and exponential strategy
size to construct separating formulas between Q-Res and QU-Res. Our method is inspired by
the structure of the KBKF formulas [31]. We first define the concept of target clauses.

▶ Definition 39 (Target Clauses). For a false QBF ϕ = P · φ let F be a set of clauses such
that the existential player has a strategy to never lose on clauses from ϕ\F in any assignment
game (regardless of the strategy chosen by the universal player), i.e., the existential player
will always lose on clauses in F . We call F a set of target clauses.
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Notice that F is in general not unique. It is always possible to choose F = φ. Based on
this, the construction is remarkably simple:

▶ Definition 40 (Tail Construction). Let ϕ = P · φ be a false QBF with universal variables
vars∀(ϕ) = {u1, . . . , un} and {e1, . . . , en} ∩ vars(ϕ) = ∅. Let further F be a set of target
clauses for ϕ. Then we call

ϕ∗ =P∗ · φ∗

=P∃e1 . . . en ·

 ⋃
C∈φ\F

{C}

 ∪

( ⋃
C∈F

{C ∪ {ei : i ∈ [n]}}

)
∪

 ⋃
i∈[n]

{{ui, ei}, {ui, ei}}


the tailed version ϕ∗ of ϕ.

Although the choice of F = φ will not significantly increase the size of the resulting formula,
i.e., we always have |ϕ∗| = O(|ϕ|), it makes sense to choose F as small as possible. These
tailed formulas have exactly the properties we aim for (if we choose a suitable ϕ):

▶ Theorem 41. Let ϕ∗
n be tailed versions of formulas ϕn as described in Definition 40, where

ϕn requires super-polynomial strategy size, but has polynomial-size Q-Res refutations. Then
ϕ∗

n separates Q-Res from QU-Res, i.e., ϕ∗
n requires super-polynomial size Q-Res refutations,

but has polynomial-size QU-Res refutations.

We will split the proof of Theorem 41 into two parts, first showing hardness for Q-Res of
the constructed formula and afterwards constructing short QU-Res proofs.

To show this, we modify ϕ∗ once more, similarly as described in [6] for the KBKF formulas.
That is, we use new variables v1, . . . , vn and put them into the formula as copies of the
universal variables u1, . . . , un. While Balabanov, Widl, and Jiang create ∀uivi from each ∀ui

in the prefix, we group the universal copies in a (possibly additional) universal quantification
block to the right of P (and to the left of the existential tail variables), similarly as in [11],
i.e., P∗ = P∃e1 . . . en becomes P ′ = P∀v1 . . . vn∃e1 . . . en. In addition, the occurrences of ui

in the matrix are effectively doubled, i.e., φ′ contains for each clause C ∈ φ∗ the extended
clause C ∪ {vi : ui ∈ C} ∪ {vi : ui ∈ C}.

▶ Definition 42 (ϕ′). For any QBF ϕ∗ = P∗ ·φ∗ constructed from a QBF ϕ = P ·φ following
Definition 40 we define

ϕ′ = P ′ · φ′ = P∀v1 . . . vn∃e1 . . . en ·

 ⋃
C∈φ∗

C ∪ {vi : ui ∈ C} ∪ {vi : ui ∈ C}

 .

Moving the universal variable copies to the right into a common universal block can only
shorten QU-Res refutations, since it might enable additional universal reductions, but can
never block a reduction previously possible. We then use Theorem 3 to show that ϕ′ requires
long QU-Res proofs. To do so, we first show:

▶ Lemma 43. Let ϕ∗ be a QBF constructed from ϕ following Definition 40 and let ϕ′ be as
described in Definition 42. Then in the assignment game for ϕ′ the existential player can
force the universal player to

(i) follow a winning strategy for ϕ on u1, . . . , un and
(ii) assign vi = ui for every i ∈ [n].
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Proof. We first show (i). Consider the assignment game on P. If the universal player does
not use a winning strategy on ϕ, he will lose on ϕ. Thus the assignment α constructed on
P satisfies φ and thus all the clauses

⋃
C∈ϕ {C ∪ {ei : i ∈ [n]} ∪ {vi | ui ∈ C} ∪ {vi | ui ∈ C}},

because these are just weakenings of clauses from φ. The remaining clauses are⋃
i∈[n] {{ui, vi, ei}, {ui, vi, ei}}, which can easily be satisfied by ei = 1 for i ∈ [n]. Hence the

existential player wins the assignment game.
For (ii) again we consider the game on P and assume that the existential player plays

according to his strategy on ϕ to only lose on clauses in F . Since F is a target set, we
know that such a strategy exists. Let α be the assignment constructed on P (by both the
existential and the universal player). By definition of target clauses α does not falsify any
clause C ∈ φ \ {F}; these are also part of ϕ∗. α also satisfies the corresponding clauses in ϕ′,
which are {C ∪ {vi | ui ∈ C} ∪ {vi | ui ∈ C} | C ∈ φ \ {F}}. Thus, the remaining clauses are
those resulting from C ∈ F ,

⋃
C∈F {C ∪ {ei : i ∈ [n]} ∪ {vi | ui ∈ C} ∪ {vi | ui ∈ C}} and

the additional clauses
⋃

i∈[n] {{ui, vi, ei}, {ui, vi, ei}}. Now assume towards a contradiction
that the universal player assigns vj ̸= uj for some j ∈ [n] (let j be the first index for
which this applies). Then the existential player can assign ej = 0 without falsifying any
of these clauses. This immediately satisfies every clause originating from a clause in F .
All the clauses {uj , vj , ej}, {uj , vj , ej} with j < i are already satisfied and thus only the
clauses {uj , vj , ej}, {uj , vj , ej} with j > i remain. But now the existential player can win the
assignment game by simply assigning ej = 1 for each j > i. ◀

▶ Lemma 44. Let ϕ, ϕ∗, and ϕ′ be as in Lemma 43. Then QU-Res proof size of ϕ′ is at
least ρ(ϕ).

Proof. According to Lemma 43 the universal player has to assign u1, . . . , un according to
a ϕ-strategy and vi = ui for i ∈ [n]. Thus the cost of ϕ′ is at least ρ(ϕ), because the
whole strategy is pooled in the last universal block. Now we can use the cost/size argument
(Theorem 3) and obtain that proof size of ϕ′ in QU-Res is at least ρ(ϕ). ◀

We can now prove the lower bound for ϕ∗, following an approach described in [11].

{u1, e1} {u1, e1} . . . {un, en} {un, en}

{e1} . . . {en} C ∪ {e1, . . . , en}

C for all C ∈ φ \ F C for all C ∈ F

short Q-Res
refutation for ϕn

Figure 8 Polynomial-size QU-Res refutations for ϕ∗.

▶ Lemma 45. Let ϕ∗ = P∗ ·φ∗ be
a QBF constructed from ϕ = P ·φ
according to Definition 40. Then
proof size of ϕ∗ in Q-Res is at least
1
2ρ(ϕ).

Proof. Suppose that proof size
of ϕ∗ in Q-Res was smaller than
1
2ρ(ϕ) and let π be such a short
Q-Res refutation. To obtain the
empty clause all universal vari-
ables must be reduced by universal
reduction in π (there is no other
option, which is the decisive differ-

ence to QU-Res). But then we can construct a Q-Res proof π′ for ϕ′ by just doubling all
reduction steps in π in the sense of introducing an additional reduction step for vi as soon
as ui is reduced. That is always possible, because vi is never quantified left from ui. The
remainder of the proof can be left unchanged, since the variable copies (vi, vi) cannot cause
any tautologies that would not also be caused by the originals (ui, ui). The proof constructed
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in this way remains in the same order of magnitude as the original one, more precisely
|π′| ≤ 2|π| < ρ(ϕ) in contradiction to the above observation of Lemma 44. Thus any Q-Res
refutations for ϕ∗ has size at least 1

2ρ(ϕ). ◀

Lemma 45 in combination with the conditions from Theorem 41 (i.e., exponential strategy
size of ϕn) implies Q-Res-hardness of ϕ∗

n:

▶ Corollary 46 (ϕ∗
n is Hard for Q-Res). Let ϕ∗

n be tailed versions constructed from ϕn following
the rules and conditions from Theorem 41. Then ϕ∗

n is hard for Q-Res.

Let us now prove the upper bound stated in Theorem 41:

▶ Lemma 47 (ϕ∗
n has Short QU-Res Refutations). If ϕ∗

n are QBFs constructed from ϕn

following the rules and conditions from Theorem 41, then ϕ∗
n has short QU-Res refutations.

Proof. ϕn = P · φn has by assumption short Q-Res proofs. ϕ∗
n additionally contains the

clauses {ui, ei} and {ui, ei} for all i ∈ [n], from which we can get all the unit clauses
{ei}, i ∈ [n] in only n universal resolution steps (available in QU-Res). We then remove all
the ei literals from the clauses originated from F in |F | · n resolution steps. Together with
the unchanged clauses from φn \ F we now have all clauses from φn and can proceed with
the short Q-Res refutation of ϕn. The proof of ϕn is extended by (|F | + 1) · n ≤ (|φn| + 1) · n
steps. Therefore we get a polynomial-size QU-Res refutation of ϕ∗

n. The composition of the
proof is shown in Figure 8. ◀

Proof of Theorem 41. The theorem follows from Corollary 46 and Lemma 47. ◀

5.4 Examples
We illustrate our construction on the interleaved equality formulas from [11], which we
already discussed in Section 5.1:

▶ Example 48 (Tailed Equality). We first need suitable formulas, on which we can use the
tail construction:

ϕn = (∃x1∀u1∃t1) . . . (∃xn∀un∃tn) ·

 ⋃
i∈[n]

{
{xi, ui, ti}, {xi, ui, ti}

} ∪ {{t1, . . . , tn}} .

As mentioned in Section 5.1, these are exactly the ilSCEQ
n -formulas, i.e., they have expo-

nential strategy size and short Q-Res refutations. Thus, (ϕi)i∈N meets the requirements for
constructing separating formulas according to the above method. The existential player
has a strategy to satisfy all clauses except for {xn, un, tn}, {xn, un, tn} and {t1, . . . , tn} in
any game (by just setting ti = 0 for i < n). With un = xn we get the following possible
assignments:

xn = un = 1, tn = 1 falsifies {xn, un, tn},
xn = un = 0, tn = 1 falsifies {xn, un, tn} and
xn = un, tn = 0 falsifies {t1, . . . , tn}.

The remaining two clauses are satisfied in each case. Thus there are three possibilities for a
minimal set F of target clauses, containing one of these three clauses. The most intuitive
choice for F is F = {{t1, . . . , tn}}. The tail construction then leads to the following formulas,
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separating Q-Res and QU-Res:

ϕ∗
n =tl SCEQ

n =(∃x1∀u1∃t1) . . . (∃xn∀un∃tn)∃e1 . . . en· ⋃
i∈[n]

{
{xi, ui, ti}, {xi, ui, ti}, {ui, ei}, {ui, ei}

}
∪ {{t1, . . . , tn, e1, . . . , en}} .

Interestingly, the KBKF formulas [31] correspond to the tail construction (they actually
inspired our construction):

▶ Example 49 (KBKF). The KBKF formulas presented in [31] are defined as

ϕ∗
n = KBKFn = ∃y0(∃y1y

′
1∀u1) . . . (∃yny

′
n∀un)∃yn+1 . . . yn+n ·

⋃
i∈[0...2n]

{Ci, C
′
i}

where the matrix clauses are defined as follows:

C0 = {y0} C ′
0 = {y0, y1, y′

1}

Ck = {yk, uk, yk+1, y′
k+1} C ′

k = {y′
k, uk, yk+1, y′

k+1}
Cn = {yn, un, yn+1, . . . , yn+n} C ′

n = {y′
n, un, yn+1, . . . , yn+n}

Cn+t = {ut, yn+t} C ′
n+t = {ut, yn+t}

with 1 ≤ k < n and 1 ≤ t ≤ n. We now immediately see, that some parts of the formula
equal those constructed in Section 5. Especially the variables yn+1, . . . , yn+n correspond to
those called e1, . . . , en in Section 5, which make up the tail. We examine the basic formula,
whose modification according to the tail construction leads to the KBKF formulas:

ϕn = ∃y0(∃y1y
′
1∀u1) . . . (∃yny

′
n∀un) ·

⋃
i∈[0...n]

{Ci, C
′
i}

with

C0 = {y0} C ′
0 = {y0, y1, y′

1}

Ck = {yk, uk, yk+1, y′
k+1} C ′

k = {y′
k, uk, yk+1, y′

k+1}
Cn = {yn, un} C ′

n = {y′
n, un}

for 1 ≤ k < n.
ϕn is also a false QBF and the existential player can force the universal player to follow

the same strategy as in KBKF: setting uk = y′
k for each k ∈ [n]. (Note that this is not

a unique winning strategy, since the existential player could leave the universal player a
wide range of freedom in assigning the universal variables.) To force the universal player
assigning variables according to the KBKF-strategy, the existential player will assign y0 = 0
and y′

k ̸= yk in every round k ∈ [n]. The last remaining clauses are Cn = {yn, un} and
C ′

n = {y′
n, un}, and every so constructed assignment falsifies exactly one of them: yn = 0,

y′
n = 1 = un falsifies Cn and yn = 1, y′

n = 0 = un falsifies C ′
n; in each case the other clause

is satisfied. Thus it is sufficient for the set F of target clauses to contain one of the two
clauses. For KBKF F = {Cn, C

′
n} was chosen (which is not minimal), which makes the tail

construction generating just the KBKF formulas. Polynomial-size Q-Res refutations of ϕn

are shown in Figure 9.
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Cn C ′
n

{yn} {y′
n}

Ck {yk+1} {y′
k+1} C ′

k

{yk, uk} {y′
k, uk}

{yk} {y′
k}

{y1} {y′
1} C ′

0

{y0} C0

{}

induction on
k = n− 1, . . . , 1

Figure 9 Polynomial-size Q-Res refutation of the base formulas ϕn of KBKFn.

Hence (ϕi)i∈N has exponential strategy size and short Q-Res refutations, thus satisfying
the conditions of the tail construction. It follows immediately, that the KBKF formulas
separate Q-Res from QU-Res.

As an aside we see that F can be minimized, i.e., the negative literals yn+1, . . . , yn+n can
be removed from one of the clauses Cn or C ′

n without affecting the separation property.

6 Conclusion and Open Problems

While our construction of hard formulas in Section 3 yields a large class of hard QBFs, it
does not allow to generate all hard QBFs. One apparent limitation is that we only produce
Σb

3 formulas. While this is arguably the most interesting case, it would be worthwhile to
explore systematically how to construct hard QBFs with higher quantifier complexity. While
it is easy to derive such formulas from Σb

3 QBFs by just adding further dummy quantifiers,
‘more natural’ constructions appear of interest.

A related question is which exact class of formulas can be generated by our construction.
As we always import hardness via the size-cost method, one might aim for a construction
that yields all such formulas. We do not achieve this yet, as one can even find Σb

3-formulas
with high costs that do not stem from our method. Of course there are also further sources
of hardness. E.g. the parity formulas [15] are hard for QU-Res, but have small cost. Finding
general constructions for other QBF families, where hardness does not originate from cost,
also appears interesting for future work.
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