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Abstract. This paper describes a comparative study of the performance
of Generative Adversarial Networks (GANs) through the quality of the
generated images by using a few samples. In the deep learning-based
systems, the amount and quality of data are important. However, in
industrial sites, data acquisition is difficult or limited for some reasons
such as security and industrial specificity, etc. Therefore, it is necessary
to increase small-scale data to large-scale data for the training model.
GANs is one of the representative image generation models using deep
learning. Three GANs such as DCGAN, BEGAN, and SinGAN are used
to compare the quality of the generated image samples. The comparison
is carried out based on the score with different measuring methods.

Keywords: Generative Adversarial Networks · Sealer · Vision Inspec-
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1 Introduction

The machine vision acquires images using cameras, optical systems, lights, etc.
to inspect products and detect defects during manufacturing processes [3]. The
automated machine vision system surpasses human abilities and realizes high
optical resolution, consistency, and high accuracy. However, traditional machine
vision systems show limitations to various environmental conditions at industrial
sites. Especially, they are very sensitive to illumination variation and difficult to
adapt to different inspected items. Also, they have possibilities of image distor-
tion from changes of the angle and the positions. It is very inefficient to modify
the systems due to each of the environmental changes for maintaining successful
inspection systems. A deep learning model combines the self-learning ability of
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humans and the data processing speed of computing systems and overcomes the
limitations of traditional visual inspection systems [3]. For the machine vision
inspection system using deep learning, data acquisition is difficult due to the
specificity of the data, security issues, and environmental limitations.

The accuracy and validity of deep learning models are significantly affected
by the quality and quantity of input data [8,27]. Learning with limited data cause
over-fitting or fails to train. According to Goodfellow et al. [8], at least 5 thousand
learning data are needed for each category to reach acceptable performance, and
more than 10 million training samples are required to reach or surpass human
abilities. For this reason, the importance of large datasets has grown fast and,
therefore, various attempts such as data augmentation, data generation, data
labeling, etc. have been tried to increase data [27]. Currently, datasets based on
daily lives (ImageNet [5], Visual Object Classes (VOC) [6], Common Object in
Context (COCO) [20], etc.) are available for deep learning researches, but it is
hard to acquire data from the industrial process [7].

A sealing image is one example of hardly accessible data. A sealant is used
to attach heterogeneous materials in manufacturing processes, and a machine
vision system inspects whether the sealant is applied properly. Thousands of
high-quality sealing images are required for deep learning-based machine vision
inspections, but data is not acquired easily because the images are obtained from
specific processes at the industrial site, and the security issues are related to the
products.

Generating artificial data has been tried by learning the properties of the
given training data, and a Generative Adversarial Network (GAN) is a represen-
tative image generative model based on deep learning [32]. Since 2014, the GAN
is first introduced by Goodfellow, et al. [9], it has been modified and improved
for various image manipulation tasks including realistic image synthesis [34,35],
image editing [12,19,22,31], image-to-image translations [14,17,26,38], etc.

Although GANs also show higher performance with a larger number of input
data just like any deep-learning models [4,24,36], some versions of GANs shown
outstanding performances with very limited data [11,25,29,33]. These researches
mainly focus on modifying networks.

Increasing the amount of industrial data using GANs would help us devel-
oping machine vision inspection systems. In this article, artificial sealing images
are generated using three GANs - DCGAN (Deep Convolutional GAN) [26], Sin-
GAN [29], and BEGAN (Boundary Equilibrium GAN) [2] and the input data is
a small number of sealing images. We will evaluate those models by FID (Fréchet
Inception Distance) and SIFID (Single Image FID) [13, 29]. This research will
provide a guide to use GANs to supplement datasets not only for industrial sites
but also for many cases with a lack of training data.

2 Methods

It is not easy to obtain images from industrial sites with different light conditions
and camera positions. Therefore, the goal is developing a deep learning model to
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augment learning data with a stable performance using GANs. In this research,
three GANs - DCGAN, BEGAN, and SinGAN - are used to generate sealing
images from a few input images, and compared in an aspect of the quality of the
generated images. Modifications of Inception Score (IS) [28] are used to evaluate
the performance of the generated images using each network of three GANs. The
Fréchet Inception Distance (FID) [13] is calculated for evaluating images from
DCGAN and BEGAN, and SIFID [29] is used for images from SinGAN.

2.1 Generative Adversarial Networks

DCGAN The DCGAN first succeeded in constructing images using CNNs.
Moreover, its process is stable. Consequently, many recent researchers compare
their model based on it [1,16]. The DCGAN achieved its goal by adopting some
changes to CNN architectures: no pooling layer, no fully connected layer and
applying batch normalization which is newly demonstrated in those days. These
techniques helped a stable procedure. The discriminator distinguished real and
fake images by a classifier on the convolutional features, while the generator
upsampled images by transpose convolutional layers.

Fig. 1: DCGAN generator [26]. A 100-dimensional uniform distribution z is pro-
jected into a spatial convolutional representation with many feature maps, re-
sulting in a higher dimension 64×64 pixel image through four fractionally-strided
convolution layers.

BEGAN It is a variation of EBGAN [37] which first built a discriminator
with an autoencoder. The two models ultimately try to match autoencoder loss
distributions of real and fake. BEGAN is different from its predecessor in that
it measures the gap between the two-loss distributions using the Wasserstein
distance.
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Fig. 2: BEGAN’s architecture for the generator and discriminator [2]. The 3× 3
convolutions with exponential linear units (ELUs) are applied to each layer. The
convolution filters increase linearly with each down-sampling. At the boundary
between the encoder and the decoder, the tensors of the processed data are
mapped through fully connected layers.

Let x be real images and z be random noises. Let zD and zG are random
samples from z. Let L be the loss of an auto-encoder. Then given a parameter θD
for a discriminator and θG for the generator, the losses of D and G are defined
as {

LD = L(x; θD)− L(G(zD; θG); θD) for θD

LG = −LD for θG
(1)

Note that the discriminator has two roles: auto-encode the real data and dis-
tinguish between real and generated images. The research also suggests a new
formula of equilibrium to keep the balance between the discriminator and gen-
erator. D and G are considered to be at equilibrium when

E[L(x)] = E[L(G(z))] (2)

The researchers defined a new hyper-parameter γ ∈ [0, 1] to relax the equi-
librium and called it the diversity ratio. The parameter allows us to adjust the
two tasks of the discriminator.

γ =
E[L(x)]

E[L(G(z))]
(3)

Consequently, the overall objective of BEGAN is:
LD = L(x)− kt · L(G(zD)) for θD

LG = L(G(zG)) for θG

kt+1 = kt + λk(γL(x)− L(G(zG))) for each training step t

(4)
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where λk is a learning rate for k.
The BEGAN has an advantage of its simpler architecture relative to for-

mer GANs. It avoids conventional GAN tricks such as batch normalization or
trans-pose convolution. Also, we do not have to train D and G alternately. Fur-
thermore, it converges fast and stably using its convergence measure:

Mglobal = L(x) + |γL(x)− L(G(zG))| (5)

SinGAN This method is to learn an unconditional generative model that cap-
tures the internal statistics of a single training image. To do this, it captures
global properties such as the arrangement and shape of objects in the image, as
well as fine details and texture information.

Fig. 3: SinGAN’s multi-scale pipeline. Architecture consists of a pyramid of
GANs, where both training and inference are done in a coarse-to-fine fashion.

As shown in Fig. 3, this model has a pyramid structure, where x0 is a training
image, down-sampling by a factor rn(r > 1) as step by step. At each scale, the
generator combines noise and the resulting image from the previous step, and
the discriminator at the current step is trained to distinguish the down-sampled
GT from the real image. The generator sequentially constructs images from the
coarsest scale to the finest scale and the noise is added at every scale. At the
coarsest scale, the generation is purely generative, i.e. GN maps spatial white
Gaussian noise zN to an image sample x̃N ,

x̃N = GN (zN ). (6)



6 D. Seo et al.

Each of the generators Gn at finer scales ()n < N) adds details that are
not generated by the previous scales. Thus, in addition to spatial noise zn, each
generator Gn accepts an upsampled version of an image from the coarser scale,
i.e.,

x̃n = Gn(zn, (x̃n+1) ↑r), n < N. (7)

Learning is similar to learn traditional GANs. Training loss for nth GAN
consists of adversarial term and a reconstruction term,

min
Gn

max
Dn

Ladv(Gn, Dn) + αLrec(Gn). (8)

The WGAN-GP loss [10] for adversarial loss Ladv is used. The adversarial loss
penalized for the distance between the distribution of patches in xn and the
distribution of patches in generated samples x̃n. Reconstruction loss Lrec aims to
reduce the pixels difference between the generated image and the down-sampled
(GT) image at each scale by using the squared loss.

2.2 Evaluation

Inception Score It is one of the most widely used methods to assess the quality
of generated images. The desirable outcome of generation is sampled containing
meaningful objects from diverse class labels. Salimans et al. [28] proposed an
approach to combine this requirement. They used a pre-trained Inception Net-
work [30] on the ImageNet [5] to the generated samples to obtain the conditional
label distribution p(y|x). If it has low entropy, the generated images contain
meaningful objects. Next, they calculate the marginal distribution p(y) from all
sample images. When various images are generated, the marginal label distri-
bution has high entropy. Finally, the score is the expectation of KL-divergence
between p(y|x) and p(y).

IS = exp(Ex∼pq
DKL(p(y|x)||p(y))) (9)

Fréchet Inception Distance The disadvantage of the Inception score (IS) is
that the statistics of real generated samples are not used, and compared with
the statistics of synthetic samples. The Fréchet Inception Distance (FID) [13]
proposed to improve on the IS. It is a metric for evaluating GAN measures the
deviation between deep features of the generated images and that of the real
samples. The FID score is then calculated using the following equation:

FID2 = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2), (10)

where µr and µg refer to the feature-wise mean of the real and generated images.
The Σr and Σg are the covariance matrix for the real and generated feature vec-
tors. Xr ∼ N (µr,Σr) and Xg ∼ N (µg,Σg) are the 2048-dimensional activation
of the Inception Network pool3 layer for real and generated samples respectively.
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Single Image Fréchet Inception Distance Shaham et al. [29] proposed the
Single Image FID (SIFID) metric. Instead of using the activation vector after the
last pooling layer in the Inception Network, they use the internal distribution
of deep features at the output of the convolutional layer just before the second
pooling layer. SIFID is the FID between the statistics of those features in the
real image and the generated sample.

3 Results and Discussion

We use 40 real sealing images obtained from an automotive manufacturing plant
to generate artificial sealing images using three GANs DCGAN, BEGAN, and
SinGAN.

Fig. 4: Representative images of the real sealing images. A sealing gun (a green
arrow) is moved from left to right direction, and the sealant (a blue arrow) is
loaded on the surface. Each image size is 658× 490.

Fig. 4 shows 6 representative images of the real sealing images. A sealing
gun (green arrow) is moved from left to right, and the sealant (blue arrow) is
loaded on the surface with a shape of continuously linked circles. Since a camera
is attached to above of the sealing gun, various types of sealing images are
obtained by the angles between the sealant loaded material and the sealing gun.
While the gun is moving, the shapes of sealant in images are maintained, but
the illumination of images is affected by the angles of sealing gun, light changes,
the angle changes of input light, etc.

Fig. 5 shows the result of generated image using DCGAN. For the DCGAN,
we resize the generated images into the 229× 229. In Fig. 5, some of the sealant
shows vague boundaries, and most of the backgrounds are not clear. In this case,
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the performance of classification with generated images can be debased, and it
could lead to the low performance of the inspection system using deep-learning.
On the other hand, the generated images using DCGAN reflect the patterns of
the input images and maintain the diversity of the real images. Among 16 images
in Fig. 5, 9 images show the sealant is loaded from the left-up to the right-down,
and the other 7 images present the sealant is laid in a horizontal direction from
left to right.

Fig. 5: Samples of the generated images using DCGAN.

In Fig. 6, the result of BEGAN is likely to be mode collapse. It is one of the
problems with GANs that has not been solved yet. For example, when input
image distributions show 0 to 9, generated images also required to have the
same distribution as the input images. However, the mode collapse generates
only one of the easiest numbers, such as 1, from the training data due to the
model sinks into only one mode. Although various input images are used, the
results seem to produce almost on an image. When mode collapse occurs, the
variety of generated images is not enough, but the quality of a single image itself
can be quite good.

For SinGAN, we set the minimal dimension at the coarsest scale to 25px and
chose the number of scales N s.t. the scaling factor r is as close as possible to
4/3. We resize the training image to maximal dimension 250px. The generated
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(a)

(b)

Fig. 6: The samples for BEGAN. (a) Randomly selected input images. (b) Gen-
erated images using BEGAN.

images are not resized from the real images. We resize the training image to
maximal dimension 250px. The generated images are not resized from the real
images. Fig. 7 shows a sample of the generated image using SinGAN. SinGAN
generates one artificial image from only one input image, and the three right
columns are random samples and the left-most column shows input images in
Fig. 7. SinGAN can be trained to capture the internal distribution of patches
within an image and then generate a variety of high-quality samples that deliver
the same visual content as the image [29]. Thus, when images are generated using
SinGAN from three different input images, high-quality images are obtained by
image distribution of input images.

For quantifying the performances of each GANs with the limited images, the
qualities of the generated images are evaluated. The FID and SIFID are used
for comparing the performances of three GANs. To compute the FID and SIFID
scores, we use the Inception model of pre-trained on ImageNet.

Table 1 shows the FID scores of DCGAN and BEGAN. The lower value of
the FID score means the better image quality, and the FID score of DCGAN is
lower than that of BEGAN. The FID score contains image quality and diversity.
Generated images by DCGAN have lower quality than real images, but reflect
the diversity of real images, and show relatively low FID score. On the other
hand, obtained images by BEGAN show a similar image quality to real images
with a sufficient number of iterations but lose the diversity due to the mode
collapse. As a result, it is assumed that they show higher FID score even with
the high quality images.
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Table 1: Fréchet Inception Distance (FID). Smaller is better.
Methods Epoch/Iteration Noise Best FID Image Size

DCGAN 300 (epoch) Gaussian 52.27 658× 490

BEGAN 100,000 (iter) Uniform 169.97 128× 128

The SinGAN is a network that generates images using the internal distribu-
tion of the input images. With its pyramid structure, the inputs in each level
are affected by the previous level. Inference at N scale means generation from
noise, and inference at N − 1 scale means down-sampling of the input image
and putting it as the input of the N − 1 generator. An image with a shape and
array similar to the input image is created at scale N . Consequently, the larger
scale leads to the better quality of the images. As shown in Table 2, the average
SIFID is lower for generation from scale N − 1 than for generation from scale
N . It means the image quality of N − 1 is better than that of N , although the
difference is small.

Table 2: Single Image FID (SIFID) for SinGAN.
Scale SIFID

N 0.1750302

N-1 0.1750298

Fig. 7: Samples of the generated images using SinGAN.
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In fact, this method has several drawbacks to compare GANs for generating
sealing images with very limited input images. Firstly, one uniformed system
is not used to evaluate three GANs, and the direct comparison of them is not
possible. DCGAN and BEGAN are compared with FID scores, and SinGAN
is evaluated with SIFID. Also, the evaluation methods possess limitations. An
evaluation method for GANs has been controversial. A verified system for eval-
uating generated images dose not exist yet. In this situation, modified inception
scores are the most commonly used evaluating methods, but they need to be
used with more than 5 thousand images from ImageNet. However, generating
images with very limited industrial data is meaningful in academically and in-
dustrially. Moreover, the direct comparison of FID scores between DCGAN and
BEGAN provides the significant information of the image quality and diver-
sity for generating images using GAN to develop the machine vision inspection
system.

While maintaining high-quality images, providing diversity to artificial seal-
ing image using illumination changes can be tried as further work. In case of
sealing images, variations among obtained images are very small. However, il-
lumination condition can be changes, and especially, illumination changes make
significant impact to images. Using the Lambertian properties [18] which give
same amount of light to an observer at any angle, a surface brightness can be
controlled by altering a surface slope. This can be applied to an input of a gen-
eration network for the sealing image generation by illumination changes. Then,
image quality will be maintained and a robust model will be obtained against
the mode collapse [23].

4 Conclusion

This paper present a comparative study of the performance of GANs for small-
scale data. In qualitative results, SinGAN and BEGAN results are better than
DCGAN. In the case of BEGAN, however, only one type of sample is generated
due to mode collapse. In order to solve this problem, we expect to add more
optical conditions such as Lambertian’s law in the future to generate more diverse
samples using the input of the generator. In quantitative evaluation, DCGAN,
the basic form of GAN, is the best. In the case of SinGAN, a new image can be
generated from a single image, but it can be found that it is not easy to apply
in the industrial sites. It is not easy to evaluate because there is no standardized
method of evaluating the results of GANs. A quantitative evaluation method
for GANs is needed for further research. We use only three kinds of GANs for
comparing the result by the effects of limited data. It is not enough to compare
the effects of GANs. Our future work will be compared to the results by adding
more GANs methods such as Transferring-Gans [33], DeLiGAN [11], StyleGAN
[15], LSGAN [21], WGAN-GP [10], BigGAN [4], etc.
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