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Abstract—Among the methods of sampling trajectories, 

cross-sampling can provide more autocalibration signal (ACS) 

data and enables better incoherent sampling with lower 

gradient control system requirements. However, there were still 

data registration regarding magnetic field inhomogeneities. So 

in this study, a self-calibrated off-resonance correction is 

proposed to coregistrate the inconsistency between the 

orthogonal readout data. This method employs a linear 

prediction operator to estimate the cross-sampled data and the 

corrected data undergo the same calibration, and 

reconstruction process as that used in conventional generalized 

autocalibrating partially parallel acquisitions (GRAPPA), in 

order to recover the missing k-space data and generate the final 

image. We will compare this calibration method with the 

traditional first-order k-space trajectory correction for cross-

sampling autocalibrating partially parallel acquisitions (CS-

GRAPPA) and the experimental results on phantoms and 

human subjects demonstrate that the images reconstructed by 

this method exhibit fewer artifacts and higher signal-to-noise 

ratio (SNR). 

Keywords—magnetic resonance imaging (MRI), cross-

sampling, autocalibration, linear interpolation 

I. INTRODUCTION  

Acceleration algorithms have been widely applied in 
magnetic resonance (MR) scanning, including parallel 
magnetic resonance imaging (pMRI) skipping some phase-
encoding lines in k-space and Compressed Sensing exploiting 

the intrinsic structural correlations of data to achieve fast 
MRI.[1-4] To enhance the performance and reconstruction 
accuracy of these algorithms, various non-Cartesian sampling 
methods, such as radial and spiral sampling, have been 
proposed. However, these acquisition methods can cause 
distortions, blurring, and intensity variations in MRI images 
due to off-resonance effects and trajectory errors caused by 
fast-switching readout gradients. To address these issues, 
high-precision gradient control systems are required, yet the 
development of such systems is challenging. 

Cross-sampling[5-8] utilizes two orthogonal readout 
gradients to acquire two sets of Cartesian sampled data.[6, 9] 
This approach features a simple trajectory and low gradient 
switching rates. Moreover, by combining the cross-sampled 
data, it can emulate the effects of non-Cartesian sampling 
schemes for specific reconstruction algorithms. Although this 
method effectively mitigates the impact of gradient 
imperfections, there are still difficulties regarding magnetic 
field inhomogeneities. 

To address the inconsistency, the traditional calibration in 
CS-GRAPPA uses a iterative co-registration approach to align 
the orthogonally acquired data. This method models the field 
inhomogeneity by using the first-order components, assuming 
that the two sets of k-space data may be misaligned in position 
and scaled by a complex constant. However, the inconsistency 
caused by the effects of practical conditions such as eddy 
currents, field inhomogeneity, and chemical shift, are not fully 
consistent with the first-order model .[5, 6, 10-12] 

In this study, we initially investigate the efficacy of cross-
sampling in pMRI and Compressed Sensing under idealized 
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conditions. Our results demonstrate that, with identical 
acquisition, the image quality achieved through cross-
sampling is markedly superior. We then propose a calibration 
method based on linear interpolation to predict the cross-
sampled points. By calibrating the k-space center data of the 
two orthogonal acquisitions and reconstructing the peripheral 
orthogonal acquisition data using a calibration kernel to align 
the reduced data. To control for confounding variables , the 
GRAPPA process is applied to the co-registered data and 
compared with traditional CS-GRAPPA. Simulation and 
experimental results show that this method can significantly 
reduce the aliasing artifacts in CS-GRAPPA and improve the 
SNR under the same number of ACS lines. 

II. THEORY  

A. Cross-sampling acquisition 

In the cross-sampling approach, two one-dimensional(1-D) 
Cartesian datasets(denoted as 𝑆𝑥 and 𝑆𝑦) can be obtained by 

using two orthogonal readout gradients, as explained in Fig1 
(b) and (d). Ideally, we can express both datasets as 

𝑆𝑥(𝑘𝑥 , 𝑘𝑦)  =  𝑆𝑦(𝑘𝑥, 𝑘𝑦) = ∬𝜌(𝑥, 𝑦)𝑒−𝑖(𝑘𝑥𝑥 + 𝑘𝑦𝑦 )𝑑𝑥𝑑𝑦 (1) 

where 𝜌(𝑥, 𝑦)  represents the spin density in a 2-D cross 
section in Cartesian coordinates (𝑥, 𝑦), and 𝑘𝑥 and 𝑘𝑦 are the 

k-space coordinates. In the case, the combined k-space dataset 

𝑆(𝑘𝑥 , 𝑘𝑦) can be represented as 

𝑆(𝑘𝑥, 𝑘𝑦) = 𝜉(𝑘𝑥 , 𝑘𝑦)[𝑆𝑥(𝑘𝑥, 𝑘𝑦) + 𝑆𝑦(𝑘𝑥 , 𝑘𝑦)] (2) 

𝜉(𝑘𝑥 , 𝑘𝑦) = {
0.5(𝑘𝑥, 𝑘𝑦) ∈ 𝑅

1(𝑘𝑥, 𝑘𝑦) ∉ 𝑅
(3) 

𝜉 in (2) is a weighting function, defined in (3) to maintain data 
consistency in the overlapped dataset R. 

B. Data inconsistency analysis 

As previously mentioned, cross-sampling is employed to 

obtain two sets of orthogonally acquired data using 

orthogonal readout gradients(𝐺𝑥 and 𝐺𝑦), which implies the 

introduction of distinct phase error. Such error may not be 

significant in single 1-D Cartesian as it’s constant within the 

same data set.[13, 14] The error is dependent on the 

characteristic of gradient coils, the shape and material of the 

pole piece, etc. In addition to the phase error caused by pulse 

sequence or hardware imperfections, the NMR signal is 

modified by an inhomogeneous magnetic field, which causes 

intensity variation and image distortion. So Eq. (1) can be 

rewritten as: 

𝑆𝑥(𝑘𝑥 , 𝑘𝑦) = ∫∫𝑒−𝑖∆𝜑𝑥𝜌(𝑥, 𝑦)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+∆𝐵0(𝑥,𝑦)𝑡𝑥)𝑑𝑥𝑑𝑦 (4) 

𝑆𝑦(𝑘𝑥, 𝑘𝑦) = ∫∫𝑒−𝑖∆𝜑𝑦𝜌(𝑥, 𝑦)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦+∆𝐵0(𝑥,𝑦)𝑡𝑦)𝑑𝑥𝑑𝑦 (5) 

where ∆𝜑𝑥  and ∆𝜑𝑦  indicate the phase errors caused by 𝐺𝑥 

and 𝐺𝑦 , ∆𝐵0(𝑥, 𝑦)  represents the magnetic field 

inhomogeneity.[15-18] 
 In the context of MRI, these inhomogeneities and phase 
across the image must be accounted for during the 
reconstruction process to ensure accurate image 
representation. However, the weighting function in Eq.(3) 
does not address this issues. Cross-sampling correction, 
therefore, is required to resolve these effects and improving 
the overall image quality. 

Fig 2 Schematics of joint altered Calibration for A) Two datasets of cross-sampling. B) Calibration of each dataset on the grid requires the full neighborhood data 

from both datasets 

Fig 1 All trajectories have a reduction factor R = 3.5 (a) 1-D Cartesian 

trajectory for pMRI (b) cross-sampling trajectory for pMRI (c) 1-D Cartesian 

trajectory for compress sensing (d) cross-sampling trajectory for compress 
sensing 

 



C. Data co-registration 

In magnetic resonance imaging (MRI), 1-D Cartesian 
sampling has been widely adopted due to its robustness 
against magnetic field inhomogeneities, susceptibility effects, 
and gradient imperfections. This robustness stems from its 
simple trajectory design and high tolerance for sampling 
errors. So this study proposes a calibration method based on 
linear interpolation. The core idea is to complete a cross-
sampling trajectory while preserving the consistency of 1-D 
Cartesian sampling in one direction. This is achieved by 

replacing the calibrated data 𝑆(𝑘𝑥 , 𝑘𝑦) in Eq. (2) with data 

from a specific direction (e.g., 𝑆𝑥) and estimating the missing 
sampling points through linear interpolation in that direction. 

We define the completed data along the 𝐺𝑥direction as �̃�𝑥 , 
then we have 

�̃�𝑥(�⃗� ) =  {
𝑆𝑥(�⃗� )        �⃗� ∈ Ω𝑥

 𝑃Γ(𝑆𝑥 , 𝑆𝑦)      �⃗� ∈ Ω̅𝑥  
(6) 

where �⃗�   is the k-space coordinate, Ω𝑥  is the set of points 

using the 𝐺𝑥  readout gradients, respectively, and Ω̅𝑥 
represents missing points.  𝑃Γ   denotes the interpolation 
function. 

Multiplexed sensitivity encoding (MUSE)[19] has been 
reported to enable the reconstruction of phase information 
through a two-step sensitivity encoding reconstruction, 
effectively correcting shot-to-shot phase variations. 

Additionally, AseDiWA[20] (autocalibrating segmented 
diffusion- weighted acquisition)  has been demonstrated that a 
joint reconstruction of segments can be applied to k-space-
based algorithms to address the phase differences between 
segments. Therefore, AseDiWA is used to construct the 
interpolation function. To fully exploit the prior information, 

for �⃗� ∈ Ω̅𝑥 , all the acquired points of 𝑆𝑥  and  𝑆𝑦  within the 

region of interest are employed. 

S̃x𝑖(�⃗� )  =  ∑∑𝑔𝑖𝑗𝑡(%R𝑡S𝑡𝑗)

𝑗𝑡

(7) 

where the nonacquired k-space data at a position 𝑘 acquired 

from the 𝑖-th coil and the dataset S̃x𝑖(𝑘) is calculated from the 
acquired data of all coils (1…𝑗) of datasets (𝑡 = x or y for 𝐺𝑥 
or 𝐺yreadout data) selected by an operator %𝑅𝑡. The weight 

𝑔𝑟𝑖𝑗𝑡  is calculated according to  calibration data： 

min
𝑔

∑ ||S̃x𝑖(�⃗� )  −  ∑∑𝑔𝑖𝑗𝑡(%𝑅𝑡S𝑡𝑗)

𝑗𝑡

||

2

S̃x𝑖(𝑘)𝜖𝐶𝑎𝑙𝑖𝑏

(8) 

 

 Thus, a corrected k-space dataset shown in Fig.1 (b)  and 
(d) can be obtained by using with interpolated data, as shown 

Fig 3 Effects of the different trajectories for different reduction factor R. GRAPPA((a), (b) and (c)) and Compressed Sensing((d), (e) and (f)) were used to show 

the enhancement of reconstruction with ideal cross-sampling trajectory.   Structure Similarity Index Measure, Root Mean Square Error  and Peak Signal-to-Noise 
Ratio were compared. 

 

 



in Eq.(7) and (8). What’s more, another corrected dataset �̃�y 

can be available by the same token.  

III. EXPERIMENTS 

The proposed method was evaluated using simulation, 
phantom experiment, and two in vivo experiments. All 
reconstruction schemes were implemented in MATLAB 
(MathWorks, Natick, MA) with 4.00 GHz and 16 GB RAM. 
All experimental data were conducted on a 1.5 T MRI scanner 
(CLIMBER 150, Anhui Fuqing Medical Equipment Co., Ltd) 
with a 16-channel coil. Here, CS expresses cross-sampled. 
Sampling mask depicted in Fig.1 corresponds to the 
reconstruction as follows: (a) GRAPPA, (b) CS-GRAPPA, 
(c)Compressed Sensing, (d) CS-Compressed Sensing. 

The simulation experiments was performed using a water 
phantom to show the enhancement of reconstruction with 
ideal cross-sampling trajectory. Fully sampled 1-D Cartesian 
data was scanned using a T1GRE sequence (TE/TR = 10/370 
ms, matrix size = 192×192, FOV = 240 mm2) to generate the 
traditional trajectory and cross-sampling trajectory. Then, 
Compressed Sensing and Generalized Autocalibrating 
Partially Parallel Acquisitions were used for the undersampled 
data. The reconstruction results were compared with different 

trajectories at the Fig. 1. We compared Structure Similarity 
Index Measure(SSIM), Peak Signal-to-Noise Ratio(PSNR) 
and Root Mean Square Error(RMSE) at the reduction factors 
of 3, 4, 5 and 6, respectively. 

Two in vivo human datasets were sampled by a T1SE 
sequence (TE/TR = 25/400 ms, matrix size = 256×256, FOV 
= 240 mm2). Each dataset includes undersampled data(R = 4) 
and orthogonally acquired ACS lines. Real in vivo 
experiments using the coregistered data from two orthogonal 
directions were performed on both datasets. The images 
reconstructed directly according to Eq.(2) were provided. 
What’s more, we compared conventional CS-GRAPPA and 
the GRAPPA with the interpolation function to the 
effectiveness of the proposed method.  

IV. RESULT AND DISCUSSION 

 Fig.3 depicts the reconstruction of the water phantom data 
with trajectories of the 1-D Cartesian(in blue) and cross-
sampling(in orange). Cross-sampling significantly enhances 
the performance of reconstruction algorithms. Regardless of 
whether it is GRAPPA or Compressed Sensing, there is a 
notable improvement in Structural Similarity Index(Fig.3 (a) 
and (d)) and Peak Signal-to-Noise Ratio(Fig.3 (c) and (f)), and 
a reduction in Root Mean Square Error(Fig.3 (b) and (e)) after 

Fig 4 The reconstructed results and their 
corresponding difference images with reference 

when different combinations of parallel- and 

cross-sampling are used. The reduction factor is 

4, and the number of ACS lines is 32.  



employing cross-sampling. Moreover, comparing Fig.3 the 
first row images with the second row, we can find that 
Compressed Sensing, which depends on sparsity of signal, 
shows a more pronounced enhancement as cross-sampling 
provides incoherence in one more direction than 1-D 
Cartesian. In 3D imaging, this can further extend the sparsity 
to three dimensions. 

 However, the simulation experiments for Fig.3 utilized 
fully sampled 1-D data and did not take into account the actual 
acquisition scenario. Fig.4 presents the test results using actual 
undersampled data and orthogonally acquired ACS lines. 
From the direct reconstruction results, it can be observed that 
the direct reconstruction of cross-sampled data introduces 
significant artifacts. This issue is somewhat ameliorated in the 
CS-GRAPPA using traditional calibration methods, but 
structured aliasing artifacts still persist. In contrast, the 
reconstruction employing the linear interpolation function 
proposed in this paper exhibits artifacts without distinct 
structure, resembling noise, and correspondingly, the RMSE 
is reduced by approximately 3 percentage points. 

V. CONCLUSIONS 

 In this study, we proposed joint altered calibration to 
address the phase errors associated with cross-sampling. Our 
approach improves the performance of cross-sampling 
correction by integrating data registration and calibration into 
self-consistent calibration. Compared to CS-GRAPPA, 
images reconstructed using our method demonstrate superior 
quality. In water phantom experiments, we observed the 
potential of cross-sampling in algorithms that rely on the 
inherent structure of the sampled data.[21] Consequently, our 
future work will focus on data calibration for reconstructions 
such as CS and LORAKS, aiming to achieve higher 
acceleration rates. 
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