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Abstract
Huemer et al. (Discrete Mathematics, 2019) proved that for any two point sets R and B with
|R| = |B|, the perfect matching that matches points of R with points of B, and maximizes the total
squared Euclidean distance of the matched pairs, verifies that all the disks induced by the matching
have a common point. Each pair of matched points p ∈ R and q ∈ B induces the disk of smallest
diameter that covers p and q. Following this research line, in this paper we consider the perfect
matching that maximizes the total Euclidean distance. First, we prove that this new matching for
R and B does not always ensure the common intersection property of the disks. Second, we extend
the study of this new matching for sets of 2n uncolored points in the plane, where a matching is
just a partition of the points into n pairs. As the main result, we prove that in this case all disks of
the matching do have a common point. This implies a big improvement on a conjecture of Andy
Fingerhut in 1995, about a maximum matching of 2n points in the plane.
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xx:2 On Maximum-Sum Matchings of Points

1 Introduction

Let R and B be two disjoint point sets in the plane with |R| = |B| = n, n ≥ 2. The points
in R are red, and those in B are blue. A matching of R ∪ B is a partition of R ∪ B into
n pairs such that each pair consists of a red and a blue point. A point p ∈ R and a point
q ∈ B are matched if and only if the (unordered) pair (p, q) is in the matching. For every
p, q ∈ R2, we use pq to denote the segment connecting p and q, and ‖p − q‖ to denote its
length, which is the Euclidean norm of the vector p − q. Let Dpq denote the disk with
diameter equal to ‖p− q‖, that is centered at the midpoint p+q

2 of the segment pq. For any
matchingM, we use DM to denote the set of the disks associated with the matching, that
is, DM = {Dpq | (p, q) ∈M}.

Huemer et al. [14] proved that ifM is any matching that maximizes the total squared
Euclidean distance of the matched points, i.e., it maximizes

∑
(p,q)∈M ‖p− q‖2, then all disks

of DM have a point in common.
In this paper, we will consider the max-sum matching E , as the matching that maximizes

the total Euclidean distance of the matched points. For any matchingM, let cost(M) denote
the sum

∑
(p,q)∈M ‖p− q‖. Thus, E is such that cost(E) is maximum among all matchings.

In Section 2, we prove that every pair of disks in E have a common point, but it cannot be
guaranteed that all disks have a common point.

In this paper, we will also consider max-sum matchings of sets of 2n uncolored points in
the plane, where a matching is just a partition of the points into n pairs. Then, we study
the following problem: Fingerhut [12] conjectured that given a set P of 2n uncolored points
in the plane and a max-sum matching {(ai, bi), i = 1, . . . , n} of P , there exists a point o of
the plane, not necessarily a point of P , such that

‖ai − o‖+ ‖bi − o‖ ≤
2√
3
· ‖ai − bi‖ for all i ∈ {1, . . . , n}, where 2/

√
3 ≈ 1.1547. (1)

The statement of equation (1) is equivalent to stating that the intersection E1 ∩E2 ∩ · · · ∩En

is not empty, where Ei is the region bounded by the ellipse with foci ai and bi, and semimajor
axis length (1/

√
3) · ‖ai − bi‖, for all i ∈ {1, . . . , n} [12]. Then, by Helly’s Theorem, it is

sufficient to prove equation (1) for n = 3. As noted by Andy Fingerhut, the factor 2/
√

3
is the minimum possible. It is enough to consider an equilateral triangle, where at each
vertex two points are located. The max-sum matching of the six points is made of pairs of
vertex-opposed points, and the regions defined by the three ellipses using the factor 2/

√
3

have exactly one point in common.
Andy Fingerhut was also interested in a small constant close to 2/

√
3, and Eppstein [12]

proved that the result holds with 2.5 instead of 2/
√

3. The proof is simple and does not
require Helly’s theorem. Let o be the midpoint of the shortest edge in the matching. Namely,
for all i ∈ {1, . . . , n},

‖ai − o‖+ ‖bi − o‖ ≤ 2.5 · ‖ai − bi‖. (2)

In Section 3, we first show that the constant in this inequality can be improved to√
5 ≈ 2.236 by using the same point o, but refined arguments. Second, as the main result of

this paper, we improve even further this constant. Precisely, we prove that for any point set
P of 2n uncolored points in the plane and a max-sum matching E = {(ai, bi), i = 1, . . . , n}
of P , all disks in DE have a common intersection. This directly implies that any point o in
the common intersection satisfies

‖ai − o‖+ ‖bi − o‖ ≤
√

2 · ‖ai − bi‖
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for all i ∈ {1, . . . , n}, where
√

2 ≈ 1.4142. We will use Helly’s theorem, that is, we will prove
the claim for n = 3.

Remark. Recently, Adiprasito et al. [3] proved a no-dimension version of Tverberg’s
theorem: For any set P of n points in Rd and k ∈ {2, . . . , n}, there exists a point o ∈ Rd

and a partition of P into k sets P1, . . . , Pk such that, for all i ∈ {1, . . . , k}, d(o, conv(Pi)) ≤
(2+
√

2)
√

k
n diam(P ), where conv(Pi) is the convex hull of Pi, d(o, conv(Pi)) is the Euclidean

distance from o to conv(Pi), and diam(P ) is the diameter of P . Our result can improve
the bound to d(o, conv(Pi)) ≤ 1

2 diam(Pi) ≤ 1
2 diam(P ) for d = 2 and n = 2k (using the

max-sum matching for P and taking o in the intersection of the disks). For d = 2 and
arbitrary values of k, another bound of d(o, conv(Pi)) ≤ 1√

3 diam(P ) is implied by Jung’s
theorem [15] (taking as o the center of the smallest disk enclosing P ).

1.1 Related problems
As described by Huemer et al. [14], this class of problems is well studied in discrete and
computational geometry, starting from the classic result that n red points and n blue points
can always be perfectly matched with n pairwise non-crossing segments, where each segment
connects a red point with a blue point [16]. The study has been continued in plenty of
directions, for both the monochromatic and bichromatic versions, by using pairwise disjoint
objects inducing the matching: segments [4, 11], rectangles [1, 2, 6, 7, 9], and more general
geometric objects [5].

Our results, as that of [14], are in the direction opposite to that of above mentioned
known results on matching points: The goal is that all matching objects (i.e., the disks in
DM) have a common intersection, whereas in previous work it is required that all matching
objects are pairwise disjoint.

The problem of stabbing a finite set of pairwise intersecting disks with four or five
points [8, 10, 13], is also related with this paper, since we deal with finite sets of pairwise
intersecting disks.

Particularly, the conjecture posted by Fingerhut [12] relates to an abstract version of a
problem in designing communication networks. The given 2n points represent nodes that
should be connected by a network. The cost cost(E) of a max-sum matching E is a lower
bound on the cost of any feasible network, and the point o is a place where one would like to
place the center of a “star” network, in which all given points are connected directly to the
center of the star.

2 Red-blue matchings

Let R and B be two disjoint point sets defined as above, where |R| = |B| = n, n ≥ 2. In
this section, we prove that the perfect matching E of R and B that maximizes the total
Euclidean distance cost(E) does not always ensure the common intersection property of the
disks in DE . Nevertheless, although the common intersection is not always possible, all disks
must be pairwise intersecting, as proved in the next proposition.

I Proposition 1. Every pair of disks in DE have a non-empty intersection.

Proof. Let (a, a′) and (b, b′) be two different pairs of E , with a, b ∈ R and a′, b′ ∈ B. Since E
is a maximum matching, we must have ‖a− b′‖+ ‖a′− b‖ ≤ ‖a− a′‖+ ‖b− b′‖. The equality
holds, for instance, when a′, a, b, and b′ are in this order consecutive vertices of a square. Note
that, in the contrary case, we will have cost((E \ {(a, a′), (b, b′)})∪{(a, b′), (b, a′)}) > cost(E).
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a(−1, 0) b(1, 0)

c(0,
√
3)

c′(0, 3)

b′ a′

Dcc′

Daa′ Dbb′

Figure 1 Proof of Theorem 2.

The disks Daa′ , Dbb′ ∈ DE have a common point if and only if the distance
∥∥∥a+a′

2 − b+b′

2

∥∥∥
between the centers a+a′

2 and b+b′

2 of Daa′ and Dbb′ , respectively, is at most the sum
‖a−a′‖

2 + ‖b−b′‖
2 of their radii. The following equations ensure this condition:

‖(a+ a′)− (b+ b′)‖ = ‖(a− b′) + (a′ − b)‖
≤ ‖a− b′‖+ ‖a′ − b‖
≤ ‖a− a′‖+ ‖b− b′‖.

Hence, we conclude that Daa′ ∩Dbb′ 6= ∅ for every pair of disks Daa′ and Dbb′ of DE . J

I Theorem 2. There exist point sets R ∪B, with R ∩B = ∅ and |R| = |B| = 3, such that,
for any max-sum matching E of R and B, the intersection of the disks of DE is the empty
set.

Proof. Let R = {a, b, c} and B = {a′, b′, c′}, with a = (−1, 0), b = (1, 0), c = (0,
√

3),
c′ = (0, 3), and a′ ∈ bc and b′ ∈ ac such that ‖c− a′‖ = ‖c− b′‖ = ε, for a parameter ε > 0
that ensures that E = {(a, a′), (b, b′), (c, c′)} is the only maximum matching of R ∪ B (see
Figure 1).

Note that

‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖ = ‖a− c′‖+ ‖b− a′‖+ ‖c− b′‖
=
√

10 + (2− ε) + ε

= 2 +
√

10,

and we need to ensure that

2 +
√

10 < ‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ = cost(E).
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That is, the matching {(a, a′), (b, b′), (c, c′)} has larger total Euclidean distance than the
matchings {(a, b′), (b, c′), (c, a′)} and {(a, c′), (b, a′), (c, b′)}. Since

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ = 2‖a− a′‖+ ‖c− c′‖
= 2‖a− a′‖+ (3−

√
3)

> 2(‖a− c‖ − ε) + (3−
√

3)
= 7−

√
3− 2ε,

it suffices to ensure

2 +
√

10 < 7−
√

3− 2ε ⇐⇒ ε <
5−
√

10−
√

3
2 ≈ 0.0528. (3)

Furthermore, since

‖a− c′‖+ ‖b− b′‖+ ‖c− a′‖ = ‖a− a′‖+ ‖b− c′‖+ ‖c− b′‖
< (2 + ε) +

√
10 + ε

= 2 +
√

10 + 2ε,

to ensure that {(a, a′), (b, b′), (c, c′)} has larger total Euclidean distance than {(a, c′), (b, b′), (c, a′)}
and {(a, a′), (b, c′), (c, b′)}, it suffices to guarantee that

2 +
√

10 + 2ε < 7−
√

3− 2ε ⇐⇒ ε <
5−
√

10−
√

3
4 ≈ 0.0264. (4)

Hence, any ε > 0 satisfying (4) (and then also (3)) is such that E = {(a, a′), (b, b′), (c, c′)} is
the only maximum matching of R ∪B. It remains to show that Daa′ ∩Dbb′ ∩Dcc′ = ∅. To
see that, it is straightforward to show (based on the fact that c /∈ Daa′ and c /∈ Dbb′) that all
points of Daa′ ∩Dcc′ have negative x-coordinates, and all points of Dbb′ ∩Dcc′ have positive
x-coordinates. J

Let |R| = |B| = n. If n = 2, then the disks of DE always intersect by Proposition 1. If
n = 3, then the disks of DE may not intersect by Theorem 2. One could expect that the disks
of DE always intersect if n is sufficiently large. Next, we answer this question negatively.

I Theorem 3. For any n ≥ 4, there exist point sets R∪B, with R∩B = ∅ and |R| = |B| = n,
such that, for any max-sum matching E of R and B, the intersection of the disks of DE is
the empty set.

Proof. We construct a set R of n red points, and a set B of n blue points, as follows. First,
take six points a, b, c ∈ R and a′, b′, c′ ∈ B as in Theorem 2. Second, we add n− 3 red points
and n− 3 blue points in the ε-neighborhood of point c, as explained below (see Figure 2, a
zoomed-in view of Figure 1), where ε > 0 is a sufficiently small number that will be specified
later.

Add n − 3 blue points, denoted a′1, a
′
2, . . . , a

′
n−3, on the segment b′a′. Note that they

are within distance ε from c since ‖c− b′‖ = ‖c− a′‖ = ε. Add n− 3 red points, denoted
a1, a2, . . . , an−3, on the horizontal line through c (perpendicular to cc′), and within distance
ε from c (see Figure 2). Then, we have ‖c′ − ai‖ ≥ ‖c′ − c‖ for all i ∈ {1, . . . , n− 3}.

Consider two matchingsM1 andM2 such that: inM1 point c′ is matched to c or to
some ai, i ∈ {1, . . . , n− 3}; and inM2 point c′ is matched to a or to b. Given p ∈ R ∪ B,
and a matchingM of R ∪B, letM(p) be the point such that p andM(p) are matched in
M. Clearly, it holds that

‖c′ −M1(c′)‖ ≥ ‖c′ − c‖ = 3−
√

3 and ‖a−M1(a)‖ ≥ ‖a− c‖ − ε = 2− ε.
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c

b′ a′

Dcc′

Daa′ Dbb′

︸︷︷︸ ︸︷︷︸
a b

︷︸︸︷c′

Figure 2 Proof of Theorem 3.

Similarly, ‖b−M1(b)‖ ≥ 2− ε. Then, cost(M1) ≥ 3−
√

3 + 2(2− ε) = 7−
√

3− 2ε.
By symmetry, we can assume that (a, c′) ∈M2. InM2, point b is matched to a′, to b′,

or to some a′i, i ∈ {1, . . . , n− 3}. Then, we have that

‖b−M2(b)‖ ≤ ‖b− b′‖ ≤ ‖b− c‖+ ε = 2 + ε.

Furthermore, the members of the remaining n− 2 pairs ofM2 are within distance ε from c.
Thus, cost(M2) ≤

√
10 + 2 + ε+ 2(n− 2)ε. We choose ε > 0 such that

7−
√

3− 2ε >
√

10 + 2 + ε+ 2(n− 2)ε,

or what is the same,

5−
√

3−
√

10 > (2n− 1)ε.

Since 5−
√

3−
√

10 ≈ 0.10567, we can choose ε < 1
10(2n−1) to ensure cost(M1) > cost(M2).

Therefore, E 6=M2 and we can assume that E =M1. To show that the intersection of
the disks in DE is empty, it suffices to show that the disks DaM1(a), DbM1(b) and Dc′M1(c′)
do not have a common point. To this end, note that (which is straightforward to prove by
construction) that all points of DaM1(a) ∩ Dc′M1(c′) have negative x-coordinates, and all
points of DbM1(b) ∩Dc′M1(c′) have positive x-coordinates. The result thus follows. J

3 On Fingerhut’s Conjecture

In this section, we first show that the constant in inequality (2) can be improved to
√

5 ≈ 2.236.
We start by proving the next technical lemma:

I Lemma 4. Let p and q be two points of the plane, and let rpq be the radius of disk Dpq.
Let D be a second disk with center o and radius r ≤ rpq such that D ∩Dpq 6= ∅. Then,

‖p− o‖+ ‖q − o‖ ≤
√

5 · ‖p− q‖.



S. Bereg et al. xx:7

Proof. Let opq denote the center of Dpq, and note that ‖o−opq‖ ≤ r+rpq ≤ 2 ·rpq = ‖p−q‖,
because D ∩Dpq 6= ∅. Then, we have that:

(‖p− o‖+ ‖q − o‖)2 ≤ 2 · (‖p− o‖2 + ‖q − o‖2) (Cauchy-Schwarz’s inequality)

= 2
(

1
2‖p− q‖

2 + 2 · ‖o− opq‖2
)

(Apollonius’ theorem)

= ‖p− q‖2 + 4 · ‖o− opq‖2

≤ 5 · ‖p− q‖2,

which implies the lemma. J

Lemma 4 and Proposition 1 imply the following theorem.

I Theorem 5. For any n ≥ 2, and any planar n-point sets R and B such that R ∩B = ∅,
consider any max-sum matching E = {(ai, bi), i = 1, . . . , n} of R ∪B. Let o be the midpoint
of the shortest segment in the matching E. Then, for all i ∈ {1, . . . , n},

‖ai − o‖+ ‖bi − o‖ ≤
√

5 · ‖ai − bi‖.

Note that the bound of
√

5 is tight if the point o is always the midpoint of the shortest
segment. Namely, consider 2 red points and 2 blue points, as vertices of a square, such that
diagonal-opposed vertices have the same color.

We now strengthen Theorem 5. Precisely, we prove that for any point set P of 2n
uncolored points in the plane and a max-sum matchingM = {(ai, bi), i = 1, . . . , n} of P , all
disks in DM have a common intersection. We will use Helly’s theorem, that is, we will prove
the claim for n = 3.

We note that P might contain different points with the same coordinates. Furthermore,
the common intersection might be a singleton. Namely, consider six points a, b, c, a′, b′, and c′,
where a, b, and c are the vertices of a non-empty triangle, and a′, b′, and c′ coincide with a point
z in the interior of the triangle. By the triangle inequality, the matching {(a, a′), (b, b′), (c, c′)}
is max-sum, and z is the only point in the common intersection Daa′ ∩Dbb′ ∩Dcc′ . For any
matchingM, the segments ofM is the segment set {pq | (p, q) ∈M}.

Let p, q, and r be three points of the plane. We denote by ∆pqr the triangle with vertices
p, q, and r; by `(p, q) the straight line through p and q oriented from p to q; by τ(p, q) the
ray with apex p that goes through q; by ~pq the segment pq oriented from p to q; and by Cpq

the circle bounding Dpq. Furthermore, given a fourth point s, we say that ~pq points to rs if
q is in the interior of ∆prs ∩Drs. See Figure 3 (left), where segment ~cd points to ab.

The first observation that we state is that ifM is a max-sum matching, then the disks of
DM intersect pairwise, as a consequence of Proposition 1. Second, every pair of segments of
M either cross or one oriented segment points to the other one, as formally proved in the
following lemma. Third, the four vertices of any two segments cannot be in convex position,
because the matching would not be max-sum by the triangle inequality.

I Lemma 6. Let {a, b, c, d} be a set of four points such that {(a, b), (c, d)} is a max-sum
matching of {a, b, c, d} and d belongs to the interior of ∆abc. Then, d belongs to the interior
of disk Dab. That is, ~cd points to ab.

Proof. Let d′ be the reflection of d about the midpoint m = (a+ b)/2 of segment ab, also
the center of Dab, and assume w.l.o.g. that d belongs to triangle ∆acd′. Refer to Figure 3.
Then,

‖c− d‖+ ‖d− d′‖ < ‖c− a‖+ ‖a− d′‖.
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a b

c

d

d′

m
a b

c

d

Figure 3 Proof of Lemma 6.

Namely, the perimeter of triangle ∆dcd′ is smaller than the perimeter of triangle ∆acd′, which
implies the equation. Using that ‖a− d′‖ = ‖d− b‖ because the quadrilateral with vertex set
{a, d′, b, d} is a parallelogram (or rhomboid), and that ‖c− a‖+ ‖d− b‖ ≤ ‖a− b‖+ ‖c− d‖
because {(a, b), (c, d)} is a max-sum matching, the equation can be extended to

‖c− d‖+ ‖d− d′‖ < ‖c− a‖+ ‖a− d′‖
= ‖c− a‖+ ‖d− b‖
≤ ‖a− b‖+ ‖c− d‖,

which implies that ‖d−d′‖ < ‖a−b‖. That is, ‖d−m‖ = ‖d−d′‖/2 is smaller than the radius
‖a−m‖ = ‖a− b‖/2 of Dab, whose center is m. These observations imply the result. J

As mentioned above, we will elaborate a proof for n = 3, that is, matchings of three
segments. Since every pair of segments of a max-sum matching cross, or one of them points
to the other one, we distinguish ten cases of relative position (or order-type) of the three
segments, as shown in Figure 4, enumerated from (A) to (J). In the rest of this section, we
will first show with direct proofs that in each of the cases from (A) to (G) the three disks
have a common point. After that, we will use a proof by contradiction for each of the cases
from (H) to (J).

The general idea of these latter proofs by contradiction is the following: Since the disks
pairwise intersect, but they do not have a common intersection, we can extend one of the
segments (by moving one of its vertices) such that the new three disks have a singleton
common intersection. In this new setting, the three new segments must fall again in one
of the cases from (H) to (J). Then, we show that the new segments must correspond to a
max-sum matching given that the original ones do, but contradictorily such a new matching
is not max-sum.

I Lemma 7. If the segments of a max-sum matching of six points fall in one of the cases
from (A) to (G), then the three disks of the matching have a common intersection.

Proof. Let {a, b, c, a′, b′, c′} be a 6-point set, and letM = {(a, a′), (b, b′), (c, c′)} be a max-
sum matching. In any case, refer to Figure 5 for the location of each point.

Case (A): At least one altitude of the triangle T bounded by the three segments goes
through the interior of T . Let u be the vertex of such an altitude in a side of T . By Thales’
theorem, each of the three disks Daa′ , Dbb′ , and Dcc′ contains u.
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(A) (B) (C) (D)

(E) (F) (G)

(H) (I) (J)

Figure 4 The ten different relative positions of three segments.

Case (B): Let u be the intersection point between bb′ and cc′. If Dbb′ contains a, then
we are done since a ∈ Dcc′ because ~a′a points to cc′ (Lemma 6). Similarly, if Dcc′ contains
a′, then we are done since a′ ∈ Dbb′ because ~aa′ points to bb′. Otherwise, if a /∈ Dbb′ and
a′ /∈ Dcc′ , then the triangle ∆aa′u is such that the interior angles at a and a′, respectively,
are both acute. Hence, the altitude h from vertex u goes through the interior of ∆aa′u, and
let v ∈ aa′ be the other vertex of h. Since ~a′a points to cc′, and ~aa′ points to bb′, each of the
disks Daa′ , Dbb′ , and Dcc′ contains v, by Thales’ theorem. The proof for Case (C) is both
similar and simpler.

Case (D): If Dbb′ contains c′, then we are done since c′ ∈ Daa′ because ~cc′ points to
aa′ (Lemma 6). Similarly, if Dcc′ contains b, then we are done since b ∈ Daa′ because ~b′b

points to aa′. Otherwise, if c′ /∈ Dbb′ and b /∈ Dcc′ , then the triangle ∆c′bu is such that the
interior angles at c′ and b, respectively, are both acute. Hence, the altitude h from vertex
u goes through the interior of ∆c′bu, and let v ∈ c′b be the other vertex of h. We have
v ∈ Dbb′ ∩Dcc′ , by Thales’ theorem. Furthermore, since c′, b ∈ Daa′ , we have that segment
c′b is contained in Daa′ . Hence, v ∈ Daa′ ∩Dbb′ ∩Dcc′ .

Cases (E), (F), and (G): In each of these cases, the same oriented segment points to
each of the other two ones: Say, segment ~aa′ points to both bb′ and cc′. Then, we have that
a′ ∈ Dbb′ ∩Dcc′ , by Lemma 6. Hence, a′ ∈ Daa′ ∩Dbb′ ∩Dcc′ . This completes the proof. J

We now prove several technical lemmas, which will be used for the cases from (H) to
(J). The following lemma guarantee that if we extend one segment by moving one of the
points, then the resulting segments correspond to a max-sum matching of the resulting
point set. The rest of the lemmas impose monotone properties, and situations in which
{(a, a′), (b, b′), (c, c′)} is not a max-sum matching of point set {a, b, c, a′, b′, c′}, all of them
associated with cases from (H) to (J).

I Lemma 8. Let M = {(ai, bi), i = 1, . . . , n} be a max-sum matching of the set P of 2n
uncolored points, and let c /∈ P be a point such that b1 belongs to the interior of the segment
a1c. Then, M∗ = (M\ {(a1, b1)}) ∪ {(a1, c)} is a max-sum matching of (P \ {b1}) ∪ {c}.
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Figure 5 Proof of Lemma 7.

Proof. LetM′ denote any matching of (P \ {b1})∪{c}, and note that (M′ \ {(c,M′(c))})∪
{(b1,M′(c))} is a matching of P . Then,

cost(M′) = cost (M′ \ {(c,M′(c))}) + ‖M′(c)− c‖
≤ cost (M′ \ {(c,M′(c))}) + ‖M′(c)− b1‖+ ‖b1 − c‖ (triangle inequality)
= cost((M′ \ {(c,M′(c))}) ∪ {(b1,M′(c))}) + ‖b1 − c‖
≤ cost(M) + ‖b1 − c‖
= cost(M∗).

Hence, the lemma follows. J

I Lemma 9. Let p, p′, q, and q′ be four points such that ~pp′ points to qq′, and q is to the
right of `(p, p′). Let z be a point to the left of both `(p, p′) and `(q, q′) such that: (i) q is to
the left of `(z, p); (ii) vectors p− z and p′ − z are orthogonal, and vectors q − z and q′ − z
are also orthogonal. Refer to Figure 6a. Then, we have that

‖p− z‖ − ‖q − z‖ < ‖p− q′‖ − ‖q − q′‖. (5)

Proof. Rearranging terms in equation (5), we need to prove that

‖p− z‖+ ‖q − q′‖ < ‖p− q′‖+ ‖q − z‖. (6)

Conditions (i) and (ii), the fact that ~pp′ points to qq′, and the location of z, imply that q is
to the right of `(z, p′) if and only if segments pq′ and qz have a common point.

Suppose that q is to the right of `(z, p′) (see Figure 6b), case where segments pq′ and
qz have a common point. Then, p, q, q′, and z are the vertices of a convex quadrilateral
with non-empty interior and diagonals pq′ and zq. Hence, Equation (6) holds by the triangle
inequality.

Suppose now that q is not to the right of `(z, p′) (see Figure 6c), then segments pq′ and
qz do not intersect. Let z′ be the reflection of z about the center of segment qq′, also the
center of Dqq′ . Then, we have ‖q − z‖ = ‖q′ − z′‖ and ‖q − q′‖ = ‖z − z′‖, by condition (ii)
and Thales’ theorem. The fact that p′ belongs to the interior of Dqq′ given that ~pp′ points
to qq′, implies that z′ must be to the right of line `(p, z). Then, since pq′ and qz do not
intersect, we have that z belongs to triangle ∆pz′q′. This implies

‖p− z‖+ ‖z − z′‖ < ‖p− q′‖+ ‖q′ − z′‖,

then equation (5) and the result. J
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Figure 6 (a) Statement of Lemma 9. (b-c) Proof of Lemma 9.

I Lemma 10. Let p, p′, q, and q′ be four points in convex position such that q and q′ are to
the right and left of line `(p, p′), respectively. Let z be a point to the left of both `(p, p′) and
`(q, q′) such that: vectors p− z and p′ − z are orthogonal, and vectors q − z and q′ − z are
also orthogonal. Then, we again have that ‖p− z‖ − ‖q − z‖ < ‖p− q′‖ − ‖q − q′‖.

Proof. The proof is now simpler. In this case, segments pq′ and qz have a common point,
and the proof continues as that of Lemma 9. J

I Lemma 11. Let a, b, c, a′, b′, c′, and z be seven points such that: c is to the left of
line `(a, b); segments ~aa′, ~bb′, and ~cc′ point to bb′, cc′, and aa′, respectively; and for each
u ∈ {a, b, c}, point z is to the left of line `(u, u′), and vectors u− z and u′− z are orthogonal.
Refer to Figure 7a. Then, {(a, a′), (b, b′), (c, c′)} is not a max-sum matching of point set
{a, b, c, a′, b′, c′}.

Proof. We will prove

‖a− a′‖+ ‖b− b′‖+ ‖c− c′‖ < ‖a− b′‖+ ‖b− c′‖+ ‖c− a′‖. (7)

The conditions of the lemma guarantee (three times) the conditions of Lemma 9. That
is, we can apply Lemma 9 for a, a′, b, b′, and z (where a and b play the role of p and q,
respectively); for b, b′, c, c′, and z (where b and c play the role of p and q, respectively); and
for c, c′, a, a′, and z (where c and a play the role of p and q, respectively). Hence, we obtain
the following three inequalities:

‖a− z‖ − ‖b− z‖ < ‖a− b′‖ − ‖b− b′‖, (Lemma 9)
‖b− z‖ − ‖c− z‖ < ‖b− c′‖ − ‖c− c′‖, (Lemma 9)
‖c− z‖ − ‖a− z‖ < ‖c− a′‖ − ‖a− a′‖. (Lemma 9)
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Figure 7 (a) Lemma 11. (b) Lemma 12.

Adding the above three inequalities, we obtain inequality (7). The result thus follows. J

I Lemma 12. Let a, b, c, a′, b′, c′, and z be seven points such that: c is to the left of line
`(a, b); segments ~aa′ and ~bb′ point to bb′ and cc′, respectively; segments aa′ and cc′ have a
common point with a and a′ to the right and left of line `(c, c′), respectively; and for each
u ∈ {a, b, c}, point z is to the left of line `(u, u′), and vectors u− z and u′− z are orthogonal.
Refer to Figure 7b. Then, {(a, a′), (b, b′), (c, c′)} is not a max-sum matching of point set
{a, b, c, a′, b′, c′}.

Proof. The conditions of the lemma guarantee (twice) the conditions of Lemma 9. That
is, we can apply Lemma 9 for a, a′, b, b′, and z (where a and b play the role of p and q,
respectively); and for b, b′, c, c′, and z (where b and c play the role of p and q, respectively).
Furthermore, we can apply Lemma 10 for c, c′, a, a′, and z (where c and a play the role of p
and q, respectively). Hence, we obtain the following three inequalities:

‖a− z‖ − ‖b− z‖ < ‖a− b′‖ − ‖b− b′‖, (Lemma 9)
‖b− z‖ − ‖c− z‖ < ‖b− c′‖ − ‖c− c′‖, (Lemma 9)
‖c− z‖ − ‖a− z‖ < ‖c− a′‖ − ‖a− a′‖. (Lemma 10)

Adding the three inequalities above, we obtain again inequality (7). The result thus follows.
J

Let α be a planar (open or closed) curve that splits the plane into two open regions.
Given a point p not in α, let H(α, p) denote the region (between the two above ones) that
contains p.

I Proposition 13. Let a, b, a′, and b′ be four points such that {(a, a′), (b, b′)} is a max-sum
matching of {a, b, a′, b′}. Let α be the arc of the hyperbola with foci a and b that goes through
b′. Then, we have that a′ ∈ α ∪H(α, b).

Proof. The arc α is the locus of the points x of the plane such that ‖a − x‖ − ‖b −
x‖ = ‖a − b′‖ − ‖b − b′‖. Since {(a, a′), (b, b′)} is a max-sum matching, we have that
‖a− b′‖ − ‖b− b′‖ ≤ ‖a− a′‖ − ‖b− a′‖, which implies the proposition. J
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Figure 8 (a,b,c) Proof of Lemma 14.

I Lemma 14. Let p, p′, and o be three points such that o is the midpoint of segment pp′. Let
z be a point of the circle Cpp′ to the left of line `(p, p′), q a point of segment zp′ with q 6= p′,
and q′ a point of ray τ(o, z) not in segment oz. Then, ‖p−p′‖+‖q−q′‖ < ‖p−q‖+‖p′−q′‖.

Proof. We divide the proof into two cases: ‖p− p′‖ ≥ ‖q′ − p′‖; and ‖p− p′‖ < ‖q′ − p′‖. In
both cases, let α be the arc of the hyperbola with foci p and q′ that goes through p′.

In the first case (see Figure 8a), let z′ be the intersection point of Cpp′ and pq′. Note that
‖p − p′‖ ≥ ‖q′ − p′‖ implies that the region H(α, q′) is convex. Furthermore, line `(p′, z′)
is perpendicular to the line `(p, q′) through the foci of α, and this implies that z′ belongs
to H(α, q′), and then z belongs to the convex intersection H(`(p′, z′), q′) ∩H(α, q′). Given
that z belongs to the interior of α ∪ H(α, q′), p′ is on the boundary of α ∪ H(α, q′), and
that q ∈ zp′, q 6= p′, we also have that q belongs to H(α, q′). This last fact, equivalent to
q /∈ α ∪H(α, p), implies ‖q′ − q‖ − ‖p− q‖ < ‖q′ − p′‖ − ‖p− p′‖, by Proposition 13, hence
the result.

Consider now the second case, ‖p− p′‖ < ‖q′ − p′‖ (see Figure 8b). Let β be the bisector
of the interior angle at p′ of triangle ∆op′q′. By well-known properties of hyperbolas, β is
the tangent of α at p′. Furthermore, ‖p− p′‖ < ‖q′ − p′‖ implies that β separates α from
vertex q′. Let z′ be the intersection point between oq′ and β. We use the following claim to
show that ‖o − z′‖ < ‖o − p′‖: If A, B, and C are the vertices of a triangle, and point E
belongs to side AB, such that line `(C,E) is the bisector of the interior angle at C, then
‖C − B‖ > ‖B − E‖. The claim follows from the fact that in any triangle, precisely in
∆BCE, larger sides correspond to larger opposed interior angles (see Figure 8c). Applying
the claim to ∆op′q′, we have ‖o − z′‖ < ‖o − p′‖, which implies that β separates point z
and arc α. Furthermore, β separates point q and α because q ∈ zp′ \ {p′}. This last fact
shows that q is to left of α in the direction from q′ to p (i.e. q /∈ α ∪ H(α, p)), implying
‖q′ − q‖ − ‖p− q‖ < ‖q′ − p′‖ − ‖p− p′‖, by Proposition 13. The results thus follows. J

I Lemma 15. Let a, b, c, a′, b′, c′, and z be seven points such that: none of them is to the
right of line `(a, a′); segments ~b′b, ~bb′, and ~cc′ point to aa′, cc′, and aa′, respectively; and
for each u ∈ {a, b, c}, point z is to the left of line `(u, u′), and vectors u− z and u′ − z are
orthogonal. Refer to Figure 9a. Then, {(a, a′), (b, b′), (c, c′)} is not a max-sum matching of
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{a, b, c, a′, b′, c′}.

Proof. We can apply Lemma 9 for b, b′, c, c′, and z (where b and c play the role of p and q,
respectively); and for c, c′, a, a′, and z (where c and a play the role of p and q, respectively).
Hence, we obtain the following two inequalities:

‖b− z‖ − ‖c− z‖ < ‖b− c′‖ − ‖c− c′‖, (Lemma 9)
‖c− z‖ − ‖a− z‖ < ‖c− a′‖ − ‖a− a′‖. (Lemma 9)

Let o denote the midpoint of segment aa′, also the center of Daa′ . Given that z− c and z− c′
are orthogonal, and ~cc′ points to aa′, we have that c is to the left of line `(o, z). Note that if
c is to the right of, or in, `(o, z), then c′ would not belong to the interior of Daa′ . Similarly,
since z − b and z − b′ are orthogonal, and ~b′b points to aa′, we have that b′ is to the right of
line `(o, z). Then, since ~bb′ points to cc′, we have that rays τ(b, b′) and τ(o, z) must intersect.

If point b belongs to triangle ∆aa′z (see Figure 9b), then the facts that z − b and z − b′
are orthogonal, and τ(b, b′) ∩ τ(o, z) 6= ∅ imply that segments bz and ab′ have a common
point. Hence, ‖a− z‖+ ‖b− b′‖ < ‖b− z‖+ ‖a− b′‖ by the triangle inequality. That is,

‖a− z‖ − ‖b− z‖ < ‖a− b′‖ − ‖b− b′‖.

Adding the three inequalities above, we obtain again inequality (7), implying the result.
In the contrary case, b does not belong to ∆aa′z, (see Figure 9a), let us assume by

contradiction that the matching {(a, a′), (b, b′), (c, c′)} is max-sum. Then, the matching
{(a, a′), (b, b′)} is also max-sum. Let w and w′ be the intersection points of `(b, b′) with
τ(o, z) and za′, respectively. Note that bb′ ⊂ ww′, and by Lemma 8, {(a, a′), (w,w′)} is a
max-sum matching of {a, a′, w, w′}. But we can apply Lemma 14, where a and w play the
role of p and q, respectively, to have that {(a, a′), (w,w′)} is not max-sum, which implies the
result. J
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We are now ready to give the proofs to the missing cases, those from (H) to (J).

I Lemma 16. If the segments of a max-sum matching of six points fall in one of the cases
from (H) to (J), then the three disks of the matching have a common intersection.

Proof. Suppose by contradiction that the three disks, denoted D1, D2, and D3, intersect
pairwise, but without a common intersection (see Figure 10). Let u1,2, u2,3, and u3,1 be the
vertices of the pairwise disjoint lenses D1 ∩D2, D2 ∩D3, and D3 ∩D1, respectively, located
in the triangle with vertices the centers of D1, D2, and D3, respectively.

The idea is to use Lemma 8, in combination with Lemmas 11, 12, and 15, such that the
point z of these lemmas is among u1,2, u2,3, and u3,1. To this end, we need to guarantee
that point z is not an extreme point of some segment of the matching. This is done in the
next paragraph.

Note that two vertices among u1,2, u2,3, and u3,1 cannot be the extreme points of a same
segment of the matching. Furthermore, if each of the three vertices is an extreme point of
some segment of the matching, then at least one pair of disjoint segments violates Lemma 6.
That is, the extreme point of one segment, in the interior of the convex hull of the four
involved points, is not in the interior of the disk corresponding to the other segment. Hence,
we can assume that at least one vertex among u1,2, u2,3, and u3,1 is not an extreme point of
a segment of the matching: say vertex u1,2. This implies that we can extend the segment of
disk D3 by moving one of its extreme points such that the new three matching disks have a
singleton common intersection at u1,2. Let z = u1,2, where z is distinct from all the new six
points.

Let the new six points be denoted as a, b, c, a′, b′, and c′, in such a way that the new
segments are precisely aa′, bb′, and cc′, and for each u ∈ {a, b, c} point z is to the left of line
`(u, u′). By Lemma 8, {(a, a′), (b, b′), (c, c′)} is a max-sum matching of {a, b, c, a′, b′, c′}.

It is important to note the following: If the original segments are in Case (H), then by
extending one segment we can stay in Case (H), or go to Case (I). If the original segments
are in Case (I), then by extending one segment we can stay in Case (I), or go to Case (C)
with a non-singleton common intersection of the three disks. Otherwise, if the original
segments are in Case (J), then by extending one segment we can stay in Case (J), or go to
Case (B) or (D) with a non-singleton common intersection of the three disks. Hence, since
the common intersection of the new three disks Daa′ , Dbb′ , and Dcc′ is singleton, we can
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ensure that the new segments aa′, bb′, and cc′ are again in a case from (H) to (J), and the
proof continues as follows.

If aa′, bb′, and cc′ fall in Case (H), then by Lemma 11 {(a, a′), (b, b′), (c, c′)} is not max-
sum. If they are in in Case (I), then by Lemma 12 {(a, a′), (b, b′), (c, c′)} is not max-sum.
Otherwise, if they are in in Case (J), then by Lemma 15 we have that {(a, a′), (b, b′), (c, c′)}
is not max-sum. There exists a contradiction in each of the cases, thus the original three
disks must have a common intersection. The lemma thus follows. J

Combining Lemma 7 and Lemma 16, with Helly’s theorem, we state now the main results
of this paper:

I Theorem 17. Let P be a set of 2n (uncolored) points in the plane. Any max-sum matching
M of P is such that all disks of DM have a common intersection.

I Corollary 18. Let P be a set of 2n (uncolored) points in the plane, and let {(ai, bi), i =
1, . . . , n} be a max-sum matching of P . Then, there exists a point o of the plane such that
for all i ∈ {1, . . . , n} we have:

‖ai − o‖+ ‖bi − o‖ ≤
√

2 · ‖ai − bi‖.

References

1 Bernardo M. Ábrego, Esther M. Arkin, Silvia Fernández-Merchant, Ferran Hurtado, Mikio
Kano, Joseph S. B. Mitchell, and Jorge Urrutia. Matching points with circles and squares. In
Japanese Conf. on Disc. Comput. Geom., pages 1–15, 2004.

2 Bernardo M. Ábrego, Esther M. Arkin, Silvia Fernández-Merchant, Ferran Hurtado, Mikio
Kano, Joseph S. B. Mitchell, and Jorge Urrutia. Matching points with squares. Disc. &
Comput. Geom., 41(1):77–95, 2009.

3 Karim A. Adiprasito, Imre Bárány, and Nabil H. Mustafa. Theorems of Carathéodory, Helly,
and Tverberg without dimension. In Proc.13th ACM-SIAM Sympos. Discrete Algorithms,
pages 2350–2360, 2019.

4 Greg Aloupis, Luis Barba, Stefan Langerman, and Diane L Souvaine. Bichromatic compatible
matchings. Comput. Geom., 48(8):622–633, 2015.

5 Greg Aloupis, Jean Cardinal, Sébastien Collette, Erik D. Demaine, Martin L. Demaine, Muriel
Dulieu, Ruy Fabila-Monroy, Vi Hart, Ferran Hurtado, Stefan Langerman, Maria Saumell,
Carlos Seara, and Perouz Taslakian. Non-crossing matchings of points with geometric objects.
Comput. Geom., 46(1):78–92, 2013.

6 Sergey Bereg, Nikolaus Mutsanas, and Alexander Wolff. Matching points with rectangles and
squares. Comput. Geom., 42(2):93–108, 2009.

7 Luis E. Caraballo, Carlos Ochoa, Pablo Pérez-Lantero, and Javiel Rojas-Ledesma. Matching
colored points with rectangles. J. Comb. Optim., 33(2):403–421, 2017.

8 Paz Carmi, Matthew J. Katz, and Pat Morin. Stabbing pairwise intersecting disks by four
points. arXiv preprint arXiv:1812.06907, 2019.

9 Josué Corujo, David Flores-Peñaloza, Clemens Huemer, Pablo Pérez-Lantero, and Carlos Seara.
Matching random colored points with rectangles. In XVIII Spanish Meeting on Computational
Geometry, Girona, Spain, 2019.

This work has received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Skłodowska-Curie grant agreement
No 734922.



S. Bereg et al. xx:17

10 Ludwig Danzer. Zur Lösung des Gallaischen Problems über Kreisscheiben in der euklidischen
Ebene. Studia Sci. Math. Hungar, 21(1-2):111–134, 1986.

11 Adrian Dumitrescu and Rick Kaye. Matching colored points in the plane: some new results.
Comput. Geom., 19(1):69–85, 2001.

12 David Eppstein. Geometry Junkyard. https://www.ics.uci.edu/~eppstein/junkyard/
maxmatch.html.

13 Sariel Har-Peled, Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, Micha
Sharir, and Max Willert. Stabbing pairwise intersecting disks by five points. arXiv pre-
print arXiv:1801.03158, 2019.

14 Clemens Huemer, Pablo Pérez-Lantero, Carlos Seara, and Rodrigo I. Silveira. Matching points
with disks with a common intersection. Discrete Mathematics, 342(7):1885–1893, 2019.

15 Heinrich Jung. Über den kleinsten Kreis, der eine ebene Figur einschließt. J. Reine Angew.
Math. (in German), 137:310–313, 1910.

16 Loren C. Larson. Problem-solving through problems. Springer Science & Business Media, 1983.

https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html
https://www.ics.uci.edu/~eppstein/junkyard/maxmatch.html

	1 Introduction
	1.1 Related problems

	2 Red-blue matchings
	3 On Fingerhut's Conjecture

