
EasyChair Preprint
№ 4459

Real-Time Adaptable Resource Allocation for
Distributed Data-Intensive Applications over
Cloud and Edge Environments

Jean-Didier Totow Tom-Ata and Dimosthenis Kyriazis

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 24, 2020

Real-time adaptable resource allocation for
distributed data-intensive applications over cloud

and edge environments
Jean-Didier Totow Tom-Ata

Department of Digital Systems
University of Piraeus

Piraeus, Greece
totow@unipi.gr

Dimosthenis Kyriazis
Department of Digital Systems

University of Piraeus
Piraeus, Greece
dimos@unipi.gr

Abstract— Applications performance is strongly linked with
the total load, the application deployment architecture and the
amount of resources allocated by the cloud or edge computing
environments. Considering that the majority of the applications
tends to be data intensive, the load becomes quite dynamic and
depends on the data aspects, such as the data sources locations,
their distribution and the data processing aspects within an
application that consists of micro-services. In this paper we
introduce an analysis and prediction model that takes into
account the characteristics of an application in terms of data
aspects and the edge computing resources attributes, such as
utilization and concurrency, in order to propose optimized
resources allocation during runtime.

Keywords—cloud computing, edge computing, resource
allocation, real-time adaptation

I. INTRODUCTION

While cloud computing environments offer services,
resources and tools towards application owners, application
developers and infrastructure administrators, the generation
of big amounts of data from various data sources raises the
need for computing environments that are non-centralized
and can serve the time- and latency- constrained requirements
of users and applications. Such requirements have driven the
emerge of the edge / fog computing paradigm, providing the
required resources on the network edge. Such approach
allows to offload the cloud by pushing computing units near
the place workload are being generated. Applications
deployed on the cloud/edge may be composed of more than
one component which together fulfill some goal. Based on
today’s virtualization techniques, application’s components
can be modelled, deployed, and orchestrated separately. This
adds flexibility to the application lifecycle and move the
application modelling from monolithic to micro-service,
decentralized- and distributed- based model.

Applications running on the cloud must satisfy the
owner’s expectations, otherwise the quality of service (QoS),
which is the compliance of the application performance with
the application’s objectives, will be violated and thus result
to a redeployment/adaptation plan. Since application’s
workload changes over time, depending on the number of
users, number/nature of requests/task users are executing,
cloud providers must implement method for adapting
dynamically these applications to maintain QoS into the
acceptance window. In the cloud domain, many cloud
infrastructures have been created exploiting application
workload to plan deployment which improve the quality of
service by choosing the most suitable configuration. By
configuration, we mean, the amount of resource allocated to

the application such us memory, CPU (Central Processing
Unit), bandwidth, the number of instances by application’s
component and the computation device type such as : CPU,
GPU(Graphical Processing Unit), FPGA (Field-
Programmable Gate Array). In these infrastructures,
decisions are driven by data, therefore the name of data-
driven infrastructure. These infrastructures address the
economic issue in the cloud computing since the resource
allocated to an application is proportional to the need. In the
provider perspective, data-driven infrastructure enables
better resource management by proceeding to the allocation
on-demand.

With the increase number of devices connecting into the
cloud (edge devices), the strategy consisting of pushing the
workload processing near to the place they are being
produced created the edge/fog. This strategy does not only
offload cloud environments but also reduces the
transportation cost and enable the optimization of the
application performance from the user perspective
(improvement of the latency). The edge/fog computing offers
a distributed model which adds the complexity in the
application modeling. We will introduce in this work, the
adaptation of applications running on cloud/edge
environments by exploiting the analysis of the application
performance considering the resources allocation, the inter-
component constraints and the users’ locality. The latter is
coupled with a distributed orchestration approach to address
edge node resources constraints. This leads to the
establishment of a model called application performance
model, which allows the prediction of the application
performance given a certain configuration (i.e. resources,
architecture, and users distribution).

The remainder of the paper is structured as follows:
Section II presents related work in the scope of real-time
application adaptation and resources allocation on cloud and
edge environments. Section III presents the theoretical
framework, and the Section IV develops our approach in an
algorithmic manner and Section V concludes the paper.

II. RELATED WORK

BigDataStack [1] is an infrastructure management
system that provides management of computers, storage, and
network in an intensive data application [1]. Applications can
be developed in BigDataStack by a definition that describes
the application (playbook). This later contains the
requirements and goals of the applications. The application
uses OpenShift as executable software, therefore,
applications are developed in docker containers and can
automatically detect congestion from the application, data
mode components, platform and decide the most appropriate

changes for the application. The customization provided by
BigDataStack utilizes the reference technique to identify the
resources required for initial development. Then, the data
provided by the monitoring engine allows the platform to
make the most appropriate decision to achieve the
implementation objectives set in the SLA (Service Level
Agreement). Application components can be in different
geographical locations, however, development or
rearrangement performed by BigDataStack is based on
resource management.

A distributed Reinforcement Learning (RL) mechanism

called iBalloon [2] for self-adapting Virtual Machine (VM)
resources in which monitoring is necessary for autonomous
orchestration and adaptation has been introduced in [8].
Cloud infrastructures offer flexible resources with horizontal
or vertical scaling solutions to adjust application performance
to changing workloads. However, such scaling approaches
that use only infrastructure-related monitoring data can cause
severe performance declines during workload changes at
runtime. The authors argue that monitoring infrastructure-
level metrics, such as memory and bandwidth, without
considering application performance behavior (application-
level monitoring) at runtime will complicate the resource
allocation problem due to the lack of detailed measurements.
In their work, according to the proposed vertical scaling
approach, each VM can adjust the resource allocation in
terms of CPU, memory, and bandwidth. The iBalloon
architecture includes three fundamental elements: (1) a host
that is responsible for allocating resources to VMs. (2) an
app-agent that includes the iBalloon tracking section and
reports runtime performance information; and (3) a decision-
maker hosting an RL agent placed in each VM to
automatically adjust resource capacity. However, iBalloon is
limited because it does not consider other virtual resources
e.g. storage, nor does it support other customization actions,
e.g. relocation to improve application performance. This is an
issue because to manage an application that develops in an
edge computing framework, it is necessary to consider
migrating component applications between heterogeneous
infrastructure.

Islam [3] developed a precautionary cloud resource
management approach that applied linear regression and
neural networks to predict and meet future resource
requirements. The research problem in this project is actually
the analysis of time series tracking data to derive a prediction
model and other characteristics of the tracking data. The
proposed performance prediction model estimates the
upcoming resource usage at runtime and is able to launch
additional VMs to maximize application performance. The
authors considered the predictive accuracy based on the
performance of the application in terms of response time.
This approach provides distributed scalability and can be
improved to address the resource allocation of a single VM
as well. At present, only CPU usage is used to predict model
training and their approach could further include other types
of resources, e.g. memory, disk and bandwidth.

A self-learning adaptation technique called FQL4KE [4],
which is a fuzzy control method based on a reinforcement
learning algorithm for optimal resilience policies has been
introduced in [10]. This approach aims to automate the
scaling process without utilizing a priori knowledge about the

cloud application running. The proposed architecture
includes a learning module that continuously upgrades the
controller knowledge base by learning customization rules
appropriate for the system. However, the proposed approach
may not address different objectives. If the system goals
change, the controller must re-learn everything from ginner.
A more fundamental problem in real-world environments is
the fact that the number of situations can be huge and
therefore the learning process could become impossible due
to time constraints on new computing standards.

Stankovski and all [5] proposed another interesting
approach refers to a distributed self-adapting architecture that
applies the concept of computing edges with container-based
technologies, such as Docker and Kubernetes, to ensure QoS
for time-critical applications. The basic idea is to develop the
application in a container (case of using file upload) in
different geographical locations in a way that the service is
created, served and destroyed for each file upload request.
For each container, the resources required for the host can be
allocated when monitoring data and business strategies
defined by the end user, application developer and/or
administrator.

Melodic is a multi-cloud management system designed
for intensive data application [6]. Melodic can optimize an
application to meet user requirements by detecting obstacles
from an enhanced learning algorithm. Melodic can develop
different application components in different provider types
(public and private cloud), so it supports multi-cloud
management. The owner of the application provides an
application profile in a meta-cloud application language
(CAMEL). This file to be compiled contains the expectations
of the application, the performance of the index, the
descriptions of the data, etc. Melodic turns users' expectation
and application goal into a limited problem that is analyzed
and solved to find different feasible application
configurations from the perspective of users and the cloud
provider. Melodic chooses the configuration with the highest
utility value.

The main difference between the aforementioned
approaches and the one proposed in this paper refers to the
orchestration approach for an edge computing network. Thus,
it optimizes the application execution both proactively and
reactively in terms of performance, while at the same time
delivering a better user experience by incorporating the user’s
latency indicator into the performance model.

III. THEORETICAL FRAMEWORK

A. General architecture of a cloud/edge network

The figure below illustrates the general architecture of a
cloud/edge environment. Devices generating data are
connected to edge gateway or edge node directly which has
an access point and a computing power. Applications serving
those devices should be deployed in such way to fit node in a
radio and computational perspective. Each edge node
requires an edge node core: set of components providing the
node the ability to receive usage request, registering devices
information and routing users’ request to applications.

Fig. 1: General architecture of an edge network, hierarchical representation

The edge node core also implements methods for
collecting information (monitoring) [7], metrics by
measuring in real-time the state of each performance
indicator. These metrics are exposed to the orchestrator
located to the cloud for a better understanding and
management of the entire platform. Our approach for
collecting metrics consists of the exploitation of the service
discovering provided by metric collector engines [8].

B. Real-time adaptation

Application’s configuration can be modified dynamically
based on QoS’ evolution by triggering a scaling signal. The
term adaptation or modification refers to the update of the
resource allocate to the application, instance scaling, instance
and users migration. The collection and analysis of a Service
Level Objective (SLO) and all metrics related to the
expression of the application performance through a
monitoring mechanism is a crucial operation in order to
obtain the necessary data required for applying the most
suitable change on the infrastructure level [9]. This raises the
need for the infrastructure to realize the data-driven model
described in the following figure.

Fig. 2: Data-driven model

In the edge/fog environment, the goal is to handle the
workload near the edge devices to minimize the latency
comparing to the utilization of cloud nodes. In this context,
the orchestrator except from the optimization of the
application by fitting the minimum hardware requirements

and the application’s objectives need to implement technics
consisting of detecting users and edge node locality. In a
distributed environment, application composed of more than
one component may have deployment pattern where different
application components are not deployed on the same node
due to node hardware limitation or all components are not
replicable. Since some applications present internal
constraints (i.e. constraints between the application’s
components) such us low latency or high throughput between
application components and since those constraints have an
impact to the application performance, the modeling of the
orchestrator reasoning becomes a challenging task. Many
applications require a very low latency such us self-driving,
some others require a very high availability. These
applications may present malfunctioning by the
redeployment time or by the period where there are running
under performance. The re-adaptation time represents
another sensitive parameter to consider when designing an
orchestrator for such cases.

C. Performance model

Before proceeding to the design of the proposed approach
(adaptation), we briefly present some baseline facts.

Fig. 3: Edge/cloud architecture, network representation

According to the picture above, the main ground facts /
assumptions are summarized as follows: (i) Each node is an
access point having a server with a memory and a
computation power. Nodes can run applications if the total
amount of resource required are satisfied. (ii) The latency
between each node and between nodes and the cloud is equal.
(iii) The latency between each user and the access point is
equal and is at least 10 times higher compared to the latency
between two nodes. (iv) User connects by default to the
nearest node, but the orchestrator can trigger the reallocation
of any user to any node.

Since the orchestrator can handle non-monolithic
applications, our approach considers each component
separately. The ideal scenario is when every application’s
component can be deployed into the same node for avoiding
inter component constraints violation.

IV. ARCHITECTURE, DESIGN, MODELING

Before any optimization, the solver (orchestrator) should
assign all application components with a set of nodes. This
results to a constraint problem where the inputs are
application components, nodes, inter-components
constraints, links properties (e.g. latency, bandwidth, etc).
The outcome of the constraint problem is a map containing
different combinations of each application component with
the corresponding node candidate. The best candidate is
selected based on performance criteria. The constraint
problem is formulated as follows, where resources refer to
CPU, memory, etc:
N = {n1 …nk}, variable, set of available nodes
C= {c1 …cl}, variable, set of application components
S = {(n1 … nk) x (c1 … cl)}, solution universe
N.resource >= C.min_resource_required

Do t = c1 to cl
 Do j= c1 to cl
 If t != j and constraint_exist(t, j)
 get_latency(t,j) <= get_latency(nt,nj)
 End If
 End Do
End Do

Based on the above, our approach for solving this challenge
consists of representing the application performance as a
function of the application’s metrics. Given the application
X, exposing a and b as the most significant application
performance indicators for instance the application response
time (time required by the application to accomplish a task)
and the latency from the user perspective. The application X
is running on a node with a configuration such as: memory
(M), CPU (C), number of instances (I), average number of
bound (S) (average number of steps from users to the node
running the application). Thus, the application performance
expression will be the following:

p =
ଵ

௔∗௕

This expression can be improved as follows:

p =
ଵ

஺∗஻

with:

A = c1*a’
B = c2*b’

where c1 and c2 comprise between 0 and 1, and are the
coefficients chosen by the application owner expressing
weights for metrics a and b. Our strategy will correlate
metrics A and B with the application configuration that
implies the establishment of the following expressions:

A = Fa(M, C, I, S)
A = Fb(M, C, I, S)

For a linear regression as a correlation method, the
performance model is obtained through the following two
expressions:

A = da1*M + da2*C + da3*I + da4*S + Ka
B = db1*M + db2*C + db3*I + db4*S + Kb

where da1 … da4 and db1 … db4 are coefficients and Ka/Kb are
intercepts. The above expressions are obtained from the
linear regression with the multiple variables. Based on the A,
B, the orchestrator computes the performance of the
application based on its model. The capability of the
algorithm to output parameters (coefficients and constants)
reflecting the best the application behavior depends on the
number of configurations present in the dataset. From these
expressions, the orchestrator obtains information about the
weight of each configuration property, thus realizing an
enhancement of the application performance. According to
the non-linearity of parameters influencing the cloud/edge
computing applications (e.g. users’ load, data center/device
temperature etc.), we established correlation using different
algorithms.

V. EXPERIMENTATION, INITIAL RESULT

The approach develop in this work about performance’s
representation of a cloud application has been applied in real
cases. We will present in this section the result obtained
showing the correlation between metrics involved to
application performance and configuration provided by the
cloud provider. Applications were deployed on a cloud
environment where the reasoner exploiting performance
model concept was analyzing in real-time the evolution of the
application performance indicators for deciding the most
suitable configuration which will lead to the satisfaction of
the application owner requirements. While an application is
running on our environment, metrics related to the
infrastructure, data transaction and application specific are
being collected and exposed to the reasoner for building
correlation model. Dataset preparation represents an
important task for achieving satisfying result. We used
Prometheus as metrics collector for gathering metrics. We
were interested to metrics of the environment docker swarm.
The orchestrator exposes the application’s configuration
properties (CPU Allocated, memory allocated, number of
instances and the average latency computed using the number
of hops between users and the Nodes executing the replica
serving users). Applications deployed included Prometheus
exporter for exposing application related metrics. The below
picture shows the architecture used for our experiments.

Fig.3: Infrastructure architecture for experiments

TABLE I. ORCHESTRATION OF A WEBSERVICE APPLICATION

Load
(requests/sec)

Memory
(Mo)

CPUs Replica

20 32 1 1
40 64 2 2
80 128 3 3

248 4 4

TABLE II. ORCHESTRATION OF AN APACHE SPARK APPLICATION

Load (users) Memory
(Mo)

CPUs Replica

100 8 4 1
2

16 8 3

After the execution, dataset was built from Prometheus
metrics. Performance column must be construct based on its
expression. Based on the execution outcomes, the below table
shows the accuracy of predicting performance based on
configuration by algorithm.

TABLE III. IDENTIFIED RELATIONS

Performance model algorithm Accuracy
Linear regression 56%

Decision Tree Regressor 80.6%
Random Forest Regressor 80.3%

Ada Boost Regressor 80.3%
Gradient Boosting regressor 80%

We can predict the application performance with an 80% of
accuracy given a configuration using a Decision Tree
Regression algorithm.

VI. CONCLUSIONS AND FUTURE WORK

Dynamic adaptation of resources in a cloud / edge
environment is a very promising subject whose importance
only grows with the development of applications on different

types of devices considering the dynamic nature of user
operations. This area is also of great interest to cloud service
providers as dynamic adaptation allows for intelligent and
very economical management of resources available in the
cloud. During our first experiments, we observed the
importance of constructing a mathematical expression
describing the evolution of various performance indicators
with the resources available. The correctness of this
representation depends on the number of configurations
present in the dataset. Since prediction is a crucial factor in
the allocation of resources, the continuation of our work will
give great importance to the development of a prediction
model that does not require a large amount of data so that this
functionality can be used a few minutes after the initial
deployment. We will also perform additional work in the
scope of the performance of edge devices given their
resource-constraint characteristics.

ACKNOWLEDGMENT

The research leading to the results presented in this paper has
received funding from the European Union's funded Projects
BigDataStack under grant agreement no 779747 and
MORPHEMIC under grant agreement no 871643.

REFERENCES
[1] D. Kyriazis et al. BigDataStack: A holistic data-driven stack for big

data applications and operations. In Proc. of 2018 IEEE BigData
Congress, pages 237–241, 2018.

[2] Rao, J. , Bu, X. , Xu, C. , Wang, K. , 2011. A distributed self-learning
approach for elastic provisioning of virtualized cloud resources. In:
Proceedings of 2011 IEEE 19th International Symposium on
Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS). IEEE, Singapore, pp. 45–
54 .

[3] Islam, S. , Keung, J. , Lee, K. , Liu, A. ,2012. Empirical prediction
models for adaptive resource provisioning in the cloud. Future Gener.
Comput. Syst. 28 (1), 155–162 . Issariyapat, C. , Pongpaibool, P. ,
Mongkolluksame, S. , Meesublak, K. , 2012. Using Na- gios as a
groundwork for developing a better network monitoring system. In:
Proceedings of PICMET’12 Conference on Technology Management
for Emerging Technologies (PICMET). IEEE, Vancouver, Canada, pp.
2771–2777 .

[4] Jamshidi, P., Sharifloo, A.M., Pahl, C., Metzger, A., Estrada, G., 2015.
Self-learning cloud controllers: fuzzy q-learning for knowledge
evolution. In: Proceedings of International Conference on Cloud and
Autonomic Computing (ICCAC). IEEE, Boston, USA, pp. 208–211.
doi: 10.1109/ICCAC.2015.35.

[5] Stankovski, V., Taherizadeh, S., Trnkoczy, J., Suciu, G., Suciu, V.,
Martin, P., Wang, J., Zhao, Z., 2015. Dynamically reconfigurable
workflows for time-critical applications. In: Proceedings of
International workshop on Workflows in sup- port of large-scale
science (WORKS 15). ACM, Austin, USA, pp. 1–10. doi: 10.
1145/2822332.2822339.

[6] Kritikos, Chrysostomos Zeginis, Joaquin Iranzo, Roman Sosa
Gonzalez, Daniel Seybold, Frank Griesinger & Jörg Domaschka,
Multi-cloud provisioning of business processes Kyriakos, November
2019, https://link.springer.com/article/10.1186/s13677-019-0143-x

[7] Confais, B., Lebre, A., Parrein, B., 2016. Performance analysis of
object store systems in a fog/edge computing infrastructures. In:
Proceedings of the 8th International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, Lux- embourg, pp. 294–
301. doi: 10.1109/CloudCom.2016.0055 .

[8] Prometheus, service discovery, https://prometheus.io/docs/guides/file-
sd/

[9] NEC Laboratories Europe, Mauricio Fadel, Bin Cheng, Reinforcement
Learning based Orchestration for Elastic Services

