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Abstract— Applications performance is strongly linked with 
the total load, the application deployment architecture and the 
amount of resources allocated by the cloud or edge computing 
environments. Considering that the majority of the applications 
tends to be data intensive, the load becomes quite dynamic and 
depends on the data aspects, such as the data sources locations, 
their distribution and the data processing aspects within an 
application that consists of micro-services. In this paper we 
introduce an analysis and prediction model that takes into 
account the characteristics of an application in terms of data 
aspects and the edge computing resources attributes, such as 
utilization and concurrency, in order to propose optimized 
resources allocation during runtime. 
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I. INTRODUCTION  

While cloud computing environments offer services, 
resources and tools towards application owners, application 
developers and infrastructure administrators, the generation 
of big amounts of data from various data sources raises the 
need for computing environments that are non-centralized 
and can serve the time- and latency- constrained requirements 
of users and applications. Such requirements have driven the 
emerge of the edge / fog computing paradigm, providing the 
required resources on the network edge. Such approach 
allows to offload the cloud by pushing computing units near 
the place workload are being generated. Applications 
deployed on the cloud/edge may be composed of more than 
one component which together fulfill some goal. Based on 
today’s virtualization techniques, application’s components 
can be modelled, deployed, and orchestrated separately. This 
adds flexibility to the application lifecycle and move the 
application modelling from monolithic to micro-service, 
decentralized- and distributed- based model.  

Applications running on the cloud must satisfy the 
owner’s expectations, otherwise the quality of service (QoS), 
which is the compliance of the application performance with 
the application’s objectives, will be violated and thus result 
to a redeployment/adaptation plan. Since application’s 
workload changes over time, depending on the number of 
users, number/nature of requests/task users are executing, 
cloud providers must implement method for adapting 
dynamically these applications to maintain QoS into the 
acceptance window. In the cloud domain, many cloud 
infrastructures have been created exploiting application 
workload to plan deployment which improve the quality of 
service by choosing the most suitable configuration. By 
configuration, we mean, the amount of resource allocated to 

the application such us memory, CPU (Central Processing 
Unit), bandwidth, the number of instances by application’s 
component and the computation device type such as : CPU, 
GPU(Graphical Processing Unit), FPGA (Field-
Programmable Gate Array). In these infrastructures, 
decisions are driven by data, therefore the name of data-
driven infrastructure. These infrastructures address the 
economic issue in the cloud computing since the resource 
allocated to an application is proportional to the need. In the 
provider perspective, data-driven infrastructure enables 
better resource management by proceeding to the allocation 
on-demand.   

With the increase number of devices connecting into the 
cloud (edge devices), the strategy consisting of pushing the 
workload processing near to the place they are being 
produced created the edge/fog. This strategy does not only 
offload cloud environments but also reduces the 
transportation cost and enable the optimization of the 
application performance from the user perspective 
(improvement of the latency). The edge/fog computing offers 
a distributed model which adds the complexity in the 
application modeling. We will introduce in this work, the 
adaptation of applications running on cloud/edge 
environments by exploiting the analysis of the application 
performance considering the resources allocation, the inter-
component constraints and the users’ locality. The latter is 
coupled with a distributed orchestration approach to address 
edge node resources constraints. This leads to the 
establishment of a model called application performance 
model, which allows the prediction of the application 
performance given a certain configuration (i.e. resources, 
architecture, and users distribution). 

The remainder of the paper is structured as follows: 
Section II presents related work in the scope of real-time 
application adaptation and resources allocation on cloud and 
edge environments. Section III presents the theoretical 
framework, and the Section IV develops our approach in an 
algorithmic manner and Section V concludes the paper. 

II. RELATED WORK 

BigDataStack [1] is an infrastructure management 
system that provides management of computers, storage, and 
network in an intensive data application [1]. Applications can 
be developed in BigDataStack by a definition that describes 
the application (playbook). This later contains the 
requirements and goals of the applications. The application 
uses OpenShift as executable software, therefore, 
applications are developed in docker containers and can 
automatically detect congestion from the application, data 
mode components, platform and decide the most appropriate 



changes for the application. The customization provided by 
BigDataStack utilizes the reference technique to identify the 
resources required for initial development. Then, the data 
provided by the monitoring engine allows the platform to 
make the most appropriate decision to achieve the 
implementation objectives set in the SLA (Service Level 
Agreement). Application components can be in different 
geographical locations, however, development or 
rearrangement performed by BigDataStack is based on 
resource management. 

 
A distributed Reinforcement Learning (RL) mechanism 

called iBalloon [2] for self-adapting Virtual Machine (VM) 
resources in which monitoring is necessary for autonomous 
orchestration and adaptation has been introduced in [8]. 
Cloud infrastructures offer flexible resources with horizontal 
or vertical scaling solutions to adjust application performance 
to changing workloads. However, such scaling approaches 
that use only infrastructure-related monitoring data can cause 
severe performance declines during workload changes at 
runtime. The authors argue that monitoring infrastructure-
level metrics, such as memory and bandwidth, without 
considering application performance behavior (application-
level monitoring) at runtime will complicate the resource 
allocation problem due to the lack of detailed measurements. 
In their work, according to the proposed vertical scaling 
approach, each VM can adjust the resource allocation in 
terms of CPU, memory, and bandwidth. The iBalloon 
architecture includes three fundamental elements: (1) a host 
that is responsible for allocating resources to VMs. (2) an 
app-agent that includes the iBalloon tracking section and 
reports runtime performance information; and (3) a decision-
maker hosting an RL agent placed in each VM to 
automatically adjust resource capacity. However, iBalloon is 
limited because it does not consider other virtual resources 
e.g. storage, nor does it support other customization actions, 
e.g. relocation to improve application performance. This is an 
issue because to manage an application that develops in an 
edge computing framework, it is necessary to consider 
migrating component applications between heterogeneous 
infrastructure. 

Islam [3] developed a precautionary cloud resource 
management approach that applied linear regression and 
neural networks to predict and meet future resource 
requirements. The research problem in this project is actually 
the analysis of time series tracking data to derive a prediction 
model and other characteristics of the tracking data. The 
proposed performance prediction model estimates the 
upcoming resource usage at runtime and is able to launch 
additional VMs to maximize application performance. The 
authors considered the predictive accuracy based on the 
performance of the application in terms of response time. 
This approach provides distributed scalability and can be 
improved to address the resource allocation of a single VM 
as well. At present, only CPU usage is used to predict model 
training and their approach could further include other types 
of resources, e.g. memory, disk and bandwidth. 

A self-learning adaptation technique called FQL4KE [4], 
which is a fuzzy control method based on a reinforcement 
learning algorithm for optimal resilience policies has been 
introduced in [10]. This approach aims to automate the 
scaling process without utilizing a priori knowledge about the 

cloud application running. The proposed architecture 
includes a learning module that continuously upgrades the 
controller knowledge base by learning customization rules 
appropriate for the system. However, the proposed approach 
may not address different objectives. If the system goals 
change, the controller must re-learn everything from ginner. 
A more fundamental problem in real-world environments is 
the fact that the number of situations can be huge and 
therefore the learning process could become impossible due 
to time constraints on new computing standards. 

Stankovski and all [5] proposed another interesting 
approach refers to a distributed self-adapting architecture that 
applies the concept of computing edges with container-based 
technologies, such as Docker and Kubernetes, to ensure QoS 
for time-critical applications. The basic idea is to develop the 
application in a container (case of using file upload) in 
different geographical locations in a way that the service is 
created, served and destroyed for each file upload request. 
For each container, the resources required for the host can be 
allocated when monitoring data and business strategies 
defined by the end user, application developer and/or 
administrator. 

Melodic is a multi-cloud management system designed 
for intensive data application [6]. Melodic can optimize an 
application to meet user requirements by detecting obstacles 
from an enhanced learning algorithm. Melodic can develop 
different application components in different provider types 
(public and private cloud), so it supports multi-cloud 
management. The owner of the application provides an 
application profile in a meta-cloud application language 
(CAMEL). This file to be compiled contains the expectations 
of the application, the performance of the index, the 
descriptions of the data, etc. Melodic turns users' expectation 
and application goal into a limited problem that is analyzed 
and solved to find different feasible application 
configurations from the perspective of users and the cloud 
provider. Melodic chooses the configuration with the highest 
utility value. 

The main difference between the aforementioned 
approaches and the one proposed in this paper refers to the 
orchestration approach for an edge computing network. Thus, 
it optimizes the application execution both proactively and 
reactively in terms of performance, while at the same time 
delivering a better user experience by incorporating the user’s 
latency indicator into the performance model. 

III. THEORETICAL FRAMEWORK 

A. General architecture of a cloud/edge network 

The figure below illustrates the general architecture of a 
cloud/edge environment. Devices generating data are 
connected to edge gateway or edge node directly which has 
an access point and a computing power. Applications serving 
those devices should be deployed in such way to fit node in a 
radio and computational perspective. Each edge node 
requires an edge node core: set of components providing the 
node the ability to receive usage request, registering devices 
information and routing users’ request to applications.  

 



 
 

Fig. 1: General architecture of an edge network, hierarchical representation 

The edge node core also implements methods for 
collecting information (monitoring) [7], metrics by 
measuring in real-time the state of each performance 
indicator. These metrics are exposed to the orchestrator 
located to the cloud for a better understanding and 
management of the entire platform. Our approach for 
collecting metrics consists of the exploitation of the service 
discovering provided by metric collector engines [8].      

B. Real-time adaptation 

Application’s configuration can be modified dynamically 
based on QoS’ evolution by triggering a scaling signal. The 
term adaptation or modification refers to the update of the 
resource allocate to the application, instance scaling, instance 
and users migration. The collection and analysis of a Service 
Level Objective (SLO) and all metrics related to the 
expression of the application performance through a 
monitoring mechanism is a crucial operation in order to 
obtain the necessary data required for applying the most 
suitable change on the infrastructure level [9]. This raises the 
need for the infrastructure to realize the data-driven model 
described in the following figure. 

 

 
Fig. 2: Data-driven model 

In the edge/fog environment, the goal is to handle the 
workload near the edge devices to minimize the latency 
comparing to the utilization of cloud nodes. In this context, 
the orchestrator except from the optimization of the 
application by fitting the minimum hardware requirements 

and the application’s objectives need to implement technics 
consisting of detecting users and edge node locality. In a 
distributed environment, application composed of more than 
one component may have deployment pattern where different 
application components are not deployed on the same node 
due to node hardware limitation or all components are not 
replicable. Since some applications present internal 
constraints (i.e. constraints between the application’s 
components) such us low latency or high throughput between 
application components and since those constraints have an 
impact to the application performance, the modeling of the 
orchestrator reasoning becomes a challenging task. Many 
applications require a very low latency such us self-driving, 
some others require a very high availability. These 
applications may present malfunctioning by the 
redeployment time or by the period where there are running 
under performance. The re-adaptation time represents 
another sensitive parameter to consider when designing an 
orchestrator for such cases.  

        

C. Performance model 

Before proceeding to the design of the proposed approach 
(adaptation), we briefly present some baseline facts.  

 

 
 
Fig. 3: Edge/cloud architecture, network representation 

According to the picture above, the main ground facts / 
assumptions are summarized as follows: (i) Each node is an 
access point having a server with a memory and a 
computation power. Nodes can run applications if the total 
amount of resource required are satisfied. (ii) The latency 
between each node and between nodes and the cloud is equal. 
(iii) The latency between each user and the access point is 
equal and is at least 10 times higher compared to the latency 
between two nodes. (iv) User connects by default to the 
nearest node, but the orchestrator can trigger the reallocation 
of any user to any node. 

Since the orchestrator can handle non-monolithic 
applications, our approach considers each component 
separately. The ideal scenario is when every application’s 
component can be deployed into the same node for avoiding 
inter component constraints violation.  
 



IV. ARCHITECTURE, DESIGN, MODELING 

Before any optimization, the solver (orchestrator) should 
assign all application components with a set of nodes. This 
results to a constraint problem where the inputs are 
application components, nodes, inter-components 
constraints, links properties (e.g. latency, bandwidth, etc). 
The outcome of the constraint problem is a map containing 
different combinations of each application component with 
the corresponding node candidate. The best candidate is 
selected based on performance criteria. The constraint 
problem is formulated as follows, where resources refer to 
CPU, memory, etc: 
N = {n1 …nk}, variable, set of available nodes 
C= {c1 …cl}, variable, set of application components 
S = {(n1 … nk) x (c1 … cl)}, solution universe 
N.resource >= C.min_resource_required 
 
Do t = c1 to cl 
  Do j= c1 to cl 
    If t != j and constraint_exist(t, j) 
      get_latency(t,j) <= get_latency(nt,nj)   
    End If  
  End Do 
End Do 
  

Based on the above, our approach for solving this challenge 
consists of representing the application performance as a 
function of the application’s metrics.  Given the application 
X, exposing a and b as the most significant application 
performance indicators for instance the application response 
time (time required by the application to accomplish a task) 
and the latency from the user perspective. The application X 
is running on a node with a configuration such as: memory 
(M), CPU (C), number of instances (I), average number of 
bound (S) (average number of steps from users to the node 
running the application).  Thus, the application performance 
expression will be the following: 

p = 
ଵ

௔∗௕
  

 
This expression can be improved as follows: 
 

p = 
ଵ

஺∗஻
 

 
with:  

A = c1*a’ 
B = c2*b’ 

 
where c1 and c2 comprise between 0 and 1, and are the 
coefficients chosen by the application owner expressing 
weights for metrics a and b. Our strategy will correlate 
metrics A and B with the application configuration that 
implies the establishment of the following expressions: 
 

A = Fa(M, C, I, S) 
A = Fb(M, C, I, S) 

 
For a linear regression as a correlation method, the 
performance model is obtained through the following two 
expressions: 
 

A = da1*M + da2*C + da3*I + da4*S + Ka 
B = db1*M + db2*C + db3*I + db4*S + Kb 

 
where da1 … da4 and db1 … db4 are coefficients and Ka/Kb are 
intercepts. The above expressions are obtained from the 
linear regression with the multiple variables. Based on the A, 
B, the orchestrator computes the performance of the 
application based on its model. The capability of the 
algorithm to output parameters (coefficients and constants) 
reflecting the best the application behavior depends on the 
number of configurations present in the dataset. From these 
expressions, the orchestrator obtains information about the 
weight of each configuration property, thus realizing an 
enhancement of the application performance. According to 
the non-linearity of parameters influencing the cloud/edge 
computing applications (e.g. users’ load, data center/device 
temperature etc.), we established correlation using different 
algorithms. 

 

V. EXPERIMENTATION, INITIAL RESULT 

The approach develop in this work about performance’s 
representation of a cloud application has been applied in real 
cases. We will present in this section the result obtained 
showing the correlation between metrics involved to 
application performance and configuration provided by the 
cloud provider. Applications were deployed on a cloud 
environment where the reasoner exploiting performance 
model concept was analyzing in real-time the evolution of the 
application performance indicators for deciding the most 
suitable configuration which will lead to the satisfaction of 
the application owner requirements. While an application is 
running on our environment, metrics related to the 
infrastructure, data transaction and application specific are 
being collected and exposed to the reasoner for building 
correlation model. Dataset preparation represents an 
important task for achieving satisfying result. We used 
Prometheus as metrics collector for gathering metrics. We 
were interested to metrics of the environment docker swarm. 
The orchestrator exposes the application’s configuration 
properties (CPU Allocated, memory allocated, number of 
instances and the average latency computed using the number 
of hops between users and the Nodes executing the replica 
serving users). Applications deployed included Prometheus 
exporter for exposing application related metrics. The below 
picture shows the architecture used for our experiments. 



 
Fig.3: Infrastructure architecture for experiments 

TABLE I.  ORCHESTRATION OF A WEBSERVICE APPLICATION 

Load 
(requests/sec) 

Memory 
(Mo) 

CPUs Replica 

20 32 1 1 
40 64 2 2 
80 128 3 3 

248 4 4 

 

TABLE II.  ORCHESTRATION OF AN APACHE SPARK APPLICATION 

Load (users) Memory 
(Mo) 

CPUs Replica 

100 8 4 1 
2 

16 8 3 

 
After the execution, dataset was built from Prometheus 
metrics. Performance column must be construct based on its 
expression. Based on the execution outcomes, the below table 
shows the accuracy of predicting performance based on 
configuration by algorithm. 

TABLE III.  IDENTIFIED RELATIONS 

Performance model algorithm Accuracy 
Linear regression 56% 

Decision Tree Regressor 80.6% 
Random Forest Regressor 80.3% 

Ada Boost Regressor 80.3% 
Gradient Boosting regressor 80% 

 
We can predict the application performance with an 80% of 
accuracy given a configuration using a Decision Tree 
Regression algorithm. 

VI. CONCLUSIONS AND FUTURE WORK 

Dynamic adaptation of resources in a cloud / edge 
environment is a very promising subject whose importance 
only grows with the development of applications on different 

types of devices considering the dynamic nature of user 
operations. This area is also of great interest to cloud service 
providers as dynamic adaptation allows for intelligent and 
very economical management of resources available in the 
cloud. During our first experiments, we observed the 
importance of constructing a mathematical expression 
describing the evolution of various performance indicators 
with the resources available. The correctness of this 
representation depends on the number of configurations 
present in the dataset. Since prediction is a crucial factor in 
the allocation of resources, the continuation of our work will 
give great importance to the development of a prediction 
model that does not require a large amount of data so that this 
functionality can be used a few minutes after the initial 
deployment. We will also perform additional work in the 
scope of the performance of edge devices given their 
resource-constraint characteristics. 
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