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Abstract. Retrieval Augmented Generation (RAG) is a 

framework designed to address the limitation of Large Lan-

guage Models (LLM) in terms of business domain awareness 

and knowledge cutoff. Hence, the adoption of RAG has been 

immense in recent times as it can overcome the above chal-

lenges. However, RAG also consists of several techniques 

and challenges. A few common challenges include being un-

able to produce optimal response or output format mismatch, 

missing to refer most important sources and incapable of re-

trieving the appropriate paragraphs or contexts. As a result, 

the response accuracy of RAG based applications deterio-

rates. Hence a recommendation system is the need of the 

hour which can assist the users to choose the most appropri-

ate method based on the specific scenario. In this paper, an 

end-to-end RAG-based application performance improve-

ment framework is proposed which will assist the users to 

select the optimal approach based on the present evaluation 

score and other constraints. Evaluation score is calculated 

based on the well-known metrices which include grounded-

ness, answer relevance and context relevance. The frame-

work is a collection of different techniques applied iteratively 

at different stages of RAG with the goal of improving the 

overall score. The embedding being the backbone of the 

RAG, a right fit embedding model recommendation is part of 

the overall framework. 
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1 Introduction 
 

Recent advancement in the field of Generative AI has resulted in a sig-

nificant surge in the adoption of Large Language Models (LLMs) across 

various domains and industry. 

A powerful single LLM excels at various tasks like summarization, text 

classification and conversational tasks but suffers from the problem of 

hallucinations which occurs when the LLM does not have the correct 

context to answer the given user query. The reason may be lack of do-

main knowledge or the correct responses are beyond the knowledge cut-

off date.  

 

Retrieval Augmented Generation (RAG) [1] is the most well-known 

technique which enables the LLM to go beyond the data on which they 

have been trained on. RAG systems have several underlying benefits like 

enhanced privacy and transparency due to its architectural design, in turn 

these benefits have increased the adoption of RAG across the industry. 

 

The outcome of RAG based application depends on selection of values 

of its features made during the application design process. Features in-

clude embedding model selection, optimal chunking approach and 

choosing the advanced RAG strategy. The automatic enhancement of the 

quality of LLM response happens while these parameters are chosen 

wisely. Also, it’s an iterative approach as respective methods need to be 

adopted more than one time in various phases of the cycle based on RAG 

based application evaluation score and other system constraints. How-

ever, the number of iterations can be reduced if some standard recom-

mendation engine exists in the eco-system. 

 

This has motivated the current researchers to propose the end-to-end 

RAG method adoption framework for using the best technique consider-

ing the current scenario and other user constraints towards improving the 

application performance. The framework consists of several techniques 



  

including in-context learning, embedding model selection, choosing op-

timal chunk strategy, hybrid search, using metadata filters, multi-query 

retriever, hypothetical document embeddings (Hyde), reranking, re-

sponse synthesis, sentence window retrieval and auto merging retrieval. 

However, choosing the right embedding model always throws a chal-

lenge to the users compared to other ones. The availability of several 

embedding models makes the task more difficult as it confuses the users 

whether the selection should be random, or parameter driven. There are 

few embedding model’s leader boards which kind of give an idea of lead-

ing models, however those leaderboards generally do not cater to com-

plex use case need or user requirements. Hence, a novel method for the 

embedding model selection process is also presented in the paper which 

is a part of the proposed holistic framework. This in turn will reduce the 

confusion of the developers or end users on the selection of embedding 

model, so that developers can solely concentrate on building advanced 

text-based AI solutions. 

 

The paper is organized as follows. Section 2 highlights the existing tech-

niques for advanced RAG architecture and available frameworks for 

adopting the same in various business scenarios. The problem statement 

is summarized in section 3. Section 4 presents the failure point analysis 

of generic RAG architecture. Outline of the proposed approaches are pre-

sented in Section 5. Section 6 describes the solution approach in detail 

whereas the experimental results are summarised in Section 7. Section 8 

contains the conclusions drawn based on the aforesaid research and in-

vestigations along with future directions. 
 

 

 

 

2 Literature Review 
 

Recent advances in the LLM space like ChatGPT [2] and LLaMA [3] 

have shown that increasing the model parameters is directly correlated 

with LLM performance improvement. However, RAG based systems are 

essential to enable the LLM based systems to go beyond the training 

data. RAG evaluation [4] is the first step towards improving the system 

performance. RAGAS [5] is one such system where researchers came up 

with three main evaluation parameters namely faithfulness, answer rele-

vancy and context relevancy. These evaluation criteria give adequate 



directions to the user towards improving the RAG based application sys-

tem. 

 

Scott Barnett et. al. [14] have found that RAG systems can have several 

failure points in different stages of the pipeline. In the literature, they 

have mainly discussed seven failure points which are related to two 

stages: Index process and Query process. These failure points motivate 

the current researchers to design an optimal RAG system. 

 

Xiaohua Wang et. al. [15] have explored various processing steps present 

in RAG architecture, each of which can be executed in various ways. 

They have investigated existing RAG approaches and their potential 

combinations to identify optimal practices. As a result, they have sug-

gested several strategies for deploying RAG that balance both perfor-

mance and efficiency. 

 

Cheonsu Jeong [16] have leveraged agentic framework to evaluate the 

reliability of RAG systems and synthesize diverse data to generate more 

accurate and enhanced responses. The author also has demonstrated the 

graph-based agentic RAG system, along with specific algorithm and val-

idation results. This has demonstrated the feasibility of an enhanced 

RAG system. 

 

Florin Cuconasu et. al. [17] have considered key factors like relevance 

of the chunks included as context, their position, and their number. Re-

search observation includes a counter-intuitive finding that retriever’s 

highly relevant documents can negatively impact the effectiveness of 

RAG systems. Authors also have found that by adding random docu-

ments in the prompt improves the LLM accuracy by up to 35%. 

 

Researchers have come up with several new advanced RAG techniques 

[6] like Query rewriting [7], HyDE [8] etc. which have shown significant 

performance improvements of RAG systems in terms of previously de-

fined parameters. However, a complete RAG improvement framework 

is the need of the hour, and the paper tries to address the gap by proposing 

the same. Without the recommendation system, it would be just choosing 

the technique randomly and perform trial and error. It may not be a fea-

sible approach as the operating cost will be too high.  

 



  

In terms of embedding models, prior research work have shown the huge 

number of state of the art models are available in the market. Researchers 

also came up with  evaluation metrices like Massive Text Embedding 

(MTEB) benchmarking [9] to evaluate and compare embeddings model 

with the existing benchmark.  

 

In one of the literature [10], researchers looked into the desired properties 

of the word embedding and evaluation techniques using two types 

intrinsic and extrinsic. The study tried to offer a valuable guidance in 

selecting suitable evaluation methods for different application tasks. 

 

Jean-Baptiste Excoffier et. al. [11] have concluded based on their research 

that generalist embedding models perform better than specialized ones at 

short-context clinical semantic search. They curated a textual dataset on 

clinical code and found that specialized embedding models are more 

sensitive to small changes in input. 

 

The literature review clearly shows the need of an holistic RAG 

enhancement framework as no such concrete one is available. This has 

motivated the current researchers to propose an end-to-end autonomous 

framework for improving the performance of retrieval augmented 

generation-based (RAG based) applications with minimal user 

intervention which can tackle the different failure points [14] in a 

systematic way. The framework can select the appropriate techniques in 

each level based on the user requirements and system constraints. 
 

3 Problem Statement 
 

In the field of Generative AI, RAG is one of the most powerful ap-

proaches which combines the strength of language models and infor-

mation retrieval system so that meaningful and contextual responses can 

be generated. However, several practical challenges are present in the sys-

tem so that always desired outcome cannot be achieved through RAG 

methodology. Few such challenges or open questions are presented in the 

following which have motivated the current researchers to design the pro-

posed framework. 

 

A. What can be the best chunking strategy of documents while read-

ing them as input? 



B. How can RAG system interpret the user query optimally? 

C. What is the best way to store documents in the database which 

leads to better retrieval and performance generation? 

D. How to assign priority to a specific part of datasets which contain 

the most relevant and trustworthy information? 

E. Is there any way that system can re-rank the retrieved results 

based on user requirements like semantic similarity, source cred-

ibility, or task-specific relevance? 

F. How the retrieved output can be more meaningful in the context 

of user query? 

G. How to integrate content from various input documents? 

H. Is there any way that redundancy can be removed from the final 

response? 

I. How to receive quality content which has the requisite depth and 

free from inconsistencies? 

J. Is there any way to check whether the correct part of the document 

extracted in the process? 

 

Additionally, using the embedding model is a must in all RAG based ap-

plications which also throws lots of confusion to the users. The following 

presents a few of them. As a result, an embedding model selection 

framework is included as a part of the proposed framework. 

 

A. Is there any Embedding Model which can help to get better accu-

racy for the selected use case? 

B.  How to address the latency constraint in the project? 

C. What is the correct embedding model to support big size docu-

ments taken as input? 

D. How to choose the embedding model which can handle complex 

scenarios? 

E. Whether all the embedding models need GPU support, or any one 

is available which does not require it?  

F. How to take care of data privacy and security as it should not be 

exposed to the outside world? 

G. How to perform the embedding on non-English text? 
 

 

4 Failure Point Analysis in Basic RAG based Applications 
 



  

Retrieval augmented generation, or RAG, is an architectural concept 

which can enhance the efficacy of large language model (LLM) applica-

tions by leveraging custom data. The custom data consists of user pro-

vided data in a document which is fed as an input to the system. The fol-

lowing Figure 1 presents the first part of the architecture which is Inges-

tion where user provided documents are divided into smaller chunks, 

transformed into embedding vector and finally kept in the vector data-

base. 

 

In the second part, depicted in Figure 2 shows the Retrieval and Synthesis 

process where appropriate K chunks are retrieved from the vector data-

base based on user query and sent to LLM for evaluation. LLM performs 

the synthesis based on user query and generates the final response based 

on the given context. 
 

 

 

 

 

 

 

 

 

 

Fig. 1: RAG Architecture: Ingestion 

 

                                        Retrieval Synthesis 

 

 

 

 

 

 

Figure 2: RAG Architecture: Retrieval and Synthesis 

 

But there are several practical challenges in vanilla RAG which are 

presented in the following. However, the proposed framework will try to 

address the challenges to a meaningful extend. 

                         

A. Missing Content: One common case in RAG where incorrect answers 

can appear, is retrieval of improper chunks as those are not related to 

the question exactly. 

 

Chunks Documents 

Embeddings 
    Index 

Ingestion 

   Query   Index 
    Top K 

LLM   Response 



B. Missing Top Ranked Documents: The other scenario can be non-

retrieval of most relevant documents where relevance can be semantic 

similarity, source credibility, or task-specific relevance. 

 

C. Limitation in Consolidation Strategy: In few cases, multiple 

documents can be associated for generating the final response where 

appropriate consolidation takes a vital place as quality of final 

response depends how effectively the chunks are merged together.  

 
D. Problem in Extraction Format: This refers to the problem where 

LLM output does not adhere the instructions given by the user; which 

means output response format differs from the requested format. 

 

E. Incorrect Specificity: This situation happens when the answer is re-

turned but is not specific enough or is too specific to address the user’s 

need. It occurs when users are not sure about the correct question or 

provided in a generic format. 

F. Incomplete Response: It means that answers are not incorrect but 

does not contain all the relevant points to make it complete though 

those are present in the input document. 

 

In summary, following are the limitations found in three stages: 

 

• Retrieval Stage - Difficulties in perfect data retrieval and the re-

sponse relevance. 

• Augmentation Stage - Emphasizing the complexities in synthe-

sizing multi-document information and managing conflicting 

data. 

• Generation Stage - Underscoring the need for responses that are 

contextually complete and specific. 
 

5 Outline of Proposed Framework 
 

The following two frameworks are proposed to address the above set of 

problems where an end-to-end recommendation system of various RAG 

techniques will help the end users to select the appropriate RAG tech-

nique based on the evaluation metrices and the other one will recommend 

the optimal embedding model which is the heart of any RAG based 



  

architecture. The end objective is improving the accuracy of RAG based 

applications. 

A. Framework for Improving RAG-based Application 

Performance 
 

The following Figure 3 presents the outline of the proposed framework 

for RAG-based application performance improvement. 
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Figure 3. Outline of Proposed framework for RAG-based application performance 

improvement 

 

 

B. Embedding Model Recommendation System 
 

The following Figure 4 presents the outline of the proposed framework 

for Embedding Model Recommendation System. 

 
Figure 4. Outline of Proposed Embedding Model Selection Framework 

 

6 Solution Approach 
 

A. RAG based Application Improvement Framework 

 

The proposed framework presented in above Figure 3 has the following 

major components or approaches. 

 

• Configuration File: The configuration file enables end users to se-

lect different selection criteria like LLM, embedding model, chunk 

size, chunking strategy along with other details like document path, 

document type and vector store persistence path etc. It provides the 

end users the flexibility to try out different parameters to build a RAG 

system. 

 

• Agent based Approach: Based on an Agentic approach, the Agent 

will take different routes to populate the vector DB as shown below 

Figure 5 according to the configuration parameters. 
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Figure 5. Agentic approach to populate Vector DB based on configuration file 

  

• Evaluation metrices for RAG based applications: RAGAS [12] 

package is utilized towards performing the evaluation of the applica-

tion in the beginning and in-between stages. It contains three 

metrices which include context relevance, groundedness and answer 

relevance where context relevance refers to the measurement of rel-

evance of the context to the user query. To verify the groundedness 

of the application, we can separate the response into individual 

claims and independently search for evidence that supports each 

within the retrieved context. Answer relevance is the metric which 

checks the relevance of the answer to the user query. We can verify 

this by evaluating the relevance of the final response to the user input. 

 

• RAG implementation for Large Language Model and Small 

Language Model: Implementing RAG techniques for small lan-

guage model is little bit different from the LLM; hence initial re-

triever and poly encoder re-ranker are proposed here instead of all 

other advanced techniques. 

 



• Challenges in handling multiple documents: This is one thing in 

real life applications where multiple input documents are there and 

the answer to each question comes from more than one document. 

In these cases, some advanced techniques for auto-merging re-

triever is proposed which takes care of this problem by returning 

the parent chunk instead on individual child chunk. 
 

 

B. Embedding Model Selection Framework 

 

Embedding selection framework goes through a series of six steps, below 

we will discuss each of the steps in detail. 

 

Step 1 - Selection base of 100 embedding models: Using a popular 

leader board [10] and after doing some of our research on the popular 

embedding models we have selected a set of 100 embedding models. Our 

recommendation would be based on this set of models.  

 

Step 2 – Identify the decision variables or implicit variables: The de-

cision variables are the parameters or features used to describe various 

aspects of the embedding model. Out of several available parameters, we 

have considered the following ones primarily in our framework. 

 

• Model Size: This refers to the number of parameters in the em-

bedding models. Larger models usually have more parameters, 

which can lead to better performance but also higher computa-

tional costs and latency. 

• Embedding Dimension: The size of the vector representation 

(embedding) that the model generates for each input token. Com-

mon sizes are 300, 768, 1024, etc. The latency of semantic search 

grows with the dimension of embeddings. Low dimensional em-

beddings can be selected to minimize latency. 

• Average: This refers to the average performance metric across 

multiple tasks or datasets.  

• Classification Average: The average performance of the model 

on classification tasks. This includes accuracy metric and unit is 

percentage (%). 

• Retrieval Average: The average performance of the model on 

retrieval tasks, which involve finding relevant documents or pas-

sages based on a query. Metrics include Normalized Discounted 



  

Cumulative Gain @ 10 (nDCG@10) and unit is ratio (range from 

0 to 1). 

• Clustering Average: The average performance of the model on 

clustering tasks. This involves Validity Measure(V-measure) and 

unit ratio (0 to 1). 

• STS (Semantic Textual Similarity): Semantic Textual Similar-

ity is the task of determining how similar two texts are. Metrics 

include Spearman correlation based on the model's similarity 

metric (usually cosine) and unit is ratio (range from -1 to 1).
  

• Summary Average: Summarization is the task of generating a 

summary of a text. Metrics include Spearman correlation based 

on the model's similarity metric (usually cosine) and unit is per-

centage (%).  

• Max Token: The maximum number of tokens (words or sub-

words) the model can process in a single input. This is important 

for understanding the model's capacity to handle longer texts. 

• Embedding Latency: The time it takes for the model to generate 

an embedding for a given input. This is usually measured in mil-

liseconds and can be influenced by the model size, input length, 

and hardware used and unit is milliseconds (ms). 

• Embedding Type: The type of embeddings the model generates. 

This includes static and  dynamic. Static models require inputs of 

a fixed length, needing padding or truncation whereas dynamic 

models can handle varying input lengths. 

• GPU Support: Indicates if the model can leverage GPU acceler-

ation for faster computation. Models that support GPU can sig-

nificantly reduce latency and improve throughput compared to 

CPU-only models. 

• Multilingualism: Multilingual encoder or a translation system 

can be chosen alongside an English encoder to support non-Eng-

lish languages. Key considerations for choosing a multilingual 

embedding model include language coverage, dimensionality, 

and integration ease.  

• Model Type: Stringent data privacy requirements, especially in 

sensitive domains like finance and healthcare, may influence the 

choice of embedding services. Evaluate privacy considerations 

before selecting a provider. Hence, we can select public models 



instead of licensed ones as those can be downloaded privately 

and utilized. 

 

Step 3 – Capture and Summarize User requirements: This is a very 

crucial step as user satisfaction ultimately determines the efficacy of the 

framework. Hence, user requirement should be analyzed carefully to 

ensure the right model selection. Seven common input parameters are 

primarily considered which are presented below. They cover most of the 

queries present in the problem statement section, also referred as explicit 

variables. 

 
• Use Case  

• Latency  

• Document Length  

• Task Type  

• GPU Availability  

• Model Type  

• Non-English Language Support Required  

 
Step 4 – Build reference table for embedding models consists of 

implicit variables: Based on the available features of embedding models 

the process builds the reference dataset which contains the values of 

implicit variables. 

 

Step 5 – Map decision variables (or implicit variables) from user 

requirements (or explicit variables): Once we have captured the user 

requirements, the next step is to map explicit variables to the implicit 

variables. Following Figure 6 shows the mapping between the two set of 

variables. Based on that, the rulesets are created for recommendation. 



  

 

Figure 6. Mapping between implicit and explicit variables 

 

Step 6 – Recommend appropriate embedding models: Based on the 

rules and mapping between the explicit and implicit variables; finally, 

filters are applied to come up with set of recommendations. This set of 

recommendations is also sorted based on the user provided requirements. 
 

7 Experimental Setup and Results 
 

A. Performance improvement of RAG based applications through proposed 

Framework 

 

Our proposed framework is fully functional which was tested on multiple 

datasets. It allows us to run different RAG methodologies and provides 

evaluation scores accordingly. Appropriate recommendations can be 

chosen from the framework based on the received evaluation score and 

other user-provided requirements towards improving the same. Below 

Figure 7 and Figure 8 present a few such sample snapshots of the results. 



 

 
 

Figure 7. RAG improvement framework evaluation results 

 

Below is the comparison of different advanced RAG techniques using 

the recommended framework. Th result shows that average context rel-

evancy has been improved using some of the advanced RAG recommen-

dations like sentence window retriever or auto merging retriever. 
 

 
 

Figure 8. Average RAG Triad score for different RAG techniques 

 

B. Embedding model selection framework 

 

Embedding model selection framework is based on a user interface 

where users can select different criteria based on the use case which will 

Question RAG Types Reranking Goundedness Answer Relevancy Context Relevancy
Vanila Rag Yes 0.801 0.73 0.024

Hyde Yes 0.501 0.33 0.000
Ensemble Retriever Yes 0.901 0.761 0.029

Sentence Window Retriever Yes 0.95 0.701 0.304
Auto Merging Retriever Yes 1 0.830 0.333

Vanila Rag Yes 0.800 0.918 0.003
Hyde Yes 0.800 0.970 0.004

Ensemble Retriever Yes 0.847 0.960 0.003
Sentence Window Retriever Yes 0.867 0.968 0.058

Auto Merging Retriever Yes 0.857 0.969 0.388
Vanila Rag Yes 0.790 0.863 0.100

Hyde Yes 0.800 0.767 0.015
Ensemble Retriever Yes 0.833 0.740 0.012

Sentence Window Retriever Yes 0.500 0.909 0.100
Auto Merging Retriever Yes 0.933 0.909 0.267
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in turn produce a list of recommended embedding models. Following 

Figure 9 shows the list of choices present in the user interface whereas 

Figure 10 presents the recommendations of the embedding models. 
 

 
 

Figure 9. Embedding model selection framework – user selection criteria  

 

 
 

Figure 10. Embedding model selection framework – model recommendations  

 

 

8 Conclusions and Future Scope 
 

Currently, RAG is the most widely used approach in the current era of 

Gen AI; however, the response is not always optimal due to the various 

limitations in different phases of retrieval, augmentation and generation. 

Few such limitations are missing content, missing top ranked documents, 

limitation in consolidation strategy, problem in extraction format, incor-

rect specificity and incomplete response. An end-to-end RAG method 



adoption framework is proposed towards addressing this challenge 

which will recommend the optimal technique in each stage of evaluation 

based on existing scenarios so that the application performance can be 

improved. Additionally, one recommendation system is developed 

which will suggest the most appropriate embedding model based on user 

requirements as embedding model is the heart of the RAG architecture. 

 

However, there are few areas exist to improve the framework which in-

clude developing new advanced approaches to receive better contextual 

response from the LLM, incorporating agents in the whole eco-system to 

make the RAG agentic, proposing autonomous agents for improving 

RAG based application performance, hallucination identification and 

mitigation with agents and self-corrective process with feedback loop 

which will select the optimal RAG improvement strategies in automated 

manner. 
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