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Abstract. In industrial-grade applications, the efficiency of algorithms and mod-

els takes precedence, ensuring a certain level of performance while aligning with 

the specific requirements of the application and the capabilities of the underlying 

equipment. In recent years, the Vision Transformer has been introduced as a pow-

erful approach to significantly improve recognition accuracy in various tasks. 

However, it faces challenges concerning portability, as well as high computa-

tional and input requirements. To tackle these issues, a dynamic adaptive trans-

former (DAT) has been proposed. This innovative method involves dynamic pa-

rameter pruning, enabling the trained Vision Transformer to adapt effectively to 

different tasks. Experimental results demonstrate that the dynamic adaptive trans-

former (DAT) is capable of reducing the model's parameters and Gmac with min-

imal accuracy loss. 

Keywords: spatiotemporal attention, computer vision, driver action recogni-

tion, dynamic adaptive network, deep learning. 

1 Introduction  

Action recognition pertains to the utilization of computer vision and machine learning

 techniques to identify and comprehend human or object actions within video sequenc

es. It is primarily applied in the domain of video analysis, with the goal of automatical

ly detecting and classifying various actions or behaviors from video data. Action reco

gnition has wide-ranging applications in various fields, including Video surveillance, 

Human-computer interaction, Health and medical applications, and Sports analysis. A

mong the areas of machine learning is action recognition. Its purpose and significance

 are to determine the types of actions that the entities in the video do over time. To not
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ify other staff, the driver must make different gestures based on the functioning of the 

train during driving. Whenever an action recognition algorithm is employed in a drive

 system, drivers may learn normal actions and detect abnormal behaviors. Action reco

gnition's potential applications in video surveillance, media analysis, and machine visi

on are also gaining traction. In recent years, action recognition technology has seen si

gnificant development in the areas of human-computer interaction, possible routes, hu

man action analysis, and abnormal behavior detection [1-4]. 

Traditional and deep learning methods are the two kinds of action recognition meth

ods. Manual feature extraction, coding, and classification are used in traditional metho

ds. Traditional methods extract interest points, trajectories, and improved dense traject

ories. A point of interest is an area with the largest increase in a particular value durin

g video playback. Trajectories and improved dense trajectories are concepts proposed 

by Wang et al[1]. It is a method in use in combination with an action boundary histogra

m. Traditional methods, on the other hand, have poor applicability and robustness. As 

a result, this method is time-consuming and has problematic applications in practical p

roblems. In recent years, deep learning has emerged as one of the most essential meth

ods for solving problems in computer vision and other fields. Scholars developed and 

enhanced DNN following the first deep neural network (DNN)Alexnet[5] was successf

ully used in the field of image classification. After that, many 2D convolutional neural

 network (CNN) and 3D CNN[6-9]models were proposed and successfully applied in th

e field of action recognition, with excellent results. 

 

Fig. 1. Traditional methods often focus on the overall image(top row). Our method first uses a 

spatial attention module(second row) to process spatial information and then uses a temporal 

attention module (bottom row)to obtain more abundant features. 



Currently, the mainstream models for action recognition include 2D CNN, 3D CN

N, and transformer encoder, with the transformer encoder model gaining the most pop

ularity. Our method is based on the spatiotemporal attention module (Fig.1.). Howeve

r, the general transformer encoder's frame sequence calculation is redundant, increasin

g the calculation difficulty and training time. This study advances the DAT model and

 improves the spatiotemporal attention model. It's a Transformer encoder layout. It im

proves by about 4% points as compared to Timesformer and other traditional methods. 

2 Related Work 

IDT[10-11] and other early traditional methods are samples. The disadvantage of this me

thod is that it has poor timeliness in processing large datasets and is challenging to app

ly to applications that have significant real-time requirements. The 2D CNN proposed 

by Karpath[12] and others did not completely deal with action time domain information

. To compensate for this flaw, Simonyan et al.'s[13] dual flow structure is a popular exp

ansion and upgrade.  

Zeghoud et al.'s[14] approach relies on an innovative spatial normalization technique

 employed for gesture classification. However, its treatment of temporal aspects remai

ns somewhat constrained. Some [15-17] methods based on the vit [18] model and transfor

mer (multi-head self-attention mechanism, MSA) have been proposed in recent years 

as a result of the successful use of attention mechanisms in computer vision. The com

putation involved in these methods, nevertheless, exhibits redundancy. Some patch fra

gments have little effect on prediction results in the actual computation process, but th

ey increase the number of calculations considerably. 

In an industrial-scale task, the paper by Hou et al[19]. used a BP neural network mod

el to classify and recognize basketball movements as an application to the project. Tie

et al[20]. applied HOF and FLM and their improved algorithms to a head movement rec

ognition system. Although these models are not novel approaches in academics, they p

rovide some practical ideas for engineers in industrial-scale projects. In this paper, we 

propose and improve the better explanatory and higher recognition accuracy, Vision T

ransformer-based driver action recognition model, and successfully apply it in industri
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al-level projects, which provides certain solutions for subsequent academics and engin

eers.  

Inspired by DynamicViT[21] and AdaptFormer model [22], this paper proposes a DA

T driver action recognition method. The driver action model is improved in this metho

d, and the predictor is used to reduce computational complexity and Gmac to ensure m

aximum accuracy. Finally, it is successfully applied to the action recognition task. Exp

eriments show that the DAT model outperforms C3D and other methods in both the p

ublic and our datasets. 

3 Dynamic Adaptive Transformer 

3.1 Overview 

Fig. 2. depicts the overall framework of our Dynamic Adaptive Transformer. DAT is 

made up of various modules, including the ones mentioned below. After layering these 

modules, the whole becomes a Transformer encoder. 

3.2 Predictor 

The predictor is the first component, and it may predict and evaluate the input patch 

sequence, producing a set of pathways with the highest probability for the next attention 

computation. As shown in Fig. 3. , the Predictor module processes the input video 

patch sequence to produce a lightweight output. 

 
Fig. 2. The overall framework of DAT. 
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Fig. 3. The working principle and flow chart of the predictor. 

It can dynamically determine which token is to be pruned. A binary mask is generat

ed for each input model to determine which token is to be discarded. D̂  is the probab

ility mapping to 0 and 1 using the Softmax function, where 0 means no output and 1 m

eans output. This module can be added to multiple layers. N represents the number of

 patches. 

Map D̂  and token x  as inputs to MLP to obtain local feature 
localz . 

  MLP( )localz x=                                                            (1) 

Then obtain the global feature 
globalz with the same formula. 

            aggregate(MLP( ), )globalz x D=                                     (2) 

The aggregation formula is given by equation (3), where 
'NCu ¡ ,

' / 2C C=  de-

notes the dimensionality of the input. 
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Then the local and global features are spliced, and finally, they are input into MLP to 

predict which token will be retained or discarded. 

[ , ],1local global

i i iz z z u N=                                                             (4) 

' =Softmax(MLP( ))z z                                                            (5) 
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3.3 Re-attention 

Through layering and residual connection, the re-attention module is composed consis

ting of a linear projection layer and a Transformer encoder, and each attention layer co

nducts attention calculation in the adjacent patch. The module calculates the feature an

d outputs it after MLP. The specific formula is given by Formula (6) and Formula (7).

 Where 1,2....l L=  is the number of layers of attention modules, 1,2.....a A=  is th

e number of heads of attention, and hD  is the dimension of heads of attention. p repr

esents the number of patches in N frame images,  t  represents the current patch from

 which   F frame images, SM  represents the SoftMax function 

When the model reaches a specific depth, the accuracy rate is enhanced again by re-

attention calculation, which adds no additional overhead compared to self-attention cal-

culation. 

                               
' '
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3.4 Adaptor 

Although ViT has had considerable success in the field of computer vision, extending 

it to video is still difficult. Because of its vast amount of computing and storage, we w

ill be far from reaching our existing hardware conditions if we directly fine-tune it and

 migrate it to our subway driver action recognition task. To address this problem, a lig

htweight plug-and-play module is provided, which only adds 5% parameters to the mo

del but increases the original model's accuracy by roughly 2%. 

The adaptor is comprised of three components: MLP, an activation function, and tw

o trainable modules. MLP and parallel trainable modules aggregate features so that sm

all-scale parameters can be fine-tuned and transferred to the subway driver's action rec

ognition task. Fine-tuned and transferred to the action recognition task of a subway dri

ver. Fig. 4. depicts the Adapter's structure. Formulas (6), (7), and (8) are used to do th

e specific calculation (8).  



 

Fig. 4. Adaptor structure diagram. 

First of all, like the traditional Transformer, the attention of token lx  is calculated f

irst, and then the residual connection is performed.             

Re-attention( , , )=SoftMax( )
T

l

QK
x Q K V V

d
=                              (8) 

' MLP(LN( ))l l lx x x= +                                            (9) 

Secondly, in the trainable modules, we have the feature 
''

lx  formally via: 

'

'' GELU(LN( ) )l t Trainable Trainable
x x W W=                          (10) 

Finally, both features 
''

lx  and lx are fused with 
'

lx  by residual connection. 

' ''( ( ))l l l lx MLP LN x x x= + +                                (11) 

4 Experiments 

4.1 Experiments datasets 

The experimental data comes from the subway cab's monitoring video. Preprocess the 

data by cutting the five categories of behaviors to be recognized into small segments r

anging from 1 to 5 seconds, and then using the script to cut each little segment into an 

8-frame-per-second frame sequence. Since setting the batchsize too large will prevent 

our device from operating, our experiment uses the Adam optimizer and sets the batch

size to 8. 

MLP

Trainable

GELU

Trainable
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There are about 2000 training samples, where the specific information of the datase

t is given by Table 1. Car (pointing to the driving screen, It means the driver signals to

 drive.), Signal (pointing to the signal screen, It means that the driver signals the instru

ctions), Null (no action, It means the driver doesn't make any moves), Double (Car & 

Signal), and Out are the five types of actions to be recognized (pointing out of the car,

 It means the driver gestures out the window). As shown in the set of pictures in Fig. 1

. , there are several displays and a windshield below the driver's hand, both of which a

re objects the driver is pointing at 

Table 1. Details of the dataset. 

Action Category/Type train Validation test 

null 195 143 55 

double 200 138 51 

car 215 130 60 

out 206 145 59 

signal 220 148 57 

4.2 Experiments Settings 

Experiments are used to evaluate the efficacy and feasibility of DAT. It primarily asse

sses Predictor and Adaptor's ability to improve and migrate model efficiency. Second,

 it simply assesses the viability of Re-attention in the deep network. 

Fig. 5. first compare our method to several popular methods in Gmac and Parame-

ters. The size of the legend indicates the value of the horizontal axis intuitively. Fur-

thermore, more specific values are provided in Table 2. Following that, we evaluated 

the effectiveness of the Re-attention and Self-attention modules as the network depth 

increased. The experiment (Fig. 6.) discovered that Re-attention can indeed solve the 

attention collapse problem of our subway driver's action dataset. 



Then we have choose 3D CNN and Transformer encoder representatives for the 

pruning effect experiment, and the results are shown in Table 3. Except for a few met 
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Fig. 5. Performance comparison of several methods, in our subway driver datasets:  (a) shows 

the relationship between Gmac and Accuracy, and (b) shows the relationship between Paramters 

and Accuracy. 

Table 2. Detailed data constituting. 

Method GMac Params Accuracy 

C3D 38.67 78.02M 50.17% 

P3D 40.81 33.18M 29.28% 

R(2+1)D 62.68 51.99M 26.96% 

Space  17.45 21.90M 60.17% 

I3D N/A 71.44M 48.55% 

Timesformer 32.08 40.82M 75.51% 

ViViT  40.42 88.90M 73.81% 

ViTdr N/A 81.79M 69.79% 

DAT(Ours) 33.57 43.14M 78.33% 
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Table 3. Effect of pruning and its influence on accuracy. 

Method Pretrain Predictor(M) Non-Predictor(M) Accuracy(%) 

C3D ImageNet-1K 78.02M 85.11M 52.26%(↑2.09%) 

P3D ImageNet-1K 33.18M 35.05M 31.45%(↑2.17%) 

R(2+1)D ImageNet-1K 51.99M 55.48M 30.76%(↑3.8%) 

I3D ImageNet-1K 71.44M 77.86M 50.45%(↑1.9%) 

Timesformer ImageNet-21K 40.82M 43.35M 76.47%(↑0.96%) 

ViViT ImageNet-21K 88.90M 94.10M 72.29%(↓1.52%) 

ViTdr ImageNet-21K 81.79 85.36M 68.51%(↓1.28%) 

DAT(Ours) ImageNet-21K 43.14M 45.60M 77.52%(↓0.81%) 

 

Table 4. Influence of Adaptor on Model Parameters and Accuracy. 

hods, the accuracy of the others has improved, and the number of parameters has been

 reduced by about 8%. Our model ensures the highest level of accuracy rate stability w

hile also reducing model parameters. At the same time, we compared the Adaptor, whi

ch is used to migrate it to different models for experiments. Table 4 shows that the ada

pter only adds about 10% of the parameters to the network, but its fine-tuning paramet

ers are much lower than those of the Full tuning method, and our model accuracy has i

mproved as a result. 

Finally, we have chosen several public datasets for DAT comparative experiments. 

Fig. 7. shows that our model has some advantages and is feasible in public datasets. 

Method Adaptor(M) Non-Adaptor (M) Tuning Parameter(%) Accuracy(%) 

C3D 91.48M 85.11M 7.0% 50.79% (↑0.62%) 

P3D 37.11M 35.05M 5.6% 30.71%(↑1.43%) 

R(2+1)D 57.68M 55.48M 4.0% 29.22%(↑2.26%) 

I3D 82.97M 77.86M 6.2% 47.84%(↓0.71%) 

Timesformer 46.77M 43.35M 7.4% 74.94%(↓0.57%) 

ViViT 98.23M 94.10M 4.3% 74.06%(↑0.25%) 

ViTdr 89.57M 85.36M 4.8% 70.16%(↑0.37%) 

DAT(Ours) 47.93M 45.60M 5.3% 79.59%(↑1.26%) 
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Fig. 6. Comparison between Re-attention and Self-attention.      Fig. 7. results of our model in 

the open datasets. 

5 Conclusion 

In this paper, we apply the DAT model to the task of recognizing subway driver action

s. It can dynamically prune the model parameters. At the same time, the Adaptor mod

ule increasing the portability. The experiment shows that our method achieves traditio

nal methods in terms of accuracy, parameters, and other indicators, proving its feasibil

ity and effectiveness. We also discovered that the overfitting issue occasionally surfac

ed at the start of the experiments.This issue was resolved after the datasets was recrea

ted with distinct action features, and we hypothesize that this may be owing to the acti

ons' high repeat rate and shoddy production—however, the precise reason for this has 

to be established in further research. 
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