EasyChair Preprint
Ne 11886

‘j“‘ 220

Note for the P versus NP Problem

Frank Vega

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 1, 2024



Article

Note for the P versus NP Problem

Frank Vega !

1 GROUPS PLUS TOURS INC., 9611 Fontainebleau Blvd, Miami, FL, 33172, USA; vega.frank@gmail.com

Abstract: P versus NP is considered as one of the most fundamental open problems in computer
science. This consists in knowing the answer of the following question: Is P equal to NP? It was
essentially mentioned in 1955 from a letter written by John Nash to the United States National Security
Agency. However, a precise statement of the P versus NP problem was introduced independently
by Stephen Cook and Leonid Levin. Since that date, all efforts to find a proof for this problem have
failed. Another major complexity class is NP-complete. It is well-known that P is equal to NP under
the assumption of the existence of a polynomial time algorithm for some NP-complete. We show
that the Monotone one-in-three 3-satisfiability (M — 1IN3 — 35AT) is NP-complete and P at the same

time.
Keywords: computational algorithm; complexity classes; completeness; polynomial time; reduction

MSC: 68Q15; 68Q17; 68Q25

1. Introduction

P versus NP is one of the most important and challenging problems in computer
science [1]. It asks whether every problem whose solution can be quickly verified can also
be quickly solved. The informal term “quickly” here refers to the existence of an algorithm
that can solve the task in polynomial time [1]. The general class of problems for which such
an algorithm exists is called P or “class P” [1].

Another class of problems called NP, which stands for “nondeterministic polynomial
time”, is defined by the property that if an input to a problem is a solution, then it can
be quickly verified [1]. The P versus NP problem asks whether P equals NP. If it turns
out that P # NP, which is widely believed to be the case, it would mean that there are
problems in NP that are harder to compute than to verify [1]. This would have profound
implications for various fields, including cryptography and artificial intelligence [2].

Solving the P versus NP problem is considered to be one of the greatest challenges in
computer science [1]. A solution would have a profound impact on our understanding of
computation and could lead to the development of new algorithms and techniques that
could solve many of the world’s most pressing problems [1]. The problem is so difficult
that it is considered to be one of the seven Millennium Prize Problems, which are a set of
seven unsolved problems that have been offered a 1 million prize for a correct solution [1].

2. Materials and methods

NP-complete problems are a class of computational problems that are at the heart of
many important and challenging problems in computer science. They are defined by the
property that they can be quickly verified, but there is no known efficient algorithm to solve
them. This means that finding a solution to an NP-complete problem can be extremely
time-consuming, even for relatively small inputs. In computational complexity theory, a
problem is considered NP-complete if it meets the following two criteria:

1.  Membership in NP: A solution to an NP-complete problem can be verified in poly-
nomial time. This means that there is an algorithm that can quickly check whether a
proposed solution is correct [3].

2. Reduction to NP-complete problems: Any problem in NP can be reduced to an
NP-complete problem in polynomial time. This means that any NP-problem can be
transformed into an NP-complete problem by making a small number of changes [3].


https://orcid.org/0000-0001-8210-4126

20f4

If it were possible to find an efficient algorithm for solving any one NP-complete problem,
then this algorithm could be used to solve all NP problems in polynomial time. This would
have a profound impact on many fields, including cryptography, artificial intelligence, and
operations research [2]. Here are some examples of NP-complete problems:

*  Boolean satisfiability problem (SAT): Given a Boolean formula, determine whether
there is an assignment of truth values to the variables that makes the formula true [4].

*  Subset sum problem: Given a set of positive integers and target T, determine whether
there is a subset of the integers which sum to precisely T [4].

These are just a few examples of the many N P-complete problems that have been studied
and have a close relation with our current result. In this work, we show there is an NP-
complete problem that can be solved in polynomial time. Consequently, we prove that P is
equal to NP.

3. Results

Formally, an instance of Boolean satisfiability problem (SAT) is a Boolean formula ¢
which is composed of:

1.  Boolean variables: x1,x7,..., Xy;

2. Boolean connectives: Any Boolean function with one or two inputs and one output,
such as A(AND), V(OR), —(NOT), = (implication), < (if and only if);

3.  and parentheses.

A truth assignment for a Boolean formula ¢ is a set of values for the variables in ¢. A
satisfying truth assignment is a truth assignment that causes ¢ to be evaluated as true. A
Boolean formula with a satisfying truth assignment is satisfiable. The problem SAT asks
whether a given Boolean formula is satisfiable [4].

A literal in a Boolean formula is an occurrence of a variable or its negation [3]. A
Boolean formula is in conjunctive normal form, or CNF, if it is expressed as an AND
of clauses, each of which is the OR of one or more literals [3]. A Boolean formula is in
3-conjunctive normal form or 3CNF, if each clause has exactly three distinct literals [3].

For example, the Boolean formula:

(X1V — X1V — XQ) A (X3 Vxp V X4) A (_/ x1V — x3V — JC4)

is in 3CNF. The first of its three clauses is (x1V — x1V — x,), which contains the three
literals x1, — x1, and — x».
We define the following problem:

Definition 1. Monotone one-in-three 3-satisfiability (M-1IN3-3SAT)

INSTANCE: A 3CNF formula with monotone clauses (meaning the variables are never
negated).

QUESTION: Is there exists a truth assignment such that each clause contains exactly one true
literal?

REMARKS: M — 1IN3 — 3SAT € NP-complete [4].

Finally, we deduce our main goal:
Theorem 1. M —1IN3 —3SAT € P.

Proof. Suppose we have the following sequence of variables in a given instance of M —
1IN3 — 3SAT:

X1y, Xn.
For each variable x; in the 3CNF formula, we define the functions f, g and 4 as,

*  f(x;) is the number of unordered clauses (x; V x; V x;) such that this one belongs to
the 3CNF formula whenever j > i and k > i at the same time;



30f4

*  g(x;) is the number of unordered clauses (x; V x; V x;) such that this one belongs to
the 3CNF formula whenever j < i and k < 7 at the same time;

*  h(x;) is the number of unordered clauses (x; V x; V xi) such that this one belongs to
the 3CNF formula whenever either j > i and k < iorj < iand k > i at the same time.

We define a state as a quadruple (i, s, 7, t) of integers. This state represents the fact that,
“the subset of variables x1,. .., x;

with s satisfied clauses
where —m<r<mand —m <t <m”,

where m is the amount of clauses into the 3CNF formula. Each state (i, s, r,t) has two next

states:

Lo i+ Ls+h(xipa) + f(xie1) + 8(xia), 7 + f(xiga) + h(xiga), t — g(xip1) — h(xit1)),
implying that x; 1 is included in the subset and it is evaluated as true;

2. (i+1,s,r—g(xi11),t+ f(xi+1)), implying that x; 1 is included in the subset and it is
evaluated as false.

Starting from the initial state (0,0,0,0), it is possible to use any graph search algorithm

(e.g. Breadth-first search (BFS) [3]) to search the state (1,m,0,0). Certainly, we satisfy

all the clauses if they exactly contain one true literal just adding 1 by the true literal from

the left most position, subtracting 1 by the false literal from the right most position and

simultaneously adding and subtracting 1 by the true literal from the middle position placed

within each clause. The run-time of this algorithm is at most linear in the number of states.

The number of states is at bounded by 7 - 4 - m® times and therefore, the whole time required

isO(n-m®). O

4. Conclusion

A proof of P = NP will have stunning practical consequences, because it possibly leads
to efficient methods for solving some of the important problems in computer science [1]. The
consequences, both positive and negative, arise since various NP-complete problems are
fundamental in many fields [2]. But such changes may pale in significance compared to the
revolution an efficient method for solving N P-complete problems will cause in mathematics
itself [1]. Research mathematicians spend their careers trying to prove theorems, and some
proofs have taken decades or even centuries to be discovered after problems have been
stated [1]. A method that guarantees to find proofs for theorems, should one exist of a
“reasonable” size, would essentially end this struggle [1].

References

1.  Cook, S.A. The P versus NP Problem, Clay Mathematics Institute. https://www.claymath.org/wp-content/uploads/2022/06/
pvsnp.pdf, 2022. Accessed 31 January 2024.

2. Fortnow, L. The status of the P versus NP problem. Communications of the ACM 2009, 52, 78-86. https://doi.org/10.1145/156216

4.1562186.

Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; The MIT Press, 2009.

4.  Garey, M.R,; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness, 1 ed.; San Francisco: W. H.
Freeman and Company, 1979.

@

Short Biography of Authors

Frank Vega is essentially a Back-End Programmer and Mathematical Hobbyist who graduated in
Computer Science in 2007. In May 2022, The Ramanujan Journal accepted his mathematical article
about the Riemann hypothesis. The article “Robin’s criterion on divisibility” makes several significant
contributions to the field of number theory. It provides a proof of the Robin inequality for a large
class of integers, and it suggests new directions for research in the area of analytic number theory.



https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf
https://doi.org/10.1145/1562164.1562186
https://doi.org/10.1145/1562164.1562186

40f4

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.



	Introduction
	Materials and methods
	Results
	Conclusion
	References

