
EasyChair Preprint

№ 206

Top-down and Bottom-up Evaluation

Procedurally Integrated

David Scott Warren

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 31, 2018

D
RA
FT

Under consideration for publication in Theory and Practice of Logic Programming 1

Top-down and Bottom-up Evaluation
Procedurally Integrated

DAVID S. WARREN

Stony Brook University, Stony Brook, NY, 11794-4400 USA

(e-mail: warren@cs.stonybrook.edu)

XSB Inc., Setauket, NY, 11733 USA
(e-mail: warren@xsb.com)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

This paper describes how the Logic Programming System XSB combines top-down and bottom-
up computation through the mechanisms of variant tabling and subsumptive tabling with ab-
straction, respectively.

It is well known that top-down evaluation of logical rules in Prolog has a procedural in-
terpretation as recursive procedure invocation (Kowalski 1986). Tabling adds the intuition of
short-circuiting redundant computations (Warren 1992). This paper shows how to introduce
into tabled logic program evaluation a bottom-up component, whose procedural intuition is the
initialization of a data structure, in which a relation is initially computed and filled, on first
demand, and then used throughout the remainder of a larger computation for efficient lookup.
This allows many Prolog programs to be expressed fully declaratively, programs which formerly
required procedural features, such as assert, to be made efficient.

KEYWORDS: top-down, bottom-up, logic programming, tabling, Prolog, procedural interpre-
tation

1 Introduction

Top-down and bottom-up algorithms have long been seen as alternative, even compet-

itive, ways to evaluate Datalog (and Prolog) programs (Lloyd 1993; Bry 1990), with

proponents of each algorithm arguing for its particular advantages (Ullman 1989; Toman

1995; Tekle and Liu 2011). Systems implement either top-down evaluation, e.g., XSB (by

default) (Swift and Warren 2012) and other Prolog systems that include tabling, such as

YAP (Santos Costa et al. 2012), Ciao Prolog (Hermenegildo et al. 2012), BProlog (Zhou

2012) and as a library in SWI Prolog (Weilemaker et al. 2017), or bottom-up evaluation,

e.g., LDL++ (Arni et al. 2003), Coral (Ramakrishnan et al. 1994) and LogicBlox (Aref

et al. 2015), among many others. In this paper we consider the properties and advantages

of each strategy and propose that they be integrated in a single system, with each having

a distinct procedural interpretation. Then each can be used when its evaluation strategy

is most appropriate and efficient. This paper describes how they are integrated in the

XSB tabled logic programming system.

D
RA
FT

2 D. S. Warren

2 Brief Review of Top-Down and Bottom-up Evaluation

To briefly review tabled top-down and bottom-up evaluation of Datalog rule sets, we

consider the following well-known example of transitive closure for a simple graph:

:- table p/2.
e(a,b). e(b,c).

p(X,Y) :- e(X,Y). e(e,a). e(c,b).
p(X,Y) :- p(X,Z),e(Z,Y). e(d,e).

Example 1. For query p(a,A), tabled top-down evaluation proceeds as follows:

1 p(a,A) add query p(a,?) to table
2 e(a,A). resolve 1 with 1st rule
3 () A=b resolve 2 with fact e(a,b), add answer p(a,b) to table
4 p(a,Z),e(Z,A) resolve 1 with 2nd rule
5 e(b,A) resolve 4 with answer p(a,b) from table
6 () A=c resolve 5 with fact e(b,c), add answer p(a,c) to table
7 e(c,A) resolve 4 with answer p(a,c) from table
8 () A=b resolve 7 with fact e(c,b), p(a,b) in table, don’t add

Example 2. Bottom-up evaluation for the same query proceeds in iterations. At each

iteration it uses the program rules and the facts currently known to infer new facts.

Iteration 0: infer the program facts:
e(a,b), e(e,a), e(d,e), e(b,c), e(c,b)

Iteration 1: Use those facts and program rule 1 to infer:
new: p(a,b), p(e,a), p(d,e), p(b,c), p(c,b)

Iteration 2: Use rule 2 and previous inferred facts to infer:
new: p(a,c) [from p(a,b) and e(b,c)]

p(e,b) [from p(e,a) and e(a,b)]
p(d,a) [from p(d,e) and e(e,a)]
p(b,b) [from p(b,c) and e(c,b)]
p(c,c) [from p(c,b) and e(b,c)]

Iteration 3: Again use rule 2 with previously inferred facts to infer:
new: p(e,c) [from p(e,b) and e(b,c)

p(d,b) [from p(d,a) and e(a,b)
(We get duplicates, e.g., p(a,b) from p(a,c) and e(c,b),
but they aren’t added.)

Iteration 4: Again use rule 2
p(d,c) [from p(d,b) and e(b,c)]

Iteration 5: Nothing new to infer, so stop

These logs show the difference: Top-down uses the binding on the first argument of

the query to guide its search, so here it never has to look at nodes d and e and their

successors. Bottom-up computes the entire transitive closure relation, and would then

select from it those p-tuples with value a in the first position. This might be more efficient

if we were to ask many queries to the p/2 relation, with different first arguments, since

the p relation would be computed only once, and then every subsequent query would

require only a simple lookup in that table.

In this particular case, there is not much to gain from computing the entire relation

first, because the top-down strategy (saving tables across queries) would efficiently com-

pute only the new tuples required for the current query, using the previously computed

answers as needed. But there are (many) cases in which that efficient incremental com-

putation is not what happens with multiple top-down queries to the same relation.

D
RA
FT

Theory and Practice of Logic Programming 3

3 Example of Need for Bottom-Up Evaluation

Example 3. Consider a simple system with a corpus of sentences, which allows a user to

input a sentence and find all the sentences in the corpus that share a word with the input

sentence. The system uses a relation of strings, called corpus(CorSent), which contains

the sentences of the corpus, and defines a predicate share(+InSent,-CorSent,-Word),

that, given an input sentence, returns each corpus sentence that shares a word with it,

and the shared word. It can be defined using a helper tokenizing predicate, scan/2, as

follows:

share(InSent,CorSent,Word) :-
scan(InSent,InWordList),
corpus(CorSent),
scan(CorSent,CorWordList),
member(Word,InWordList),
member(Word,CorWordList).

Top-down evaluation by Prolog proceeds as follows: Given a string as input, scan/2

tokenizes it, providing the list of words it contains. Then for each sentence in the corpus,

we tokenize it, and return the corpus sentence for each word in the input sentence token

list that is also in the corpus sentence token list.

This is a reasonable approach for a single query, but if we want to answer multiple

similar queries to the same corpus, this will re-tokenize every string in the corpus for each

query, which would be extremely redundant and inefficient: Answering a single query for

one input sentence essentially requires almost all the work (i.e., tokenizing every corpus

sentence) that is necessary to answer a query for any input sentence. In the presence of

multiple queries, it would be much better to construct a table of the corpus sentences

and their tokens only once, and then use this table to answer each input query. We can

simply reorder and fold the above program clause to create and use that corpus word/2

relation as follows:

Example 4.

share(InSent,CorSent,Word) :-
scan(InSent,InWordList),
member(Word,InWordList),
corpus_word(CorSent,Word).

corpus_word(CorSent,Word) :-
corpus(CorSent),
scan(CorSent,CorWordList),
member(Word,CorWordList).

This separates out the relation we want to generate and reuse, but notice that variant

tabling does not solve our redundant computation problem. The predicate corpus word/2

will be called with its second argument, Word, bound. So for each different word in the

input sentence, corpus word/2 will be entered, thus re-scanning every corpus sentence

for each new input word. This is even worse than the previous unfolded program.

However, if we can ensure that the corpus word/2 definition is evaluated bottom-up,

generating a complete table that is indexed on its second argument and that table is

used for every call from share/3, then the redundant computation will be eliminated.

So this is an example of a situation in which we want to build (i.e., initialize) a table

D
RA
FT

4 D. S. Warren

containing more answers than we immediately need: we want answers computed for all

corpus words, even though we initially need only those for a single word.

In procedural terms, we understand the bottom-up evaluation of corpus word/2 as

building an intermediate data structure to more efficiently evaluate various subqueries

that will be needed later. This is a common requirement in algorithm development. Ex-

perienced Prolog programmers normally implement such requirements non-declaratively

by initially computing the necessary tuples and adding them to a dynamic predicate

using the Prolog built-in assert/1. But with bottom-up evaluation, such programs can

be purely declarative and yet have the equivalent computational properties.

4 Specifying Bottom-Up Evaluation in XSB

The question now is how to indicate to the evaluation system that the first call to

corpus word/2 is to cause it to be evaluated bottom-up to fill the table that is to be

indexed on its second argument, and how the evaluation system will efficiently carry out

that evaluation.

XSB uses Subsumptive Tabling With Abstraction (STWA) to carry out the bottom-up

evaluation. Normally tables in XSB are variant tables, i.e. an entry in a variant table is

used to satisfy a subsequent goal if that goal is a variant of the goal that generated the

table entry, i.e., equal up to change of variable. In subsumptive tabling (Johnson et al.

1999; Ramakrishnan et al. 1999; Johnson 2000; Johnson 2002; Cruz and Rocha 2011),

a table entry is used to satisfy a subsequent goal if the subsequent goal is subsumed

by the generating goal, i.e., is an instance of the generating goal. Note that in such

a case the answers to the subsumed goal will (eventually) be in the table of answers

for the previously encountered subsuming goal.1 The programmer may specify, using a

table index/2 directive, that when a subsumptively tabled goal is called, the calling goal

should be abstracted before it is actually invoked, so that a table for the more general

call is constructed, and then only the answers unifying with the original unabstracted

goal are returned to the initial call. In this case, since a general table is constructed, a

later subgoal that is subsumed by that more general goal will use this general table to

satisfy the later subgoal and not make the specific subgoal call to do clause resolution.

The table index/2 directive was recently added to XSB to support the creation of

subsumptive tables with multiple arbitrary indexes (Warren et al. 2007). An index on

a single argument of the table is specified by just giving an integer that indicates the

position in the tabled predicate of the argument to be indexed. Joint indexes, i.e. indexes

on multiple arguments, are specified by terms made by separating the multiple position

integers by the symbol +. Multiple different indexes are provided in a list. (These index

specifications are the same as those used for dynamic predicates in XSB.) For example,

say we want four indexes on a subsumptive table for p/4, so that a call to p/4 (after its

table is built) first checks if the call has arguments 1 and 2 bound and if so uses a joint

index on those arguments; and if not, then checks if it has just argument 1 bound and

1 Not all predicates defined in Prolog can be correctly tabled. For example, variant tabled predicates
should not use built-ins that change the global state, such as assert/1 or retract/1; subsumptively
tabled predicates, in addition, should not use built-ins that depend on the instantiation state of
variables, such as var/1 and many uses of the cut (!) operation.

D
RA
FT

Theory and Practice of Logic Programming 5

if so uses an index on that; and if not then checks if arguments 2, 3 and 4 are bound

and if so uses a joint index on those positions; and if not then checks if argument 4 is

bound and if so uses an index on that position; and if not, then throws an error (because

that would be an unindexed call and we should be notified). So this would require the

directive:

:- table_index(p/4,[1+2,1,2+3+4,4]).

The table index/2 directive not only specifies the indexes on the resulting subsumptive

table but also what abstraction should be done to the initial call to the subsumptively

tabled predicate. The assumption is that every index will have some calls that use it.

Since we want to compute the tuples for only one abstracted call to the tabled predicate,

every position that might be unbound on some particular call must be abstracted in the

initial subsumptive call, so that the one table will contain all answers for a call not bound

on that position. This implies that the arguments that should be bound in the abstracted

call to the subsumptively tabled predicate are those that appear in every specified index;

all others must be variables. For the p/4 example, there are no such arguments, so the

first call will be fully abstracted, i.e., all arguments will be variables. In this case we call

it “subsumptive tabling with full abstraction”.

There are situations where we want the initial call to a subsumptively tabled predicate

to be abstracted to the fully open call, even if there are positions appearing in all index

specifications. For example, we may need only one index but want full abstraction, as

in our example for corpus word/2. In such a case, we must use 0 as an index specifier,

meaning “no index”, and it is placed last.

Thus for the corpus word/2 subsumptive table, we want:

:- table_index(corpus_word/2,[2,0]).

which declares that the predicate corpus word/2 should be computed bottom-up. We

want an index on the second argument and the first call should be abstracted to the call

with all variables. Since every corpus word/2 subgoal is subsumed by this most general

goal, it will never be called after the first time, but the table that is constructed at the

first call will be used to satisfy all those subsequent calls. The first call to corpus word/2

will build (or initialize) the table (or data structure), and from then on every call will

directly access that table; and in our case use the index for constant time lookup.

The directive table index/2 is implemented in XSB by a program transformation,

which we briefly describe by example. The following code (slightly modified for clarity)

is generated by the compiler for the p/4 example above,

:- table_index(p/4,[1+2,1,2+3+4,4]):

:- table p1234/4, p4231/4 as subsumptive.
p(A,B,C,D) :-

nonvar(A) -> p1234(A,B,C,D)
; nonvar(D) -> p4231(D,B,C,A)
; table_error(’Illegal Mode in call to p/4’).

p1234(A,B,C,D) :-
var(A),var(B),var(C),var(D) -> p_base(A,B,C,D)
; p1234(E,F,G,H),E = A,F = B,G = C,H = D.

p4231(A,B,C,D) :-
var(D),var(B),var(C),var(A) -> p1234(D,B,C,A)
; p4231(E,F,G,H),E = A,F = B,G = C,H = D.

p_base(A,B,C,D) :- ... original p rules ...

D
RA
FT

6 D. S. Warren

p1234/4 and p4231/4 are versions of p/4 with its arguments permuted. Subsumptive

tables implement trie indexing, thus providing indexing on any initial sequence of ar-

guments. Here two tables are needed: p1234/4 for indexes 1 and 1 + 2, and p4231/4

for indexes 4 and 2 + 3 + 4. (The complier determines the minimum number of tables

required to cover all the declared indexes.) The first clause tests the calling mode to

select which tabled permutation to call. Each permutation predicate will normally be

entered twice, once with some arguments bound, which will result in a (second) call to

itself with all arguments unbound. From then on every other call will be subsumed by

that most general call and so its answers will be served from that generated table. Notice

that p4231/4 calls p1234/4 and not p base/4 and so will be filled by getting its answers

from the table of p1234/4. Thus the original clauses that define p/4 (now in p base/4)

will be called only once.

5 Intermixing Top-down and Bottom-up evaluation

It is possible to combine top-down filtering with bottom-up evaluation.

Example 5. Say our corpus of sentences in Example 3 is partitioned to indicate those

from a single book. We would have another argument to corpus/1 now:

corpus(BookISBN,Corent). And top-level predicate:

share(InSent,BookISBN,CorSent), and sub-predicate:

corpus word(BookISBN,CorSent,Word), defined in terms of corpus/2.

share(InSent,BookISBN,CorSent) :-
scan(InSent,InWordList),
member(Word,InWordList),
corpus_word(BookISBN,CorSent,Word).

corpus_word(BookISBN,CorSent,Word) :-
corpus(BookISBN,CorSent),
scan(CorSent,CorWordList),
member(Word,CorWordList).

We assume that corpus/2 is indexed on its first field, BookISBN, and require that

BookISBN be bound on a call to share/3. Then we would invoke partial bottom-up

evaluation with the declaration:

:- table_index(corpus_word/3,[1+3,1]).

This will abstract a call to corpus word/3 to corpus word(+,-,-), where + indicates

a bound argument and - a variable argument. Positions that appear in all indexes in

the table index declaration, here 1, will not be abstracted; all others will be. Now the

sentences of each book will be processed bottom-up independently. When a new book is

queried for the first time, the table for words in sentences for that book will be computed

bottom-up and stored in the table. Subsequent queries to the same book will directly use

the constructed table. So this is an example in which demand-driven computation (here

with respect to BookISBN) can be combined with data-driven computation (here for the

set of corresponding < CorSent,Word > pairs) to evaluate a query (here to share/3.)

That a data-driven computation can use a demand-driven subquery has already been

seen in the original Example 3. While we haven’t shown the code for the scan/2 predi-

cate, it is naturally defined using demand-driven computation. E.g., a DCG defining the

D
RA
FT

Theory and Practice of Logic Programming 7

scanner would use top-down evaluation of a subquery. So the original example shows

how the bottom-up evaluation of corpus word(-,-) uses the top-down evaluation of

scan(+,-).

6 Procedural Interpretation of Bottom-up Evaluation

To understand top-down evaluation of rules, one intuitively thinks of subgoal solving as

nondeterministic procedure invocation, with backtracking to explore alternate compu-

tation paths. To understand top-down evaluation with tabling, one thinks of procedure

invocation but with short-circuiting for previously encountered procedures (with the same

parameters). To understand bottom-up evaluation as provided by Subsumptive Tabling

With Abstraction (STWA) through the table index/2 directive, one thinks of indexed

table construction (or initialization) from which future retrieval will be done.

A bottom-up computation is appropriate when there is a predicate that is efficiently

computable in one mode and yet it will be needed multiple times in another mode. For

example, corpus word(+.-) of Example 3 can be efficiently evaluated in that direction,

i.e., given a sentence find the words in it. But the application requires multiple calls of

the mode corpus word(-,+), i.e., given a word find the sentences that contain it. In this

situation, bottom-up evaluation is called for.

The most basic example of this phenomenon is indexing itself. For example, if one

wants to find the value associated with a particular key in an unordered sequence of key-

value pairs, one must search the pairs sequentially, which on average takes time linear

in the number of pairs. With the same time complexity to search for one item, one can

(with perfect hashing) build a hash table which allows all such key lookups to be done

in constant time.

7 STWA for File Input

Part of the attractiveness of logic programming is that it treats programs (usually mostly

rules) and data (usually facts) the same, but in most large systems there is an impor-

tant pragmatic difference between them: Programs are rules (and facts) that are known

statically at compile time; data are facts (and maybe rules) that are not known until

runtime when they are retrieved from a file. Facts are normally accessed through a file-

name passed to an executing program, where the records of the file are initially read and

asserted into a predicate in memory, which is used by the program rules. It is not clear

how this could be made fully declarative. But consider the following use of STWA:

Example 6.

:- table_index(emp_data/4,[1+2,1]).

emp_data(FileName,EmpId,Name,Addr) :-
open(FileName,read,InpStream),
repeat,
read(InpStream,Term),
(Term == end_of_file
-> !, close(InpStream), fail
; Term = emp(EmpId,Name,Addr)

).

This definition uses low-level procedural Prolog operations to read the records of a file

D
RA
FT

8 D. S. Warren

containing emp/3 facts and return them as answers to a call to emp data/4, where the

first argument of the call is the name of the file to read. Because of the table index/2

directive, the first call will be abstracted to emp data(+,-,-,-). (Recall that arguments

in the intersection of all the indexed arguments, here argument 1, must be bound in

any call, and will not be abstracted for the initial table-filling call.) So with this defini-

tion, a programmer can get access to the tuples in any employee file (one that contains

emp/3 facts) by invoking a simple subgoal, with the first argument providing the name

of the file. There is no need for the programmer to make an explicit call (e.g., Pro-

log’s ensure loaded/1) to initialize the emp data/4 predicate using Prolog’s nonlogical

assert/1. The first call will automatically read the file in, building an index on the first

and on the first and second arguments. Since XSB uses tries to represent tables (Ra-

makrishnan et al. 1999), this is here just a single trie, and the Filename is stored only

once in the table, so the overhead of using the 4-ary predicate is essentially zero.

Of course a programmer could read different sets of employee facts from different files

simply by invoking the emp data goal with different file names.

Generalizing this approach, we can make the entire file system a part of the data-

space of a Prolog program. Definitions such as in Example 6 simply map (portions

of) the file system into Prolog fact-defined predicates. We can make this easier for

the programmer by providing a single “file-system” predicate that views the entire file

system as a single relation. For example, consider a system predicate (Warren et al.

2007): data records(+FileName,+FileFormat,?RecordTerm), which, given a filename

and a file format, reads the file, parses each line/record to a Prolog term as specified by

FileFormat, and returns each such term nondeterministically in RecordTerm.

Now a Prolog programmer can use table index/2 and more easily define emp data/4

as:

:- table_index(emp_data/4,[1+2,1]).

emp_data(FileName,EmpId,Name,Addr) :-

data_records(FileName,read,emp(EmpId,Name,Addr)).

to cause the emp data/4 predicate to be loaded from the named datafile on its first call.

With this framework, the Prolog programmer has declarative access to all data in the file

system, without having to worry explicitly about how and when to load it into memory.

8 Does Subsumptive Tabling with Abstraction (STWA) Really Do

Bottom-Up Evaluation?

Subsumptive tabling with abstraction has the properties of bottom-up evaluation, de-

scribed above, of generating a full table once and then using the resulting table for subse-

quent queries. But does it actually build that table using the well-understood bottom-up,

forward-chaining, data-directed algorithm, as described in Section 2? The short answer

is yes (mostly), which we now demonstrate.

Example 7. Consider how XSB would compute the transitive closure of Example 2

under STWA. The program is:

:- table_index(p/2,[1,0]).
e(a,b). e(b,c).

D
RA
FT

Theory and Practice of Logic Programming 9

p(X,Y) :- e(X,Y). e(e,a). e(c,b).
p(X,Y) :- p(X,Z),e(Z,Y). e(d,e).

Instrumented to produce output showing the engine’s progress (see ??), we get (with
annotations added for clarity):

| ?- p(a,A).
(Iteration 1)
enter rule 1: p(X,Y)
from fact: e(a,b) infer p(a,b)
from fact: e(b,c) infer p(b,c)
from fact: e(e,a) infer p(e,a)
from fact: e(c,b) infer p(c,b)
from fact: e(d,e) infer p(d,e)
(Iteration 2)
enter rule 2 p(X,Y)
from table: p(a,b) and fact e(b,c) infer p(a,c)
from table: p(b,c) and fact e(c,b) infer p(b,b)
from table: p(e,a) and fact e(a,b) infer p(e,b)
from table: p(c,b) and fact e(b,c) infer p(c,c)
from table: p(d,e) and fact e(e,a) infer p(d,a)
from table: p(a,c) and fact e(c,b) infer p(a,b)
from table: p(b,b) and fact e(b,c) infer p(b,c)
from table: p(e,b) and fact e(b,c) infer p(e,c)
from table: p(c,c) and fact e(c,b) infer p(c,b)
from table: p(d,a) and fact e(a,b) infer p(d,b)
(Iteration 3)
from table: p(e,c) and fact e(c,b) infer p(e,b)
from table: p(d,b) and fact e(b,c) infer p(d,c)
(Iteration 4)
from table: p(d,c) and fact e(c,b) infer p(d,b)
A = b;
A = c;
no
| ?-

This log closely follows that of Example 2: the “enter rule” lines show that each rule (and

thus the predicate) is entered only once. From then on everything is returned through

the table for p(X,Y). The only differences are the repeated answers in Iteration 2, where

duplicate answers are computed but not added to the table. (Were we more detailed in

our description of Example 2, these would have appeared there, too.)

Intuitively, what happens here is that the initial call to p(a,A) is fully abstracted to

p(X,Y) and that call is made. The first rule returns all its answers to the table, which we

have labeled “Iteration 1”. Then the second rule is entered and the open call to p(X,Z)

(the first subgoal of that second rule) is made, found to have previously been made, and

suspended, to return answers from the table. The rest of the log, of iterations 2 through

4, consists of answers from the table being returned to that call, joined with facts e/2 and

the resulting answers added (if new) to the table. So computation across the bodies of

rules may be suspended to wait for new answers to show up in subsumptive tables. This,

in effect, uses XSB’s scheduling queues to get the equivalent of semi-naive bottom up

computation using pointers. This computation directly mirrors the bottom-up evaluation

of the query p(X,Y).

8.1 Multiple Machine Model of Tabled Horn Clause Evaluation

We describe a model for STWFA evaluation as a set of (virtual) machines. Given a Horn

clause program and a goal, each machine carries out the evaluation of the goal in the

D
RA
FT

10 D. S. Warren

program along a different deterministic path. Without tabling there would be a machine

corresponding to each root-to-leaf path of the SLD tree for the query. With subsumptive

tabling with full abstraction, the model is as described next.

A global table of subgoals is maintained. Associated with each subgoal is a set of

answers corresponding to proven instances of the subgoal. This table is maintained and

used by all the executing machines. It is monotonic in that goals and answers are only

added to the table and never deleted.

Computation starts with a single machine that is given the initial goal to evaluate.

When a machine encounters a goal, it looks to see if the corresponding most-general goal

is in the global table. If it is not in the table, a) it adds it (with an empty list of associated

answers), b) for each clause for that most-general goal, it forks off a duplicate of itself to

process it, and c) remembering the goal it encountered, it suspends on the table entry it

just added (to later process answers that are associated with that most-general goal). If

the most-general goal already is in the table, the machine (remembering its encountered

goal) suspends on that table entry.

When a machine encounters a failure, it simply disappears. When a machine returns

an answer to a goal (i.e., completes execution to the end of a clause for that goal), it

adds the computed goal instance to the end of the list of answers associated with that

goal in the table, and then disappears.

Whenever there is a new answer for a table entry for a goal, each machine that is

suspended on that entry, whose associated goal unifies with that new answer, forks off a

copy of itself. This new machine uses that answer to update its state and then continues

executing. The suspended machine remains suspended having marked in the table that

that answer has been returned.

This set of machines is normally simulated by a sequential emulator, which includes

a scheduler that determines which of the next possible machine operations will be per-

formed. At any point in the execution, there may be a machine ready to a) evaluate the

next goal of some clause (or return an answer if there are no more goals for that clause) or

b) fork a machine that is suspended on a table entry to process a new (unifying) answer.

For specificity and simplicity, we will assume that answers associated with a table entry

are maintained in the order they are generated, and suspended machines return them in

that same order.

Theorem 1

Assume H is a Horn program and P a predicate in H such that all predicates in H are

reachable from P in the predicate call graph of H. (I.e., the goal predicate potentially

depends on all predicates.) Assume that for every rule body in H, there is some instance

of it that is true in the least model of H. Then evaluation of predicate P in H under

Subsumptive Tabling With Full Abstraction (STWFA) is equivalent to a bottom-up

computation of the least model of H.

Proof

(Sketch) We formulate a bottom-up Horn clause evaluator and then compare it to the

multiple machine model of STWFA described above.

Consider the following formulation of a bottom-up Horn clause evaluator. For each

clause, there is a process to generate facts for instances of its head atom. There is a

D
RA
FT

Theory and Practice of Logic Programming 11

global set of proven facts that is initialized to empty. The rule processes run as follows:

Each rule process looks to find an instance of its clause such that all its body atoms

appear in the global fact set. For each such clause instance, it adds the head atom to the

global fact set, if it is not already a member. The processes continue to run to a fixpoint,

i.e., until no process can add any new fact to the global set.

By synchronizing and scheduling the rule processes so that they iteratively generate a

new set of facts to be added to the fact set by using facts only from earlier iterations,

one obtains the well-known iterative bottom-up evaluation algorithm.

However, any order of execution of the rule processes is possible, and constitutes an

evaluation method appropriately called bottom-up.

In STWFA, a machine that is generated for a rule when its most-general subgoal is

first entered corresponds to a rule process in the bottom-up algorithm. The execution

of such a machine (and its descendants), which suspend and fork off new machines to

process new answers, corresponds to the bottom-up rule process for the clause that finds

rule instances whose body atoms are in the global fact set. Finally, a machine returning

a new answer to a predicate corresponds to a rule process adding a new fact to the global

fact set.

The difference between the two algorithms is how the rule processes/machines get set

up in the first place. For the bottom-up algorithm, the rule processes are set up at the

same time during an initialization phase. With STWFA, the corresponding machines

for the rules of a particular predicate are generated at the first call to a goal for that

predicate. STWFA will generate relations only for predicates on which the goal predicate

depends, since it will not initialize rule processor machines for other predicates that are

never called.

The theorem requires that the goal depends on all predicates in the program, and that

every clause has a true instance in the least model of the program. This will guarantee

that STWFA will eventually call every predicate and so all rule-processing machines will

be initialized.

We can fix a scheduling order for STWFA, and then find an equivalent scheduling

order for bottom-up evaluation with rule processes.

9 Bottom-up Proofs for Propositional Horn Clauses in Linear Time

For a deeper understanding of XSB’s STWA and bottom-up evaluation, we consider the

well-known three-line meta-interpreter, applied to propositional programs.

Example 8. Consider the (folded variation of the) classic meta-interpreter of Prolog

programs:

interp(true).
interp((A,B)) :- interp(A), interp(B).
interp(G) :- interpAtom(G).

interpAtom(G) :- (G <- Body), interp(Body).

It is well-known that if we add <-/2 facts to define a (propositional) Horn clause

program and evaluate interp(Goal) for some Goal in Prolog, this will carry out the

top-down Prolog evaluation of Goal with respect to the program. Similarly, if we add the

declaration:

D
RA
FT

12 D. S. Warren

:- table interpAtom/1.

this will carry out top-down evaluation with (variant) tabling.

Now consider instead adding the declaration:

:- table_index(interpAtom/1,[1,0]).

and posing the query: interpAtom(Prop), with Prop a variable. Recall that this decla-

ration causes XSB to use subsumptive tabling. There is no abstraction necessary for this

query since it is already fully abstract, so all subsequent calls to interpAtom/1 will be

served from the table constructed by that initial call. The claim is that this will cause

XSB to evaluate the propositional program in (<-)/2 using a bottom-up algorithm. To

see this, consider how this query will be processed. Note that since there is only the

one call to interpAtom(), there can be no propagation of demand through (partially)

instantiated arguments. The initial goal is interpAtom(), the open call. So this initial

call, being subsumptively tabled, will add the call to the table and invoke the predicate

code to do clause resolution. Now every other call to interpAtom(P) for any particular

proposition P (here only the one in the third clause of interp/1) will not invoke the code

for interpAtom/1, but will return answers that have previously been added to the table

and will suspend waiting for a new answer to show up in the table to then be returned.

The first answers returned cannot require a recursive call to interpAtom/1, so they can

come from only the first clause of interp/1, and those will be the facts of the program

in (<-)/2. So the first answers to show up in the table for interpAtom/1 will be the

program facts, just as in bottom-up evaluation. Then those facts can be returned to the

recursive call to interpAtom/1 (in the third clause of interp/1.) So rules all of whose

body atoms are facts will have their recursive calls to interpAtom/1 satisfied (since they

will be in the interpAtom() table on which they are waiting), and will succeed return-

ing the propositions in their heads, to be added to the table for interpAtom(). And so

forth.

We can see the order that XSB generates the propositional answers to our program

above by executing the above meta-interpreter (with logging operations, as shown in ??):

p <- q,v,r,s. s <- true.
p <- q,s,t. u <- s,p,v,r.
q <- u,r. u <- r,t.
q <- q,t,v. t <- true.
r <- s.

where we get (lightly edited):

| ?- interpAtom(p).
1. Var demanded
2. p <- q,v,r,s initial clause
3. p <- q,s,t initial clause
4. q <- u,r initial clause
5. q <- q,t,v initial clause
6. r <- s initial clause
7. s <- true initial clause
8. s from true and s <- true
9. u <- s,p,v,r initial clause
10. u <- p,v,r from s and u <- s,p,v,r
11. u <- r,t initial clause
12. t <- true initial clause
13. t from true and t <- true
14. r from s and r <- s
15. u <- t from r and u <- r,t

D
RA
FT

Theory and Practice of Logic Programming 13

16. u from t and u <- t
17. q <- r from u and q <- u,r
18. q from r and q <- r
19. q <- t,v from q and q <- q,t,v
20. q <- v from t and q <- t,v
21. p <- s,t from q and p <- q,s,t
22. p <- t from s and p <- s,t
23. p from t and p <- t
24. p <- v,r,s from q and p <- q,v,r,s
25. u <- v,r from p and u <- p,v,r

Each line (from 2 on) shows a derived clause that is either an initial program clause, or

derived from a previous clause by removing the first proposition in its body if it is proved

(or is the constant ’true’). A proposition is proved if it is the head of a derived clause with

an empty body. Each step is the result of a unit resolution, whose participating clauses

are indicated on the line. Unit resolution generates a form of bottom-up propositional

reasoning for Horn clauses.

Performing iterative bottom-up evaluation of this program, we get:

Iteration 0:
s, t: program facts

Iteration 1:
r: from r <- s

Iteration 2:
u: from u <- r,t

Iteration 3:
q: from q <- u,r

Iteration 4:
p: from p <- q,s,t

And we see these propositions showing up in exactly this order in the XSB STWA log

above.

10 Performance of XSB STWA for Bottom-Up Evaluation

In this section we show XSB’s performance on bottom-up evaluation of a propositional

program using a meta-interpreter. The system used is XSB Version 3.8.0 on a Mac Pro

with an i7-4870HQ CPU running at 2.5-GHz with 16 GB of RAM and the 64-bit Windows

10 Operating System. The program we use is a “triangular” program, of the form:

p1 :- p2,p3,p4,p5.
p2 :- p3,p4,p5.
p3 :- p4,p5.
p4 :- p5.
p5.

This program is an example with 5 rules (and facts) and 15 proposition occurrences.

The meta-interpreter is:

interp_goal(true) :- !.
interp_goal((G1,G2)) :- !, interp_atom(G1), interp_atom(G2).
interp_goal(G) :- interp_atom(G).

:- table interp_atom/1.
interp_atom(G) :- interp_atoms(G).

:- table_index(interp_atoms/1,[0]).
interp_atoms(G) :- (G <- Gs), interp_goal(Gs).

D
RA
FT

14 D. S. Warren

0

2

4

6

8

10

12

0 5 10 15 20 25 30 35

T
im

e
 (

se
c
s)

N Propositions(*10^6)

Fig. 1. Times for Bottom-up Evaluation of Triangular Programs

Notice that we use both a variant table (on interp atom/1) and a subsumptive table

(on the equivalent interp atoms/1.) This is to improve efficiency, since lookup and

retrieval from a variant table in XSB is significantly faster than for a subsumptive table.2

And in these triangular programs there are many lookups of the same variant call; each

proposition is looked up once per occurrence in the body of a rule, so on average there

are approximately NumRules/2 lookups per proposition, so lookups completely dominate

the computation time.

Figure 1 shows the cpu time for bottom-up evaluation of various-sized triangular pro-

grams. N corresponds to the number (∗106) of proposition occurrences in the program,

or more precisely, the number in the largest triangular program that has N ∗106 or fewer

proposition occurrences.

Times are just for the meta-interpretation of the triangular programs; the time for

generating the (<-)/2 facts for the programs is not included. The graph is essentially

a straight line, showing the linearity of the algorithm. The propositional Horn clause

satisfaction problem is known to be linear in the number of proposition occurrences

(Dowling and Gallier 1984), and this meta-interpreter is indeed linear on all propositional

logic programs.

Triangular programs have no loops so pure top-down evaluation without tabling will

terminate, but will be very slow due to many redundant computations. For example to

evaluate without tabling the single query, p1, to a triangular program with 325 propo-

sition occurrences takes c. 4.1 seconds, and with 465 occurrences c. 126 seconds. This

2 Without the additional variant table, the evaluation is about 25 times slower, showing significant
room for improvement in XSB’s implementation of subsumptive table goal lookup. Evaluation of this
program with only variant tabling is about twice as fast; not surprising since that evaluation is also
linear, it doesn’t duplicate tables, and XSB is optimized for variant tables.

D
RA
FT

Theory and Practice of Logic Programming 15

contrasts with the 15,000,000 occurrences in the program that is computed by tabled

bottom-up evaluation in 4.1 seconds (as shown in the figure).

11 Conclusion

In this paper we have described the integration of bottom-up evaluation with top-down

evaluation in tabled Prolog by means of Subsumptive Tabling With Abstraction (STWA).

We provided a procedural interpretation for bottom-up evaluation, in the context of

Prolog programming, as efficient indexed data structure initialization. This allows many

formerly non-declarative Prolog programs that contain assert/1 to be naturally expressed

as declarative programs with no sacrifice in efficiency.

We have shown how XSB provides a natural model for evaluating Horn programs, based

on nondeterministic procedural interpretation using subsumptive tabling with abstrac-

tion, that incorporates both top-down and bottom-up computation in a single uniform

framework. And this model provides linear evaluation of all queries to proposition Horn

programs for all intermixings of demand and data driven computation.

References

Aref, M., ten Cate, B., Green, T. J., Kimelfeld, B., Olteanu, D., Pasalic, E., Veld-
huizen, T. L., and Washburn, G. 2015. Design and implementation of the logicblox system.
In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’15. ACM, New York, NY, USA, 1371–1382.

Arni, F., Ong, K., Tsur, S., Wang, H., and Zaniolo, C. 2003. The deductive database
system L++. Theory and Practice of Logic Programming 3, 1 (Jan.), 61–94.

Bry, F. 1990. Query evaluation in deductive databases: Bottom-up and top-down reconciled.
Data Knowledge Engineering 5, 289–312.

Cruz, F. and Rocha, R. 2011. Efficient instance retrieval of subgoals for subsumptive tabled
evaluation of logic programs. CoRR abs/1107.5556.

Dowling, W. F. and Gallier, J. H. 1984. Linear-time algorithms for testing the satisfiability
of propositional horn formulae. J. Log. Program. 1, 267–284.

Hermenegildo, M. V., Bueno, F., Carro, M., López-Garćıa, P., Mera, E., Morales,
J. F., and Puebla, G. 2012. An overview of Ciao and its design philosophy. TPLP 12, 1-2,
219–252.

Johnson, E. 2000. Interfacing a tabled-wam engine to a tabling subsystem supporting both
variant and subsumption checks. In 2nd Workshop on Tabulation in Parsing and Deduction.
Vigo, Spain.

Johnson, E. 2002. A system supporting both variant- and subsumption-based tabled evalua-
tions of logic programs. Ph.D. thesis, Stony Brook University, Stony Brook, NY, 11794-4400.

Johnson, E., Ramakrishnan, C. R., Ramakrishnan, I. V., and Rao, P. 1999. A space
efficient engine for subsumption-based tabled evaluation of logic programs. In Functional and
Logic Programming: 4th Fuji International Symposium, FLOPS’99 Tsukuba, Japan, November
11-13, 1999 Proceedings, A. Middeldorp and T. Sato, Eds. Springer Berlin Heidelberg, Berlin,
Heidelberg, 284–299.

Kowalski, R. 1986. Logic for Problem-solving. North-Holland Publishing Co., Amsterdam,
The Netherlands, The Netherlands.

Lloyd, J. W. 1993. Foundations of Logic Programming , 2nd ed. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

D
RA
FT

16 D. S. Warren

Ramakrishnan, I. V., Rao, P., Sagonas, K., Swift, T., and Warren, D. S. 1999. Efficient
access mechanisms for tabled logic programs. Journal of Logic Programming 38, 1 (Jan),
31–54.

Ramakrishnan, R., Srivastava, D., Sudarshan, S., and Seshadri, P. 1994. The CORAL
deductive system. VLDB J. 3, 2, 161–210.

Santos Costa, V., Rocha, R., and Damas, L. 2012. The YAP prolog system. TPLP 12, 1-2,
5–34.

Swift, T. and Warren, D. S. 2012. XSB: Extending Prolog with tabled logic pro-
gramming. The Theory and Practice of Logic Programming 12, 1–2 (January), 157–187.
(http://journals.cambridge.org/repo_A84WadE7).

Tekle, K. T. and Liu, Y. A. 2011. More efficient datalog queries: Subsumptive tabling
beats magic sets. In Proceedings of the 2011 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’11. ACM, New York, NY, USA, 661–672.

Toman, D. 1995. Top-down beats bottom-up for constraint extensions of datalog. In In Proc.
Intl. Logic Programming Symposium. MIT Press, 98–114.

Ullman, J. D. 1989. Bottom-up beats top-down for datalog. In Proceedings of the Eighth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems. PODS ’89. ACM,
New York, NY, USA, 140–149.

Warren, D. S. 1992. Memoing for logic programs. CACM 35, 3 (Mar), 93–111.

Warren, D. S., Swift, T., and Sagonas, K. F. 2007. The XSB programmer’s manual. Tech.
rep., Department of Computer Science, State University of New York at Stony Brook, Stony
Brook, New York, 11794-4400. Mar. The XSB System, current version 3.8.0, Nov 2017, is
available from xsb.sourceforge.net, and the system and manual are continually updated.

Weilemaker, J., Frehwirth, T., and de Koninck, L. 2017. SWI-Prolog
reference manual. Tech. rep. Tabling library available at http://www.swi-
prolog.org/pldoc/man?section=tabling.

Zhou, N. 2012. The language features and architecture of B-Prolog. TPLP 12, 1-2, 189–218.

