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Abstract 

Recently, various relations and criteria have been presented to establish a proper relationship 

between control systems and control Global Positioning System (GPS)-intelligent buoy system. 

Given the importance of controlling the position of buoys and the construction of intelligent 

systems, in this paper, dynamic system modeling is applied to position marine buoys through the 

improved neural network with a backstepping technique. This study aims at developing a novel 

controller based on adaptive fuzzy neural network to optimally track the dynamically positioned 

vehicle on water with unavailable velocities and unidentified control parameters. In order to model 

the network with the proposed technique, uncertainties and the unwanted disturbances are studied 

in the neural network. The presented study aims at developing a neural controlling which applies 
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the vectorial back-stepping technique to the surface ships, which have been dynamically positioned 

with undetermined disturbances and ambivalences. Moreover, the objective function is to 

minimize the output error for the neural network (NN) based on closed-loop system. The most 

important feature of the proposed model for the positioning buoys is its independence from 

comparative knowledge or information on the dynamics and the unwanted disturbances of ships. 

The numerical and obtained consequences demonstrate that the controller system can adjust the 

routes and the position of the buoys to the desired objective with relatively few position errors.  
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1. Introduction 

Buoys have extensively been employed in different fields such as transportation, military, research 

and marine explorations. The development of the design and construction of buoys has been 

simultaneous with the growth in using buoys; therefore, many studies have been are performed in 

this field. The use of buoys in various fields i.e. transportation, military, research and marine 

explorations have been expanded thus far. The design and construction of buoys have been 

developed along with the expansion in using buoys. Besides, many studies have are presented in 

this area. Based on the needs today, designing and building intelligent buoys with better control 

and maneuver appear to be necessary. Investments in this sector by different countries clearly 

prove this statement. In 1997, competitions known as Association for Unmanned Vehicle (AUV) 

were held by the Research Institute of Naval ONR to develop and upgrade the submarines. In this 

competition, engineers designed systems to participate in maneuvers in the underwater 

environment. This competition, which was held under the name of Association for Unmanned 



 

 

Vehicle Systems International, linked young engineers to institutions active in the AUV 

communication technologies. It is worth mentioning that the active power filter (APF) which has 

been regarded as a self-regulating control device has the capability to discover harmonics and, in 

order to enhance the quality of power, inject compensation current into the grid. Besides, by 

applying the new intelligent concept, we can obtained better tracking control effects by control 

algorithms [1]. Smart Dynamic Positioning (DP) has created many probable actions which were 

not previously possible. The advantages of smart dynamic positioning include easy movement in 

naval exercises, easy positioning at the depth of water, and avoiding destructive sea beds. With the 

development of electrical equipment and the exploitation of the oceans to the farther and deeper 

seas, dynamic positioning techniques are currently applied in many applications i.e. sea 

exploration, intubation and drilling [2]. In [1], in order to track an APE perfect current with a 

restricted time-control execution, a controller based on neural network and fractional order is 

developed. In [3], in order to reach a better execution of APF, a fractional-order sliding mode 

control (FSMC) scheme, in which Recurrent Neural Network (RNN) estimator was used, has been 

introduced. The suggested RNN-FSMC scheme aims at combining a FSMC method with that of 

the RNN. In order to bring more superior control, it is in the FSMC that one can find better and 

adjustable rate of freedom in comparison to the integer order of FSMC. In this regard, the RNN 

has been applied to approach the APF nonlinear pattern. It is in [4] that the design of a NN with a 

double hidden layer RNN (DHLRNN) arrangement has been presented. Besides, an adaptive 

FSMC, which has been based on the DHLRNN, has also been suggested for a category of dynamic 

systems. In order to assemble the Gaussian function central vector in the DHLRNN structure and 

the base width, the mechanisms of adaptive adjustment and the theoretical guidance have been set 

up. In this sense, the stabilization of 6 sets of parameters would be reached as it is to the best values 



 

 

and various inputs. The network’s generalization ability and accuracy would be improved by the 

novel DHLRNN which reduces the network weights number and speeds up the training speed of 

the network. Due to the fact that the input layer neurons are capable of receiving signals, they will 

be able to own associative memory and hasty method convergence. Consequently, superior 

estimate and a better dynamic ability will be achieved. In [5], a controller based on fuzzy theory 

and sliding mode approach has been suggested for a single-phase Photovoltaics grid-connected 

inverter. In this sense, it is worth mentioning that there are some uncertainties which have been 

the result of the inverter section variables and also some modifies in the climatic environment. 

Consequently, they would significantly influence the control act of the inverter. As a result, in 

order to roughly calculate the disturbances in real time, a disturbance observer would be designed. 

Besides, to modify the control system efficiency, a fuzzy system based on the upper bound 

estimation and observation error is applied. In [1–6], the ship’s dynamic positioning controller 

scheme was developed with the supposition that the motion formulations could be considered as a 

set of fixed rotating angles. In 1990, nonlinear control theories were employed to design DP 

controller where linear theories had been removed. In [7], non-linear output control based on global 

uniform asymptotic stability were provided after observations. On the other hand, environmental 

problems caused by wind, waves and sea currents are imposed on the control system and affect 

maneuvering the dynamic positioning of ships. These problems are not negligible and are less 

likely to have been focused on the above-mentioned papers. In [8], a controller based on fuzzy 

output feedback is presented for the dynamic positioning (DP) – which exists when the 

unmeasured states of ships are present. It is worth noting that this is the first report on the 

mentioned conditions. It is with the help of a vectorial back-stepping method by which we witness 

the development of a control system by means of high-gain observer. It is in [9] that an adaptive 



 

 

robust fin controller – which has been founded on a feedforward neural network – has been 

suggested in order to lower the ship roll motion. Besides, they can be referred to as the 

environmental disturbance and the modeling errors which have been made by waves. Based on the 

passive nonlinear observation in [10], an output of proportional–derivative feedback control law, 

which has been presented for the dynamic positioning of the ship, uses position measurement. The 

effects of the proposed model were stated during the tests on a model of the ship into the sea at a 

scale of 1:70 in a laboratory. When slow unknown changes of environmental problems were 

considered, a nonlinear adaptive proportional–integral–derivative (PID) controller with the overall 

stability of the uniform DP system integrator of ships is considered [11]. In [12], a controller was 

created by means of combining the dynamic surface control technique by a back-stepping one. The 

proposed model reduces the trouble of “explosion of terms” intrinsic in the back-stepping 

approach, despite the fact that its implementation is simpler. In [13], two accurate linear controllers 

and three different comparative nonlinear model by Lyapunov’s direct method were introduced to 

the dynamic positioning of underwater robots. These are not numerical simulations only. Rather, 

the laboratory results were presented, and a common position error and an initial speed were also 

adopted in order to compare the performance of the family of this controller, quantitatively. In 

recent years, a variety of intelligent methods i.e. fuzzy technique [13], NN controller [14] and 

predictive control vector machine-based model [15] have been employed for the DP of ships.  

In [16], an interval type-2 (IT2) fuzzy method was applied and the fault detection problem was 

studied for continuous-time fuzzy semi-Markov jump systems (FSMJSs). Firstly, the IT2 fuzzy 

approach is applied in order to address the parameter uncertainty and also the FSMJSs form is 

considered. In this sense, the characteristic of sensor saturation would be seriously noticed in the 

control system. Secondly, after the construction of the IT2 fuzzy FSMJSs filter, it is used in order 
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to deal by means of the fault finding problem. In [17], the bipartite control problem for the 

nonlinear multi-agent methods with input quantization over a signed digraph has been studied. 

Providing an appropriate distributed protocol can be regarded as the aim of the design in which 

the followers converge to a convex hull which contains each leader trajectory and also its opposite 

trajectory different in sign. Moreover, in order to estimate unmeasurable states, one needs to 

construct an observer. In [18], in order to design complex oscillators – i.e. free-piston Stirling 

engines (FPSEs) –a novel averaging-based Lyapunov approach was introduced. In this sense, the 

FPSE which is a class of thermal oscillators is introduced. Afterwards, the proposed technique is 

applied to investigate the limit cycle existence in the oscillator dynamic response as it is a required 

criterion for steady operation. In [19], it is the tracking control problem of an underactuated ship 

that is investigated. It is worth mentioning that since the method has no relative degree, the 

application of standard dynamic inversion is prevented. In [20], the visual DP and the visual 

feedback models for the ships have been presented a camera in the ship extracts the necessary 

information concerning the items in a 3D world. All literatures on the DP problem assume some 

unrealistic assumptions: that the variables are not changed during operation and that the WF model 

parameters are known a priori. Indeed, dynamic and under control deficits of the ships are 

changeable due to the variable operating conditions on ships and at sea. Based on the given 

explanations, the most important contributions and novelties of the presented paper are organized 

as follows: 

i) Providing learning machine based on a neural-fuzzy network: combining the fuzzy inference 

systems, based on logical rules, and the artificial neural network methods that can extract 

knowledge from numerical information results. 



 

 

ii) When the performance in GIB systems is enhanced, one witnesses its interference with other 

controllers’ performance. Consequently, in the presented study’s system in which there exists a 

broad multi-variable system, an appropriate control planning would be of fundamental 

significance. Moreover, the system experiences the best operating conditions, in case of having a 

genuine coordination between these controls. But, the position of the buoy may be lost or even 

there may occur continuing conflicts in exercising the controlling signals due to the absence of an 

appropriate coordination.  

iii) Because of the convolution of this system and also the classic controller incapability in diverse 

working conditions, the study aims at presenting the control parameters with proper adjustments 

and also an improved neural network. 

iv) In this sense, applying the intelligent control law in order to maintain the vessel’s healing at 

the set value and also the position along with having the capability to guarantee high control 

precision under certain marine environments, can be regarded as the our fundamental aim. 

Moreover, it is the control law which ought to satisfy the thrust allocation algorithm and propulsion 

system physical limitation. 

 

2. Modeling Buoys  

Figure 1 demonstrates the reference coordinate of buoys. In this figure, OX0Y0 and AXY are the 

earth-fixed and the body-fixed locations, respectively. If consider symmetrical shape for the ship, 

the corrugated movement is a combination of volatility and horizontal rotation of ship around the 

vertical axis. In this model, the climbing mode and the semi-circular vertical and rotational spin 

are neglected [1]. Thus, the DP of the ship can be formulated as follows: 

( ) ,R M D     = + = +& &                                                                                                               (1) 



 

 

where, [ , , ]x y  =  denotes the earth-fixed locations (x, y) and  is the yaw angle with vector 

type. [ , , ]u r  =  denotes the moment in surge, yaw and sway presented by means of the thruster 

system. 

 

 

Figure 1. The earth-fixed OX0Y0 and the body-fixed AXY frames of reference 

 

For 
1 2 3[ , , ]   = , the control inputs include energy wave movements τ1, oscillatory force τ2, and 

force τ3. The matrix R (rotation) can be expressed by [2]: 
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This matrix is orthogonal, that is 1( ) ( )TR R − = , and has the property |R|=1. || is a determinant of 
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where Iz, M and m are the inertia factor on the z-axis, a positive constant which used for the 

standard state of DP and the vessel mass, respectively. The interested reader can refer [1-2] to get 

more details. Foreign forces and torque, based on the wind, waves, and marine currents, are added 

in a fixed format. Furthermore, we have the following assumptions in this paper: 

1. Both position [ , , ]x y  =  and velocity [ , , ]u r  =  measurements of the positioning system of 

ships are available. 

2. A) M, D matrices are bounded and unknown. B) ( )t unknown variables are bounded. 

Moreover, 1 2 3[ , , ]T =     is an unknown positive vector so that  

| ( ) | , 1, 2,3i it i   =                                                                                                                          (5) 

Note 1. Both conditions of operating buoys and ocean are changing. Therefore, the energy 

available in the system is always limited in its nature. As a result, the dynamic parameter matrices 

of M, D of the mathematical model positioning disorders are dynamic and are considered to be 

variable and limited in the presented study. At this point, in the presented study, the awareness of 

the bounds of parameters and disorders is not necessary, while it is only the awareness of their 

existence which is required for analysis purposes [2,3]. Based on mentioned assumptions, the 

objective is to get the control input data in order to impose the location of (x, y) and   known as 

the ship orientation angle to meet to the preferred objective location of [ , , ]d d d dx y  =  while lead 

to minimum voluntary error. The aim is to ensure that the closed-loop DP model signals of all 

ships are ultimately and uniformly bounded. 

 

3. Neural Network 

Artificial NN are patterns of information processing created using the imitating biological NN like 

that of the person brain. The artificial neural network is a data processing system which has been 



 

 

inspired by human brain and has entrusted the processing of data to small, very large processors 

that work in a networked and parallel manner to solve a problem [9]. Generally, theses networks 

can be summarized as three main parts:  

1. Input layer: they are directly connected with the input data.  

2. Hidden layers: The weights among input and hidden units are determined when a hidden unit is 

enabled. 

3. Output Layers: The performance of the output unit depends on the activity of the hidden unit 

and their connecting coefficients. 

Shorting speaking, Figure 2 shows Preston systems used for the improved neural network. The 

units of each layer may distribute similar entries among themselves while they are not connected 

to each other. Generally, the units of the input layer are to transfer the input patterns to the rest of 

the network without doing any processing [9]. Information is processed by the units of hidden 

layers and output layers. Figure 3 demonstrates the architecture of the three-layer feed-forward 

neural network. See reference [9] for more information. 

 



 

 

 

Figure 2. Improved Preston Network 

 

Figure 3. An example view of three-layer feed-forward NN with one hidden layer 



 

 

 

4. Adaptive Neuro-Fuzzy Network 

Generally, fuzzy systems have been applied specifically when we are not able to define or there is 

little hope for defining crisp rules which are capable of describing the suggested process or system. 

Consequently, allowing to describe fuzzy rules, whose aim is to fit the explanation of real 

processes to a larger scale, can be regarded as the most significant advantages of fuzzy systems.  

Moreover, one can mention the interpretability as the other important advantage of fuzzy systems. 

In other words, one can point to the possibility of explaining the reason for the appearance of a 

particular value at the output of a fuzzy scheme. However, in fuzzy systems some specific points 

should be noticed in order to explain the fuzzy rules, instructions would be necessary, and also the 

process of fuzzy scheme parameters tuning needs a considerable time specifically when various 

fuzzy rules are present in the system.  

The mentioned disadvantages can be linked to the impossibility of training the fuzzy systems. Note 

that it is in the NN field that a diametrically opposite situation would be present. Neural networks 

can be trained by a user despite the fact that it is very hard to apply a priori knowledge regarding 

the given system and also it is hardly possible to explain the neural system behavior in specific 

situations. The neural networks have been combined with fuzzy systems by some researchers in 

an attempt to compensate the advantages of one system with disadvantages of the other. A hybrid 

system which is referred to as ANFIS (Adaptive-Network Based Fuzzy Inference System) has 

been suggested. The learning capabilities of ANN can be grasped by the fuzzy-logic based 

paradigm (ANFIS) in order to amplify the performance of the intelligent system applying priori 

knowledge. A fuzzy inference system (FIS) can be made by ANFIS applying a given input/output 

data set. In this sense, membership function parameters of (FIS) can be adjusted by either a single 



 

 

back-propagation method or when combined with a least squares model of method. Consequently, 

the fuzzy systems will be allowed to learn from the data they are modeling.  

The combination of NN and fuzzy logic to extract the best relationship between input and output 

data leads to increased efficiency of neural network structure training (or trained) on the data 

received from GPS signals. In other words, the integration of fuzzy logic will increase the 

flexibility and efficiency of the neural network in learning and extracting definite answers and will 

avoid complex calculations. Figure 4 indicates neuro-fuzzy modeling. In point of fact, a fuzzy 

neuron has n weighted inputs of (wi, xi, i=1, …, N) and M outputs. All inputs and weights are real 

values. In addition, the outputs are positive real values in the range of (0,1), representing a 

membership value in the fuzzy concept. In other words, the system presents the ownership for a 

sample inputs. 

 

Figure 4. Neuro-fuzzy structure 

 

Relations governing the neuron-fuzzy system take into account the social function of h with the 

net input of Z, network output of g, and activation function of f, which are all modeled as follows: 
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Layer 1: after the input data were entered into the system in the form of (y, x) matrix, then, in this 

layer which uses membership functions, the fuzzy operation is performed. The membership 

function employed in the present paper to extract fuzzy sets is expressed as follows: 
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                                                                                                                          (7) 

where, x denote the input node i, and  denote the parameter set.  

Layer 2, rule nodes: each node denotes the fire strength of the rule. 

Layer 3, rule nodes: the ith node calculates by:  
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                                                                                                                            (8) 

i
w : degree of normalized activity of the i-th rule 

Layer 4, result nodes: in the outer layer, each node is equal to:  

3
1 2( )i i i i i i if p x q x ro   += = +                                                                                                        (9) 

where,  2 , ,S p q ri i i=  is the parameter set for this node. 

Layer 5, output nodes: in this layer, each node calculates the final output value as follows (the 

number of nodes is equal to the number of outputs): 
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In the neuro-fuzzy model, simulation is done correctly when comparative parameter S1 and 

subsequent parameter S2 are estimated to be the training and testing values to minimize the model 

error. In control engineering, fuzzy neural-adaptive networks are applied to model nonlinear 

functions due to their ability to estimate functions. In this study, in the NN technique for back-

stepping, ( )TW G X  is the input of mX R . mX R , ( ) : m lG X R R→  and 1l   are the weight 

 1
, ,

i i i
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constant vector, basic function to extract the nonlinear pattern and the number of nodes in the NN, 

respectively. ( ) : Xf X R → ;
1 2[ , ,..., ]Tm XX x x x=   where X  is a continuous set in .  

According to the above-mentioned function [9]: 

( ) ( ) ( ),T
Xf X W G X X X= +                                                                                                     (11) 

where,  is the error of approximation. The basic function is selected as a vector of 

1 2( ) [ ( ), ( ),..., ( ),..., ( )]Tj lG X g X g X g X g X= . The Gaussian functions are: 
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,1 ,2 ,[ , ,..., ]Tj j j j mK k g g=  and hj refer to the center of the receptive circle and Gaussian function 

width, respectively. Generally, *W  is defined as the value of W which optimizes | ( ) |X . In point 

of fact, the perfect setting of these parameters is done in accordance to the minimized output error. 

As previously mentioned, we focus on the simulation error of positioning vessels [2]. 
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In this equation, a vector of ideal fixed weight is just a dummy value which is essential for logical 

aims and cannot be applied practically. W employed to estimate *W . If XX   then *W  and ( )X  

will be bounded, and for positive constant values of *  and MW , we have: *| || MW W   and 

*|| ( ) ||X  .    

 

4.1. Adaptive neuro-fuzzy network control modeling for ship positioning system 

This section discusses the proposed controller for DP problem (1). Let [ , , ]d d d dx y  =  be the 

ideal location and direction of ships. For the proposed design follow the below steps:  

Step 1: Define 1 dZ  = −  which is obtained as follows: 
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( )X



 

 

1 ( ) ( )dZ R R    = − =& &
                                                                                                                (14) 

where, and 1  denote the virtual control input data and the virtual control function: 

1
1 1 1( )R K z −= −                                                                                                                           (15) 

where, 1K  dictates a positive constant. We define 2 1z  = − ; therefore, (14) should be expressed 

as follows [2]: 

1 2 1 1( )Z R z K z= −&
                                                                                                                        (16) 

Consider the Lyapunov’s function candidate V1 as follows: 
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The derivative of the time of V1 expressed by equation (16) is as follows: 

11 2 1 1( ( ) )TV z R z K z= −&
                                                                                                                 (18)

 

Step 2: Use (1) and define Z2. A derivative of Z2 is defined as follows: 

1 1
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Consider the Lyapunov’s function candidate of V2 as follows: 
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According to equations (18) and (19), the derivative of the time of V2 is as follows: 
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where, parameters D, M and   will be unknown [1–6]. The proposed enhanced NN to estimate 

and adjust them by: 

*
1 2( ) ( ) sgn( )T S Z E Z D M z  + = + − &                                                                                           (22) 
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where, 
1

[ , , ]T T T TZ   = &  denote the input vector of the proposed neural network, and 

1 2 3( ) [ ( ), ( ), ( )]T T T TS Z S Z S Z S Z= is the basic function vector. 
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The constant weight matrix is ideal with * * * *
,1 ,2 ,[ ]Ti i i i l   = , (i = 1, 2, 3), and E(Z) approximation 

error vector is obtained from unknown dynamic and floating disturbances. (22) is written as 

follows: 

*
2 1 2 1 1 1 2( ) [ ( ) ( )]T T T TV Z R Z Z K z z S Z E Z  − + − −&

                                                                          (24) 

By considering ˆ , 1,2,3i i =  from approximation of *, 1,2,3i i = , the law control is designed as 

follows: 

1 2 2
ˆ( ) ( )T TR z K z S Z = − − +                                                                                                       (25) 

The updated parameters of the law control are defined as follows: 
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where, 3 3
2K R   is defined as a fixed positive matrix by taking into account the disturbances as 

follows: 
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                                                                                                                (27) 

, 0,( 1,2,3)T l l
i i iR i =    =  is defined as the positive design matrix and is fixed. In addition, 

consider the candidate 2aV  of the Lyapunov’s additional function [2]: 

1
1

2 2

1 ˆ ˆ
2

T
a i iV V  −= + 

                                                                                                                        (28)
 



 

 

*ˆ , 1,2,3i i i i  = − =%  is an approximate error of weight vector. According to equation (26), the 

derivative of Lyapunov’s function (28) is as follows: 
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                           (29) 

With a direct placement of (26) and (27)-(29), we have: 
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                                         (30) 

where, *ˆ =−%  is the estimation of the error of the weight matrix. On completion of the squares 

and inequalities, we have: 
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                                                                      (32) 

where, *E  is the revival error vector bound, and 2
,i M  is the ideal weight revival error vector 

bound of *
i  in Hypothesis 3. According to the above-mentioned formulations, the overall plan 

for system design is summarized as follows: 

1. As Hypotheses 1-3 show, robust adaptive control law followed by equations (2) and (21) for 

nonlinear DP model (1) of floating buoys have been developed in accordance to the dynamic and 

uncertain disturbances. The control law ensures that the location (x, y) and the real orientation ψ 

are converged in the desired target position and orientation [2]. By selecting appropriate design 

parameters , 1,2,3i i = , the positive design factors matrix 0, 1,2,3i i  =  and K1 and K2 with 

suitable dimensions are determined by the proposed algorithm; by solving (30), we have: 
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                                                                             (33) 

As can be observed in equation (33), 2 ( )aV t  is ultimately bounded uniformly. As a result, signals 

1 2, 1,2,3; ,i i z z =%  are ultimately bounded uniformly. Since d  is bounded, it can be concluded that 

  is also bounded. Based on the Hypothesis 3, the coefficients of *, 1,2,3i i =  are bounded and, as 

a result, ˆ , 1,2,3i i =  are also bounded. By Eqs. (33) and (28), one gets: 

1 2

2
|| || 2[ (0) ] t

a

c c
z V e − + −

                                                                                                          (34)
 

This equation shows that for each
1

2z c   , there is a fixed value of 
1

0zT  ; thus 
11|| || zz   can 

be defined for all 
1zT t . When 2c   can become small to the extent that is required through K1 

and K2 with the appropriate selection of design parameters , , 1,2,3i i i  = , the positioning error can 

increase accuracy. Therefore, the position and direaction of the ship can be converged 

[ , , ]d d d dx y  =  and can also be adequately maintained in d . Figure 5 presentes the flowchart of 

the proposed technique.  



 

 

 

Figure 5 - Flowchart of the proposed algorithm 

 

Maintaining the stability, when the system enters the saturation phase, has been regarded as the 

major challenge by means of a linear control scheme subject to input saturation [2,21]. In this 

sense, the induced L2 norm or the finite L2 gain of an operator H can be defined as 
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=   denotes the L2 norm of the vector x(t), and ||x|| is its 

Euclidean norm. In this regard, ||x||2 if 2x L  is finite. Consequently, the weighted L2 norm can 

be defined as  
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Where 0   is a constant.  Likely, if 2|| ||tx  is finite, 2x  . L can propose a definition for 

0

|| || sup | ( ) |t
t

x x t


=  Where x L If || ||x  is present. Grimm et al. [22] have presented a 

decentralized saturation function for a vector , 1un
uu R n  , but, herein, we concentrate on scalars. 

Accordingly, the signals can be bounded in the closed-loop and also the reference signal can be 

closely tracked by the plant output. The added nonlinearities, i.e. actuator saturation constraints, 

will bring about more challenges in adaptive systems. It is also worth mentioning that the ad-hoc 

approach stops the tracking error which has been induced using the actuator constraints. Yet, the 

closed-loop system’s stability would not be established. In this sense, we aimed at applying an 

indirect adaptive control structure in which we attempted to establish the closed-loop system 

stability unaccompanied by stopping the adaptation. In case of adding and subtracting Ae%  and 

( )actBsat u
)

 to the tracking error dynamics: 

( ) ( )act r acte A Bsat u Ax Ae Bsat u= + + − −
) )

% %&                                                                                     (36) 

Where Ae− %  and ( )actBsat u− % can be regarded as the terms because of the parameter errors. 

Expressing the saturated plant input ( )actsat u , the state vector X and also the tracking error 

1 2[ , ,..., ]TnE E E E= , requires Em2 to be written as: 

2 1 1 1 1
( ) ( ) ( )act r actEm A x B sat u A e x B sat u

s s s s   
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% %% %                                    (37) 

Operating on each side of above equation with ( s + ) resulted in obtaining the following: 

2 1 1 1
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s s s
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  
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Moreover, we can also combine it with Eq. (38): 

2 1 1 1ˆ ˆ( ) ( ) ( )act r r act re Ae s Em A e B sat u Ax A x Bsat u Ax
s s s


  
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In this regard, we can define a new vector ( 2e e Em= − ) which can be substituted into the Eq. (39): 

2 1 1 1ˆ ˆ ˆ( ) ( ) ( )act r r acte Ae I A Em m A e B sat u Ax A x Bsat u
s s s


  

= + + + + + + +
+ + +

& &&& % % %%%                   (40) 

ˆdet( ( ))sI A t−  roots have to be in negative half-plane, if we aim at establishing the stability of the 

homogeneous part of the Eq (40). Setting the upper projection limit for A as negative and, then, 

properly initializing the parameter estimation can satisfy A R  in the first order plants. It is worth 

mentioning that for higher order systems guaranteeing the property by projection is not trivial. 

Consequently, modifying the projection operator can allow Â  to possess eigenvalues with 

negative real parts. In this sense, this will happen only when the plant is stable. The homogeneous 

part of Eq (40) cannot be affected by the modified linear quadratic controller output u or uact , 

specifically when we have the saturation phase and the control input is sat(utac) . Moreover, it can 

be illustrated as a constant equal to uact or –uact. Although the projection can bound A and B, 

definition can bound sat(utac) and the reference signal xr. , ,Em A B L
& &% %  is guaranteed by the 

adaptive law. 

 

5. Numerical Simulation and Analysis 

In this section, numerical simulation was performed on a buoy so as to check the effects of robust 

adaptive control law based on the proposed algorithm. The information about this buoy is available 

in reference [2]. Dynamic model parameters in (1) are provided as follows: 

6 4
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0 0 3.7454 10 0 4.3933 10 4.1894 10

M D

    
   

=  =  −    
   

 −        

                         (41) 

In the simulations, two types of disturbances are considered. The first type is fixed disturbances 

[1000 ,2000 ,1500 ]N N Nm  = and the second one is the biasing force and torque vector 3b R ,



 

 

1
nb T b −= − + , ( )R b  = . The Gaussian white noise vector with zero mean, constant-time bias 

[1000,1000,1000]diag = , and [1000,1000,1000]T diag=  dictates a diagonal scale matrix with the range of 

n, which is explained in accordance with the information in [9]. Moreover, they have copied the 

disrupting environmental impacts by including secon d-order waves, ocean currents, and wind. 

With regard to the optimum position and orientation of the ship [0 ,0 ,0 ]o T
d m m = , primary modes 

are selected as (0) [10 ,10 ,10 ]o Tm m = . First, the PID control scheme is studied for the simulation. 

PID control parameters 
0

( ) ( ( ) / )
t

PID p i dK K d K d t dt     = + +% % %  are calculated as follows: 
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                                                   (42) 

Using the initial conditions and parameters of the controller PID, we have put the system under 

various stresses. Figures 6 and 7 show the simulation results. Albeit, the PID controller shows 

acceptable performance, but, its performance in the presence of time-varying disturbance is not 

acceptable. 

 



 

 

 

Figure 6- (a) Curved path of buoy in the xy plane with PID controller in constant disturbance, (b) Actual position 

curves (x, y) and ψ orientation to time with PID controller in constant disturbance, (c) Initial speed of wave motion 

curves u, initial speed of oscillation v, and horizontal rotation speed of ship around the vertical axis with respect to 

time with PID controller in constant disturbance, and (d) Motion control force curves τ1, damping control power τ2, 

and horizontal torque of ship to vertical axis τ3 with respect to time and with PID controller in constant disturbance 
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Figure 7- (a) Curved path of buoy in the XY plane with PID controller in variable disturbance, (b) Actual position 

curves (x, y) and ψ orientation to time with PID controller in variable disturbance, (c) Initial speed of wave motion 

curves u, the initial speed of oscillation v, and horizontal rotation speed of ship around the vertical axis with respect 

to time with PID controller in variable disturbance, and (d) Motion control force curves τ1, damping control power 

τ2, and horizontal torque of ship to vertical axis τ3 with respect to time and with PID controller in variable constant 

disturbance 

 

In what follows, the proposed controller based on the improved NN is studied by simulation. As it 

is determined in these simulations, the same initial states and optimal positions and orientations 

are acceptable. A number of network nodes are  in total which are equally placed with their 

centers in coordinates of
[ 2,10] [0,10] [ 0.05,0.2] [ 0.35,0.05]
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. Additionally, the width of the Gaussian 

function 1( 1,2,3; 1,2,3)ijh i j= = =  with preliminary estimates of random values 

,1 ,
ˆ ˆ ˆ(0) [ (0),..., (0)]Ti i i l  =  is selected randomly in [0,1]. The employed design matrices can be 

defined by: 
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Figure 8.a demonstrates that the proposed controller is capable of tolerating the ship which is 

converged to the desired point. Figure 8.b indicates the position and angle of deviation from the 

ship, showing that the true position of the ship (x, y) and the actual orientation ψ can approach the 

appropriate position and orientation [0 ,0 ,0 ]o
d m m =  in approximately 80 seconds. Figure 8.c 

shows the early speed, initial velocity fluctuations, and deviations from the path of ships. Figure 

93l =



 

 

8d indicates the torque and the corresponding control, and smooth control inputs are acceptable in 

this figure. As observed in Figure 8e, the average weight 
1 2 3
ˆ ˆ ˆ|| ||,|| ||,|| ||    of the error vector time 

is bounded. It can be found the proposed model of all signals of the closed-loop DP system of the 

ship is finally bounded uniformly, as it was proven in Theory 1. The obtained results of the variable 

disturbance plotted in Figure 9 show the same control functions in Figure 6 with the constant 

disturbance. The robust adaptive control scheme based on FNN target is acceptable in both 

constant and variable disturbing conditions. The strong resistance of adaptive controllers to 

disturbance is evident. 
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Figure 8- (a) Curved path of buoy in the XY plane with our controller in constant disturbance, (b) Actual position 

curves (x, y), ψ orientation to time with proposed controller in constant disturbance, (c) Initial speed of wave motion 

curves u, initial speed of oscillation v, and horizontal rotation speed of ship around the vertical axis with respect to 

time with proposed controller in constant disturbance, and (d) Motion control force curves τ1, damping control 

power τ2, horizontal torque of ship to vertical axis τ3 with respect to time and with proposed controller in constant 

disturbance, and (e) Curves of 
1 2 3
ˆ ˆ ˆ|| ||,|| ||,|| ||    with respect to time with proposed controller in constant 

disturbance 

 

Figure 9- (a) Curved path of buoy in the XY plane with our controller in variable disturbance, (b) Actual position 

curves (x, y), ψ orientation to time with proposed controller in variable disturbance, (c) Initial speed of wave motion 

curves u, initial speed of oscillation v, and horizontal rotation speed of ship around the vertical axis with respect to 

time with proposed controller in variable disturbance, (d) Motion control force curves τ1, damping control power τ2, 

and horizontal torque of ship to the vertical axis τ3 with respect to time and with proposed controller variable 
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constant disturbance, and (e) Curves of 
1 2 3
ˆ ˆ ˆ|| ||,|| ||,|| ||    with respect to time with proposed controller in variable 

disturbance 

 

To compare the proposed controller with other existing controllers, Figure 10 presents the 

simulation results of our model with only the NN.  

 

Figure 10- (a) Curved path of buoy in the XY plane with NN controller in constant disturbance, (b) Actual position 

curves (x, y), ψ orientation to time with NN controller in constant disturbance, (c) Initial speed of wave motion 

curves u, initial speed of oscillation v, and horizontal rotation speed of ship around the vertical axis with respect to 

time with NN controller in constant disturbance, and (d) Motion control force curves τ1, damping control power τ2, 

horizontal torque of ship to vertical axis τ3 with respect to time and with NN controller in constant disturbance, and 

(e) Curves of 1 2 3
ˆ ˆ ˆ|| ||,|| ||,|| ||    with respect to time with NN controller in constant disturbance 
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Despite the fact that NN controller performances are not good under time-variant conditions, it is 

in Figure 10 that we witness a satisfactory performance of NN scheme under constant disturbances.  

 

6-Conclusion 

Governments and industrial organizations around the world are cooperating to increase the 

efficiency standards for electronic chart display and information system employed for positioning 

electronic devices. This system has made a breakthrough in maritime navigation and plays a 

leading role in replacing paper and paper maps. Positioning systems have a crucial role in the 

management of the existing equipment at ports and docks. In this sense, excellent maneuverability, 

ease of changing the position, and positioning independency to water depth and its avoidance of 

destroying the seabed can be regarded as the most significant advantages of the dynamic 

positioning. The technique of dynamic positioning has been utilized in a variety of ways, i.e. 

offshore exploration, drilling, pipe-laying etc., and researchers have consequently paid 

considerable attentions to it regarding the fact that there has been a continuous growth in the 

development and employment of oceans. In theory, with the help of Lyapunov’s function, it was 

proven that adaptive control strategy developed by our proposed algorithm can help buoys reach 

the proposed target position and warranty the uniformly bounded signals of the closed-loop model. 

This study indicated that the control model requires no initial knowledge about the dynamics and 

disturbances of buoys and it is done through the basic pivot function networks which are 

considered as approximated function in back-stepping controller design. Thus, the dynamic 

positioning of buoys in different environmental conditions, that are more practical, can be 



 

 

guaranteed. The presented approach’s effectiveness and robustness have been validated by the 

simulation comparisons and results on the dynamic positioning of a supply ship. 
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