
EasyChair Preprint
№ 9606

ALASCA: Reasoning in Quantified Linear
Arithmetic (Extended Version)

Konstantin Korovin, Laura Kovacs, Giles Reger,
Johannes Schoisswohl and Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 27, 2023

ALASCA: Reasoning in Quantified Linear

Arithmetic (Extended Version)

Konstantin Korovin3 , Laura Kovács1 , Giles Reger3, Johannes
Schoisswohl1 , and Andrei Voronkov2,3

1 TU Wien
2 EasyChair

3 University of Manchester

Abstract. Automated reasoning is routinely used in the rigorous con-
struction and analysis of complex systems. Among different theories,
arithmetic stands out as one of the most frequently used and at the
same time one of the most challenging in the presence of quantifiers and
uninterpreted function symbols. First-order theorem provers perform very
well on quantified problems due to the efficient superposition calculus,
but support for arithmetic reasoning is limited to heuristic axioms. In
this paper, we introduce the Alasca calculus that lifts superposition
reasoning to the linear arithmetic domain. We show that Alasca is
both sound and complete with respect to an axiomatisation of linear
arithmetic. We implemented and evaluated Alasca using the Vampire

theorem prover, solving many more challenging problems compared to
state-of-the-art reasoners.
This paper is an extended version of the paper “ALASCA: Reasoning in

Quantified Linear Arithmetic” published at TACAS 2023, written by the

same set of the authors. In this extended version we provide the formal

proofs of the results from our TACAS 2023 paper.

Keywords: Automated Reasoning · Linear Arithmetic · SMT · Quan-
tified First-Order Logic · Theorem Proving

1 Introduction

Automated reasoning is undergoing a rapid development thanks to its successful
use, for example, in mathematical theory formalisation [15], formal verification [16]
and web security [13]. The use of automated reasoning in these areas is mostly
driven by the application of SMT solving for quantifier-free formulas [6, 12, 28].
However, there exist many use case scenarios, such as expressing arithmetic
operations over memory allocation and financial transactions [1, 18, 20, 31], which
require complex first-order quantification. SMT solvers handle quantifiers using
heuristic instantiation in domain-specific model construction [10, 27, 29, 35].
While being incomplete in most cases, instantiation requires instances to be
produced to perform reasoning, which can lead to an explosion in work required for
quantifier-heavy problems. What is rather needed to address the above use cases

http://orcid.org/0000-0002-0740-621X
http://orcid.org/0000-0002-8299-2714
http://orcid.org/0000-0001-5550-196X

2 Schoisswohl et al.

is a reasoning approach able to handle both theories and complex applications
of quantifiers. Our work tackles this challenge and designs a practical, low-cost

methodology for proving first-order quantified linear arithmetic properties.
The problem of combining quantifiers with theories, and especially with

arithmetic, is recognised as a major challenge in both SMT and first-order proving
communities. In this paper we focus on first-order, i.e. quantified, reasoning

with linear arithmetic and uninterpreted functions. In [25], it is shown that the
validity problem for first-order reasoning with linear arithmetic and uninterpreted
functions is Π1

1 -complete even when quantifiers are restricted to non-theory sorts.
Therefore, there is no sound and complete calculus for this logic.

Quantified Reasoning in Linear Arithmetic – Related Works. In practice,
there are two classes of methods of reasoning in first-order theory reasoning,
and in particular with linear real arithmetic. SMT solvers use instance-based

methods, where they repeatedly generate ground, that is quantifier-free, instances
of quantified formulas and use decision procedures to check satisfiability of the
resulting set of ground formulas [10, 27, 35]. Superposition-based first-order
theorem provers use saturation algorithms [14, 26, 36]. In essense, they start
with an initial set of clauses obtained by preprocessing the input formulas (initial
search space) and repeatedly apply inference rules (such as superposition) to
clauses in the search space, adding their (generally, non-ground) consequences to
the search space. These two classes of methods are very different in nature and
complement each other.

The superposition calculus [4, 30] is a refutationally complete calculus for first-
order logic with equality that is used by modern first-order provers, for example,
Vampire [26], E [36], iProver [17] and Zipperposition [14]. There have been a
number of practical extensions to this calculus for reasoning in first-order theories,
in particular for linear arithmetic [9, 11, 23]. Superposition theorem provers have
become efficient and powerful on theory reasoning after the introduction of the
AVATAR architecture [32, 37], which allows generated ground clauses to be
passed to SMT solvers. Yet, superposition theorem provers have a major source
of inefficiency. To work with theories, one has to add theory axioms, for example
the transitivity of inequality ∀x∀y∀z(x ≤ y ∧ y ≤ z → x ≤ z). In clausal form,
this formula becomes ¬x ≤ y ∨ ¬y ≤ z ∨ x ≤ z where ¬x ≤ y can be resolved
against every clause in which an inequality literal s ≤ t is selected. This, with
other prolific theory axioms, results in a very significant growth of the search
space. Note that SMT solvers do not use and do not need such theory axioms.

A natural solution is to try to eliminate some theory axioms, but this is
notoriously difficult both in theory and in practice. In [25], the Lasca calculus
was proposed, which replaced several theory axioms of linear arithmetic, including
transitivity of inequality, by a new inference rule inspired by Fourier-Motzkin
elimination and some additional rules. Lasca was shown to be complete for the
ground case. But, after 15 years, Lasca is still not implemented, due to its
complexity and lack of clear treatment for the non-ground case. As we argue
in Sect. 5, lifting Lasca to the non-ground setting is nearly impossible as a
non-ground extension of the underlining ordering is missing in [25].

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 3

Lifting Lasca to Alasca– Our contributions. In this paper we introduce a
new non-ground version of Lasca, which we call Abstracting Lasca (Alasca).
Our Alasca calculus comes with new abstraction mechanisms (Sect. 4), inference
rules and orderings (Sect. 5), which all together are proved to yield a sound
and complete approach with respect to a natural partial axiomatisation of linear
arithmetic (Theorem 5). In a nutshell, we make Alasca both work and scale by
introducing (i) a novel variable elimination rule within saturation-based proof
search (Fig. 6); (ii) an analogue of unification with abstraction [33] needed for
non-ground reasoning (Sect. 4); and (iii) a new non-ground ordering and powerful
background theory for unification, which is not restricted to arithmetic but can
be used with arbitrary theories (Sect. 5). As a result, Alasca improves [25] by
ground modifications and lifting of Lasca in a finitary way, and complements [3,
39] with variable elimination rules that are competible with standard saturation
algorithms. We also demonstrate the practicality and efficiency of Alasca

(Sect. 6). To this end, we implemented Alasca in Vampire and show that it
solves overall more problems than existing theorem provers.

2 Motivating Example

Consider the following mathematical property:

∀x, y.
(
f(2x, y) > 2x + y ∨ f(x + 1, y) > x + 2y

)
→ ∀x.∃y.f(2, y) > x (1)

where f is an uninterpreted function. While property (1) holds, deriving its
validity is hard for state-of-the-art reasoners: only veriT [2] can solve it. Despite
its seeming simplicity, this problem requires non-trivial handling of quantifiers
and arithmetic. Namely, one would need to unify (modulo theory) the terms
2x and x + 1 (which can be done by instantiating x with 1) and then derive
f(2, y) > 2 + y ∨ f(2, y) > 1 + 2y. Further, one also needs to prove that f(2, y) is
always greater than the minimum of 2 + y and 1 + 2y, for arbitrary y.

Vampire with Alasca finds a remarkably short proof as shown in Fig. 1. To
prove (1) its negation is shown unsatisfiable by first negating and translating into
clausal form (by using skolemization and normalisation, which shifts arithmetic
terms to be compared to 0), as listed in lines 1–4. Next a lower bound for
f(2x, y) is established: In line 5, using our new inequality factoring (IF) rule
with unification with abstraction (see Fig. 5), the constraint 2x ̸≈ x + 1 is
introduced, and establishing thereby that if 2x ≈ 1 + x and y + 2x ≤ 2y + x,
then f(2x, y) > 2x + y. After further normalisation, the inequalities sk ≥ f(2, y)
and f(2x, y) > 2x + y are used to derive sk > 2x + y in line 7, using the
Fourier-Motzkin Elimination rule (FM), while still keeping track of the constraint
2x ̸≈ x + 1. By applying the Variable Elimination rule (VE) twice, the empty
clause □ is derived in line 10, showing the unsatisfiability of the negation of (1).

The key steps in the proof (and the reason why it was found in a short time)
are: (1) the use of the theory rules (FM), and (IF); (2) the use of the new variable
elimination rule (VE), and finally, a consistent use of unification with abstraction.
These rules give a significant reduction compared to the number of steps required

4 Schoisswohl et al.

1. f(2x, y) > 2x + y ∨ f(x + 1, y) > x + 2y Hypothesis
2. ¬f(2, y) > sk Skolemized, Neg. Conj.
3. f(2x, y)− 2x− y > 0 ∨ f(x + 1, y)− x− 2y > 0 Normalisation 1
4. −f(2, y) + sk ≥ 0 Normalisation 2
5. f(2x, y)− 2x− y > 0 ∨ y + 2x− 2y − x > 0 ∨ 2x ̸≈ x + 1 (IF) 3
6. f(2x, y)− 2x− y > 0 ∨ x− y > 0 ∨ 0 ̸≈ x− 1 Normalisation 5
7. −2x− y + sk > 0 ∨ x− y > 0 ∨ 0 ̸≈ x− 1 ∨ 2x ̸≈ 2 (FM) 6,4
8. −2x− y + sk > 0 ∨ x− y > 0 ∨ 0 ̸≈ x− 1 Normalisation 7
9. 0 ̸≈ x− 1 (VE) 8
10. □ (VE) 9

Fig. 1. A refutational proof using the calculus introduced in this paper. Variables x, y
are implicitly universally quantified, and sk is an uninterpreted constant.

using theory axioms. In particular, not using (FM) would require the use of
transitivity and generation of several intermediate clauses. As well as shortening
the proof, we eliminate the fatal impact on proof search from generating a large
number of irrellevant formulas from theory axioms.

Indeed, such short proofs are also found quickly. Similar our previous example,
∀x, y.

(
f(g(x)+g(a), y) > 2x+y∨f(2g(x), y) > x+2y

)
→ ∃k.∀x∃z.f(2g(k), z) > x

has a short proof of 7 steps, excluding CNF transformation and normalisation
steps, found by Vampire with Alasca. This proof was found in almost no time
(only 37 clauses were generated) but cannot be solved by any other solver. This
shows the power of the calculus.

3 Background and Notation

Multi-Sorted First-Order Logic. We assume familiarity with standard first-order
logic with equality, with all standard boolean connectives and quantifiers in the
language. We consider a multi-sorted first-order language, with sorts τQ, τ1, . . . , τn.
The sort τQ is the sort of rationals, whereas τ1, . . . , τn are uninterpreted sorts.
We write ≈τ for the equality predicate of τ. We denote the set of all terms as
T, variables as V, and literals as L. Throughout this paper, we denote terms by
s, t, u, variables by x, y, z, function symbols by f, g, h, all possibly with indices.
Given a term t such that t is f(. . .), we write sym(t) for f , referring that f is the
top level symbol of t. We write t : τ to denote that t is a term of sort τ. A term,
or literal is called ground, when it does not contain any variables. We refer to
the sets of all ground terms, and literals as Tθ, and Lθ respectively.

We denote predicates by P, Q, literals by L, clauses by C, D, formulas by
F, G, and sets of formulas (axioms) by E , possibly with indices. We write F |= G
to denote that whenever F holds in a model, then G does as well. We call a
function (similarly, for predicates) f uninterpreted wrt some set of equations E
if whenever E |= f(s1 . . . sn) ≈ f(t1 . . . tn), then E |= s1 ≈ t1 ∧ . . . ∧ sn ≈ tn. A
function f is interpreted wrt E if it is not uninterpreted.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 5

Rational Sort. We assume the signature contains a countable set of unary functions
k : τQ 7→ τQ for every k ∈ Q and refer to k as numeral multiplications. In
addition, the signature is assumed to also contain a constant 1 : τQ, a function
+ : τQ ×τQ 7→ τQ, and predicate symbols >, ≥: P(τQ ×τQ), as well as an arbitrary
number of other function symbols. For every numeral multiplication k ∈ Q \ {1},
we simply write k to denote the term k(1) obtained by the numeral multiplication
k applied to 1; in these cases, we refer to k as numerals. Throughout this paper,
we use j, k, l to denote numerals, or numeral multiplications, possibly with indices.

We write −t to denote the term −1(t). If j, k are two numeral multiplications,
by (jk) and (j + k) we denote the numeral multiplication that corresponds to
the result of multiplying and adding the rationals/numerals j and k, respectively.
For applications of numeral multiplications j(t) we may omit the parenthesis
and write jt instead. If we write +k, or −k for some numeral k, we assume k
itself is positive. We write ± (and ∓) to denote either of the symbols + or −
(and respectively − or +). For q ∈ Q we define sign(q) to be 1 if q > 0, −1 if
q < 0, and 0 otherwise. We call +, ≥, >, 1, and the numeral multiplications the
Q symbols. Finally, an atomic term is either a logical variable, or the term 1, or
a term whose top level function symbol is not a Q symbol.

A Q-model interprets the sort τQ as Q, and all Q symbols as their correspond-
ing functions/predicates on Q. We write Q |= C iff for every Q-model M , M |= C
holds. If E is a set of formulas, we call a model M a E-model if M |= E .

Term Orderings. Let ≡ be some equivalence relation. Then we say that s is a
subterm of t wrt ≡ (s ⊴≡ t) if s ≡ t, or t ≡ f(t1 . . . tn) and s ⊴ ti for some i. We
say that s is a strict subterm of t wrt ≡ (s ◁≡ t) if s ⊴≡ t and s̸≡t. We say s is
a subterm of t (s ⊴ t) if s ⊴= t, and s is a strict subterm of t (s ◁ t) if s ◁= t. We
write u[s] to denote that s is a subterm of u. That is, s ⊴ u; similar notation
will also be used for literals L[s] and clauses C[s]. We denote by u[s 7→ t] the
term resulting from replacing all subterms s of u by t.

Multisets (of term, literals) are denoted with {̇ . . . }̇. For a multiset S and
natural number n ∈ N, we define 0 ∗ S = ∅, and n ∗ S = (n − 1 ∗ S) ∪ S for n > 0.

Let ≺ be a relation and ≡ be an equivalence relation. By ≺mul
≡ we denote

the multiset extension of ≺, defined as the smallest relation satisfying M ∪
{̇s1, . . . , sn}̇ ≺mul

≡ N ∪ {̇t}̇, where M ≡ N , n ≥ 0, and si ≺ t for 1 ≤ i ≤ n.
For n, m ∈ N, by ≺wmul

≡ we denote the weighted multiset extension, defined by
⟨ 1

n , S⟩ ≺wmul
≡ ⟨ 1

m , T ⟩ iff m ∗ S ≺mul
≡ n ∗ T . We omit the equivalence relation ≡ if

it is clear in the context.
Let ≺ be a relation and ≡ be an equivalence relation. By ≺lex

≡ we denote the
lexicographic extension of ≺, written as ⟨s1 . . . sn⟩ ≺lex

≡ ⟨t1 . . . tn⟩, iff there is an i
such that si ≺ ti and s1 ≡ t1 . . . si−1 ≡ ti−1.

Let s, t, ti be terms, θ, θ′ be ground substitutions and E be a set of axioms. We
write s ≡E t for E |= s ≈ t and θ ≡E θ′ iff for all variables x we have xθ ≡E xθ′.
We say that s is a E-subterm of t (s ⊴E t) if s ⊴≡E t, and s is a strict E-subterm
of t (s ◁E t) if s ◁≡E t.

6 Schoisswohl et al.

4 Theoretical Foundation for Unification with Abstraction

Our motivating example from Sect. 2 showcases that first-order arithmetic
reasoning requires (i) establishing syntactic difference among terms (e.g. 2x and
x + 1), while (ii) deriving they have instances that are semantically equal in
models of a background theory E (e.g. the theory Q).

A naive approach addressing (i)-(ii) would be to use an axiomatisation of the
background theory E , and use this axiomatisation for proof search in uninterpreted
first-order logic. Such an approach can however be very costly. For example,
even a relatively simple background theory AC axiomatizing commutativity and
associativity of ≈, that is AC = {x + y ≈ y + x, x + (y + z) ≈ (x + y) + z},
would make a superposition-based theorem prover derive a vast amount of
useless/redundant formulas as equational tautologies. An approach to circumvent
such inefficient handling of equality reasoning is to use unification modulo AC,
or in general unification modulo E , as already advocated in [22, 33, 39]. In this
section we describe the adjustments we made towards unification modulo E ,
allowing us to introduce unification with abstraction (Sect. 4.1). We also show
under which condition our method can be used to turn a complete superposition
calculus using unification modulo E into a complete superposition calculus using
unification with abstraction. Concretely, we show how this can be used for the
specific theory of arithmetic Aeq in the calculus Alasca (Sect. 4.2).

4.1 Unification with Abstraction – UWA

In a nutshell, unification modulo E finds substitiutions σ that make two terms
s, t equal in the background theory, i.e. E |= sσ ≈ tσ. While unification modulo E
removes the need for axiomatisation of E during superposition reasoning, it comes
with some inefficiencies. Most importantly, in contrast to syntactic unification,
there is no unique most general unifier mgu(s, t) when unifying modulo E but
only minimal complete sets of unifiers mcuE(s, t), which can be very large; for
example, unification modulo AC is doubly exponential in general [22].

Bypassing the need for unification modulo E , fully abstracted clauses are
used in [39], without the need for axiomatisation of the theory E and without
compromising completeness of the underlining superposition-based calculus. Our
work extends ideas from [39] and adjusts unification with abstraction (uwa)
from [33], allowing us to prove completeness of a calculus using uwa (Theorem 3).

Example 1. Let us first consider the example of factoring the clause p(2x)∨p(x+1),
a simplified version of the unification step performed in line 5 in Fig. 1. That
is, unifying the literals p(2x) and p(x + 1), in order to remove duplicate literals.
Within the setting of [39], these literals would only exist in their fully abstracted
form, which can be obtained by replacing every subterm t : τQ that is not a
variable by a fresh variable x, and adding the constraint x ̸≈ t to the corresponding
clause. Hence, the clause p(2x) ∨ p(x + 1) is transformed to p(y) ∨ p(z) ∨ y ̸≈
2x ∨ z ̸≈ x + 1 in [39]. Unification then becomes trivial: we would derive the

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 7

1 fn uwa(s,t)

2 eqs← {s ≈ t}; σ ← ∅; C ← ∅;
3 while eqs ̸= ∅

; // (I1) E |=
∧

eqs→ (s ≈ t)σ ∨
∨
C

; // (I2) (s′ ≈ t′ ∈ eqs ∥ s′ ̸≈ t′ ∈ C) =⇒ s′ ⊴ sσ & t′ ⊴ tσ
; // (I3) (s′ ≈ t′ ∈ eqs ∥ s′ ̸≈ t′ ∈ C) =⇒ E |= s′ ̸≈ t′ → sσ ̸≈ tσ
; // (I4) ∀θ.(E |= sθ ≈ tθ =⇒ ∃ρ.θ ≡E σρ)
; // (I5) xσ ̸= x =⇒ x ̸◁ eqs

4 ṡ ≈ ṫ← eqs.pop();
5 if ṡ ≈ ṫ ∈ {x ≈ u, u ≈ x} for some x ∈ V, x ̸◁ u
6 σ ← σ{x 7→ u};
7 eqs← eqs{x 7→ u};
8 C ← C{x 7→ u};
9 else if canAbstract(ṡ, ṫ)

10 C.push(ṡ ̸≈ ṫ);
11 else if ṡ = f(s1 . . . sn), ṫ = f(t1 . . . tn)
12 eqs.push({s1 ≈ t1 . . . sn ≈ tn})
13 else
14 return ⊥;
15 return ⟨σ, C⟩;

Algorithm 1: Computing an abstracting unifier uwa.

clause p(y) ∨ y ̸≈ 2x ∨ y ̸≈ x + 1 by factoring, from which p(2x) ∨ 2x ̸≈ x + 1 is
inferred using equality factoring and resolution.

Within unification with abstraction, we aim at cutting out intermediate steps
of applying abstractions, equality resolution and factoring. As a result, we skip
unnecessary consequences of intermediate clauses, and derive the conclusion
of Fig. 2 directly from its first, top-most premise. To this end, we introduce
constraints only for those s, t : τQ on which unification fails. We thus gain the
advantage that clauses are not present in the search space in their abstracted
forms, increasing efficiency in proof search. This is so because abstracted forms
of clauses come with a vast number of fresh variables, which makes literals
incomparable wrt to simplification orderings within superposition. Further, our
unification with abstraction approach is parametrized by a predicate canAbstract
to control the application of abstraction, as listed in Algorithm 1. This is yet
another significant difference compared to fully abstracted clauses, as in the
latter, abstraction is performed for every subterm t : τQ without considering the
terms with which t might be unified later.

Full Abstraction. As a first step we will have a look at how completeness using
full abstraction instead of unification modulo E is achieved in [39].

Definition 1 (Full Abstraction). We say a clause C is fully abstracted iff

for every term f(t1 . . . tn) ◁E C, then either f is interpreted, or every ti of sort

τQ is a variable.

8 Schoisswohl et al.

p(2x) ∨ p(x + 1)
p(y) ∨ p(z) ∨ y ̸≈ 2x ∨ z ̸≈ x + 1

p(y) ∨ y ̸≈ 2x ∨ y ̸≈ x + 1
p(2x) ∨ 2x ̸≈ x + 1

Fig. 2. Example of using unification with full abstraction. Unification with abstraction
skips the intermediate steps and derives the last clause directly from the first one.

Note that every clause can be transformed into an equivalent fully abstracted
clause by successively rewriting C[t] ⇒ C[x] ∨ x ̸≈ t for every t that violates full
abstraction. We call this transformation abstracting a clause.

The calculus presented in [39], has two key properties: Firstly every rule that
is applied to fully abstracted clauses, will yield fully abstracted clauses. Secondly
every unification preformed in the calculus, does only involve terms without
interpreted symbols when if the premises are fully abstracted clauses. Therefore
unification modulo E and syntactic unification are equivalent for these clauses,
hence there is no need for a specialized unification algorithm.

Practically speaking this means usual highly efficient term indexing structures
can be used, and that there is a single unique most general unifier, instead of
a potentially very big set of them. Fully abstracted clauses have a downside
too however. That is, they contain a large number of variables, which tends to
make literals incomparable, and makes a big number of rule applications possible.
Further abstracted clauses tend to have more literals than the non-abstracted
ones, which again degrades performance, as more rule applications are possible.

Unification with abstraction. In order to overcome these shortcomings of full
abstraction in [33] Unification with Abstraction was introduced. The idea of
unification with abstraction is to perform abstraction only on demand.

We illustrate this with Fig. 2. The example shows how the initial clause is first
being fully abstracted (1), and then processed using the equality factoring rule (2),
and afterwards the two literals introduced by abstraction being factored into one
(3). Unification with abstraction compresses this sort of derivation introducing
the constraint a + b ̸≈ b + a, during unification of f(a + b), and f(b + a), when
applying equality factoring to the corresponding literal.

In order to do this, in contrast usual unification modulo E , unification with
abstraction, does not compute complete sets of unifiers, but a so-called abstract-
ing unifier; a pair ⟨σ, C⟩ of a substitution σ, and a set of constraint literals C.
In contrast to the work [33], our definition of an abstracting unifier will inde-
pendent of the algorithm that computes it, which makes it possible to formalize
properties of abstracting unifiers and allow for other, more general versions of
unification with abstraction in the future. Nevertheless we provide an algorithm
(Algorithm 1) that is a slight modification of the one in [33], which we use for our
experiments (Sect. 6). This concrete implementation of an abstracting unifier will
help us to illustrate properties we want from abstracting unifiers. The algorithm

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 9

performs usual syntactic unification on two terms s, t, but whenever the predicate
canAbstract holds for two subterms s′, t′, a constraint s′ ̸≈ t′ is introduced instead
of continuing unification on these terms. The intuition behind the canAbstract
predicate is that it returns true whenever there is a substitution that can make
the two terms equal in the background theory.

Definition 2 (Abstracting Unifier). Let σ be a substitution and C a set of

literals. A partial function uwa that maps two terms s, t either to ⊥ or to a pair

⟨σ, C⟩ = uwa(s, t) is called an abstracting unifier.

To ensure that unification with abstraction can replace unification modulo E ,
we impose the following additional properties over the abstract unifier uwa(s, t).

Definition 3 (uwa Properties). Let σ be a substitution and C a set of literals.

Consider s, t ∈ T be such that uwa(s, t) = ⟨σ, C⟩ and let θ be an arbitrary ground

substituion. We say uwa is

– E-sound iff E |= (s ≈ t)σ ∨ C;

– E-general iff ∀µ ∈ mcuE(s, t).∃ρ.σρ ≡E µ;

– E-minimal iff E |= (s ≈ t)σθ =⇒ E ⊨ (¬C)θ;

– subterm-founded with respect to the clause ordering ≺, iff for every unin-

terpreted function or predicate f , every literal L[◦], it holds that E |= (s ≈
t)θ =⇒ Cθ ≺ L[f(s)]θ or Cθ ≺ L[f(t)]θ.

Further, uwa is E-complete if, for all s, t ∈ T with uwa(s, t) = ⊥, we have

mcuE(s, t) = ∅.

Definition 3 is necessary to lift inferences using unification with abstraction.
We thereby want to assure that, whenever C does not hold, then s and t are
equal; hence abstracting unifiers uwa(x, y) = ⟨∅, x + y ̸≈ y + x⟩ would be unsound.
The E-generality property enforces that substitutions introduced by uwa are
general enough in order to still be turned into a complete set of unifiers. As such,
E-generality is needed to rule out cases like uwa(x + y, 2) = ⟨{x 7→ 0, y 7→ 2}, ∅⟩,
which would not be able to capture, for example, the substitution {x 7→ 1, y 7→ 1}.
We note that we use uwa to extend counterexample-reducing inference systems
(see Definition 5), allowing inductive completeness proofs. As these inference
systems need to derive conclusions that are smaller than the premises, we need
the subterm-foundedness property to make sure to only introduce constraints
that are smaller than the premises as well. If we have a look at the previous
properties, we see that all of them are fulfilled if uwa(s, t) = ⊥. Therefore we
need to make sure that uwa only returns ⊥ when s and t are not unifiable modulo
E ; this is captured by E-completeness.

In addition to properties of abstract unifiers uwa(s, t), we also impose condi-
tions over the canAbstract relation that parametrizes uwa(s, t). As Algorithm 1
only introduces equality constraints for subterm pairs that should be unified, a
resulting abstracting unifier uwa(s, t) is sound. Further, under the assumption
that the clause ordering is defined as in standard superposition (e.g. using multiset
extensions of a simplification ordering that fulfills the subterm property), the

10 Schoisswohl et al.

abstracting unifier uwa(s, t) is also subterm-founded. However, to ensure that
uwa(s, t) is also minimal, interpreted functions should not be treated as uninter-
preted ones; hence the canAbstract relation needs to always trigger abstraction
on interpreted functions. Finally, we require that canAbstract does not skip terms
which are potentially equal modulo E , in order to guarantee completeness. Hence,
we define the following properties for canAbstract.

Definition 4 (canAbstract Properties). Let s, t ∈ T. The canAbstract relation

– captures E, iff for all s, t, where sym(s), or sym(t) is an interpreted function,

it holds that ∃ρ.E ⊨ (s ≈ t)ρ =⇒ canAbstract(s, t);
– guards interpreted functions, iff for all s, t, where sym(s) = sym(t) is an

interpreted function, canAbstract(s, t) holds.

We will now show that the abstracting unifier computed by Algorithm 1 fulfils
all the desired properties, if the canAbstract captures E , and guards uninterpreted
functions. In order to show this we will need some invariants of the loop in the
algorithm. The structure of the full proof is visualized in Fig. 3.

Algorithm

(I1)

(I2)

(I3)

(I4)

(I5)

canAbstract

guards

captures

uwa

sound

subterm-founded

minimal

general

complete

Fig. 3. Implication structure between properties of canAbstract, and the abstracting
unifier computed by Algorithm 1.

Lemma 1. Consider the following invariants.

(I1) E |=
∧

eqs → (s ≈ t)σ ∨
∨

C
(I2) (s′ ≈ t′ ∈ eqs ∥ s′ ̸≈ t′ ∈ C) =⇒ s′ ⊴ sσ & t′ ⊴ tσ
(I3) (s′ ≈ t′ ∈ eqs ∥ s′ ̸≈ t′ ∈ C) =⇒ E |= s′ ̸≈ t′ → sσ ̸≈ tσ
(I4) ∀θ.(E |= sθ ≈ tθ =⇒ ∃ρ.θ ≡E σρ)

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 11

(I5) xσ ̸= x =⇒ x ̸◁ eqs

The loop in Algorithm 1 fulfils the invariants (I5)-(I2), and if canAbstract guards

interpreted functions it also fulfils (I3), (I4).

Proof. First of all, obviously all of the invariants hold when we enter the loop.
We’ll show that they hold after each loop iteration considering invariant by
invariant.

(I1) Does not hold anymore after line 4. After the first branch, it holds again,
since

E |=
∧

eqs ∧ x ≈ u → (s ≈ t)σ ∨
∨

C

=⇒ E |= (
∧

eqs ∧ x ≈ u → (s ≈ t)σ ∨
∨

C){x 7→ u}

⇐⇒ E |=
∧

eqs → (s ≈ t)σ{x 7→ u} ∨
∨

C{x 7→ u}

which is exactly (I1) after that branch. After the second branch (I1) obviously
holds again since obviously

E |=
∧

eqs ∧ ṡ ≈ ṫ → (s ≈ t)σ ∨
∨

C

=⇒ E |=
∧

eqs → (s ≈ t)σ ∨
∨

C ∨ ṡ ̸≈ ṫ

After the third branch it holds as |= s1 ≈ t1 . . . sn ≈ tn → f(s1 . . . sn) ≈
f(t1 . . . tn).

(I2) Still holds after line 4. In the first branch it is broken by the modification of
σ, but fixed again by modifying eqs, and C. After the second branch it holds
because ṡ ≈ ṫ, was in eqs before. After the third branch it holds because
si ◁ ṡ ⊴ sσ, and ti ◁ ṫ ⊴ tσ.

(I3) Holds after line 4. Again it is broken by modifying σ, but fixed by modifying
eqs, and C in the first branch. After the second branch it holds because
ṡ ≈ ṫ, was in eqs before. For third branch, if we assume that canAbstract
guards interpreted functions, then we know that f must be uninterpreted,
hence for every i we have that E |= si ̸≈ ti → ṡ ̸≈ ṫ, which means that
E ⊨ si ̸≈ ti → sσ ̸≈ tσ.

(I4) Holds after line 4. In the first branch the property still holds after modifying
σ, since we can reason as follows. Let θ be a substitution.

12 Schoisswohl et al.

E ⊨ (s ≈ t)θ =⇒E ⊨ (s ≈ t)σρ & σρ = θ due to (I4)
=⇒E ⊨ (ṡ ≈ ṫ)ρ due to (I3)
⇐⇒E ⊨ (x ≈ u)ρ due to the if condition

ρ′ :={y 7→ yρ | y ∈ V, y ̸= x}

=⇒ρ ≡E {x 7→ u}ρ′ due to (I5)
=⇒σ{x 7→ u}ρ′ ≡E θ

In all other branches the property is trivially preserved.
(I5) Still holds after the line 4. In the branch in line 5, it is broken by changing

σ, but restored by re-assigning eqs. In all other branches it holds trivially.
⊓⊔

Theorem 1. The abstracting unifier uwa computed by Algorithm 1 is subterm-

founded and sound. If canAbstract guards interpreted functions, then uwa is E-

general and E-minimal. If canAbstract guards interpreted functions and captures

E, then uwa is E-complete.

Proof. Note that we only return a value different from ⊥ when eqs = ∅. This
means soundness follows from invariant (I1), subterm-foundedness from (I2),
minimality from (I3), and generality from (I4).

Let’s show E-completeness contrapositively. ⊥ is only returned in line 14. We
know that canAbstract(ṡ, ṫ) does not hold, and as canAbstract captures E . this
means

̸ ∃θ.E |=(ṡ ≈ ṫ)θ
=⇒ ∀θ.E ̸|=(ṡ ≈ ṫ)θ
=⇒ ∀θ.E ̸|=(s ≈ t)σθ due to (I3)
=⇒ ∀θ.E ̸|=(s ≈ t)θ due to (I4)
=⇏ ∃θ.E |=(s ≈ t)θ

⊓⊔

4.2 UWA Completeness

We now show how unification with abstraction (uwa) can be used to replace
unification modulo E in saturation-based theorem proving [3]. We recall from [3]
that in order to show refutational completeness of an inference-system Γ , one
constructs a model functor I that maps sets of ground clauses N to candidate
models IN . In order to show that Γ is refutationally complete, one needs to show
that if N is saturated with respect to Γ , then IN ⊨ N . For this, the notion of a
counterexample-reducing inference system is introduced.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 13

Definition 5 (Counterexample-Reducing Inference System). We say

an inference system Γ is counterexample reducing, with respect to a model functor

I and a well-founded ordering on ground clauses ≺, if for every ground set of

clauses N and every minimal C ∈ N such that IN ̸⊨ C, there is an inference

C1 . . . Cn C

D

where ∀i.IN ⊨ Ci, ∀i.Ci ≺ C, D ≺ C, and IN ̸⊨ D.

We then have the following key result.

Theorem 2 (Bachmair&Ganzinger [3]). Let ≺ be a well-founded ordering

on ground clauses and I be a model functor. Then, every inference system that is

counterexample-reducing wrt ≺ and I is refutationally complete.

This result also holds for an inference system being refutationally complete
wrt E if for every N it holds that IN |= E .

Proof. Proof by contradiction. We assume that there is a counterexample in N .
By well-foundedness of ≺ on ground clauses, we know that there must be a least
counterexample. As the inference system is counterexample-reducing there must
be an even smaller counterexample, which contradicts minimality of the former.
This means that there cannot be any counterexample in the first place, which
means that IN |= N , which means the inference system is complete wrt. E as
IN |= E . ⊓⊔

When constructing a refutationally complete calculus, one usually first defines a
ground counterexample-reducing inference system and then lifts this calculus to
a non-ground inference system. Lifting is done such that, if the ground inference
system is counterexample reducing, then its lifted non-ground version is also
counterexample reducing.

We next show how to transform a lifting of a counterexample-reducing infer-
ence system that uses unification modulo E into a lifting using unification with
abstraction. That is, given a counterexample-reducing inference-system using
unification modulo E to define its rules, we construct another counterexample-
reducing inference system that uses uwa instead. As we only transform rules that
use unification, we introduce the notion of a unifying rule.

Definition 6 (Unifying Rule). An inference rule γ is a unifying rule if it is

of the form

C1 . . . Cn C
, where σ ∈ mcuE(s, t).

Dσ

14 Schoisswohl et al.

We also define the mapping ◦uwa that maps unifying inferences γ to γuwa as

γ = C1 . . . Cn C(
where σ ∈ mcuE(s, t)

)
Dσ

⇓

γuwa = C1 . . . Cn C(
, where ⟨σ, C⟩ = uwa(s, t)

)
Dσ ∨ C

Soundness of the unifying rule γ alone however does not suffice to show
soundness of γuwa. Therefore we introduce a stronger notion of soundness that
holds for all the rules we will consider to lift.

Definition 7 (Strong soundness). Let γ be a unifying rule. We say γ is

strongly sound iff E , C1 . . . Cn, C |= s ≈ t → D.

Note that strong soundness of γ implies soundness, as σ ∈ mcuE(s, t) is a
unifier of s and t.

Lemma 2. Assume that γ is strongly sound and uwa is sound. Then, γuwa is

sound.

Proof. Let M ⊨ C1 . . . Cn, C. Let ⟨σ, C⟩ = uwa(s, t). Then due to strong soundness
of gamma we have M |= s ≈ t → D, hence M |= (s ≈ t)σ → Dσ. Let ξ be
some variable interpretation. If M, ξ |= C, then M, ξ ⊨ C ∨ Dσ. If M, ξ ̸|= C, then
by soundness of uwa we know that M, ξ |= (s ≈ t)σ, which in turn means that
M, ξ |= Dσ, which in turn means that M, ξ ⊨ C ∨ Dσ in this case as well.

Therefore we know that the rule is sound. ⊓⊔

We note that not every inference can be transformed using ◦uwa, without
compromising completeness. One example of a rule that cannot be lifted using
uwa is the equality resolution rule in the classic superposition calculus. Consider
for example the clause D ∨ a + b ̸≈ b + a, as well as uwa(a + b, b + a) = ⟨∅, C⟩ and
C = a + b ̸≈ b + a. Using equality resolution, we would then derive D ∨ C which
is the same as the premise. To circumvent this problem, we consider the notion
of compatibility with respect to transformations.

Definition 8 (Unifies Strict Subterms). Let γ be a unifying inference.

Then, γ unifies strict subterms iff for every grounding θ, u ∈ {s, t} there is

an uninterpreted function or predicate f , a literal L[f(u)], and clause C ′ ∈
{C1 . . . Cn, C}, such that L[f(u)]θ ⪯ C ′θ.

Note that in the above definition we usually have that L[f(s)] or L[f(t)] is
some literal of one of the premises.

Definition 9 (uwa-Compatibility). We say an inference γ is uwa compatible
if it is a unifying inference, strongly sound, and unifies strict subterms.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 15

Theorem 3. Let uwa be a general, compatible, subterm-founded, complete, and

minimal abstracting unifier. If Γ is the lifting of a counterexample-reducing

inference system Γ ϑ with respect to a model functor I, and clause ordering ≺, then

Γuwa = {γuwa | γ ∈ Γ, γ is uwa-compatible}∪{γ ∈ Γ | γ is not uwa-compatible}
is the lifting of an inference system Γ ϑ

uwa that is counterexample-reducing with

respect to I and ≺.

Proof. For the sake of simplicity we assume that all the rules are uwa compatible.
The proof can be easily extended to the case where other rules are contained as
well, as we do not modify these rules.

Let us define

Γ ϑ
uwa = {γuwaθ |γuwa ∈ Γuwa,

θ is a ground substitution ,

E ⊨ (s ≈ t)θ}

Obviously Γ ϑ
uwa is a lifting of Γuwa, and due to strong soundness of the original

inferences the grounded inferences are sound as well. Let’s show that Γ ϑ
uwa is

counterexample-reducing.
Let N be a set of clauses, and Nϑ be the grounding of N . As Γ ϑ is a

counterexample-reducing inference system, we know that for every minimal
counterexample Cϑ ∈ Nϑ there is an inference γϑ ∈ Γ ϑ such that Dϑ ≺ Cϑ, and
INϑ ̸⊨ Dϑ.

Cϑ
1 . . . Cϑ

n Cϑ

γϑ =
Dϑ

As Γ is a lifting of Γ ϑ, we know that there must be an inference γ ∈ Γ , and
a ground substitution θ, such that γθ = γϑ. As γ is uwa-compatible, it must be
of the following form:

C1 . . . Cn Cγ = where σ ∈ mcuE(s, t)
Dσ

Which means that we have

C1θ . . . Cnθ Cθ
γϑ = γθ =

Dσθ

with Dσθ ≺ Cθ, Ciθ ≺ Cθ, and INϑ ̸⊨ Dσθ.
As uwa is general (Definition 3), and complete (Definition 3), and due to the

definition of Γ ϑ
uwa we know that there is an inference γϑ

uwa ∈ Γ ϑ
uwa with σ′ρ ≡E σ.

C1θ . . . Cnθ Cθ
γϑ

uwa =
Dσθ ∨ Cθ

16 Schoisswohl et al.

AQ = Aeq ∪ Aineq

Aeq = AC
∪ {jx + kx ≈ (j + k)x | j, k ∈ Q}
∪ {j(k(x)) ≈ (jk)x | j, k ∈ Q}
∪ {1(x) ≈ x}
∪ {k(x + y) ≈ kx + ky | k ∈ Q}
∪ {x + 0 ≈ x, 0x ≈ 0}

Aineq = {x > y ∧ y > z → x > z}
∪ {x > y → x + z > y + z}
∪ {x > y ∨ x ≈ y ∨ y > x}
∪ {¬(x > x)}
∪ {x ≥ y ↔ (x > y ∨ x ≈ y)}
∪ {x > y → +kx > +ky | +k ∈ Q}
∪ {x > y → −ky > −kx | −k ∈ Q}

Fig. 4. Axioms handled by the Alasca calculus. All are implicity universally quantified.

As σ ∈ mcuE(s, t), we know that sσ ≡E tσ, which means because σ′ρ ≡E σ
that sσ′ρ ≡E sσ′ρ. This means since uwa is minimal (Definition 3), that E ⊨
(¬C)ρθ, hence INϑ ̸⊨ Cρθ, which means that the conclusion of the rule is a
counterexample as well.

What is left to show is that the conclusion is smaller than the main premise. As
γ unifies strict subterm (Definition 8), and uwa is subterm-founded (Definition 3),
and Cθ ≻ Ciθ we know that Cθ ⪰ L[f(s)]θ ≻ Cθ, or Cθ ⪰ L[f(t)]θ ≻ Cθ. As
Cθ ≻ Dσθ, this means that Cθ ≻ Dσθ ∨ Cθ. ⊓⊔

Theorem 1 and Theorem 3 together imply that, given a compatible inference
system, we need to only specify the right canAbstract predicate in order to perform
a lifting using uwa. In Sect. 5 we introduce the calculus Alasca, a concrete
inference system with the desired properties, for which a suitable predicate
canAbstract can easily be found.

5 ALASCA Reasoning

We use the lifting results of Sect. 4 to introduce our Alasca calculus for reasoning
in quantified linear arithmetic, by combining superposition reasoning with Fourier-
Motzkin type inference rules. While an instance of such a combination has
been studied in the Lasca calculus of [25], Lasca is restricted to ground, i.e.
quantifier-free, clauses. Our Alasca extends Lasca with uwa and provides
an altered ground version Alascaθ (Sect. 5.1) which efficiently can be lifted
to the quantified domain (Sect. 5.2). As quantified reasoning with linear real
arithmetic and uninterpreted functions is inherently incomplete, we provide formal
guarantess about what Alasca can prove. Instead of focusing on completeness
with respect to Q-models as in [25], we show that Alasca is complete with
respect to a partial axiomatisation AQ of Q-models (Sect. 5.2).

5.1 The ALASCA Calculus – Ground Version

The Alasca calculus uses a partial axiomatisation AQ of Q-models, and handles
some Q-axioms via inferences and some via uwa. We therefore split the axiom set

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 17

AQ into Aeq and Aineq, as listed in Fig. 4. In order to show our completeness result
we will therefore introduce an alternative model functor I ·

∞, that maps to AQ-
models. We will then show that the ground calculus Alascaθ, is counterexample-
reducing, hence complete for this class of models, and then show how Alascaθ

can be lifted to a non-ground clauses, while still staying complete for this class
of models.

Our Alasca calculus modifies the Lasca framework [25] to enable an efficient
lifting for quantified reasoning. For simplicity, we first present the ground version
of Alasca, which we refer to Alascaθ, whose one key benefit is illustrated next.

Example 2. One central rule of Alasca is the Fourier-Motzkin variable elimi-
nation rule (FM). We use (FM) in line 7 of Fig. 1, when proving the motivat-
ing example of Sect. 2, given in formula (1). Namely, using (FM), we derive
−2x − y + sk > 0 from f(2x, y) − 2x − y > 0 and −f(2, y) + sk ≥ 0, under
the assumption that 2x ≈ 2. The (FM) rule can be seen as a version of the
inequality chaining rules of [3] for normalized arithmetic terms, chaining the
inequalities sk ≥ f(2, y) and f(2x, y) > 2x + y. Morover, the (FM) rule can also
be considered a version of binary resolution, as it resolves the positive summand
f(2x, y) with the negative summand −f(2, y), mimicing thus resolution over
subterms, instead of literals. The main benefit of (FM) comes with its restricted
application to maximal atomic terms in a sum (instead of its naive application
whenever possible).

Alascaθ Normalization and Orderings. Compared to Lasca [25], the major
difference of Alascaθ comes with focusing on which terms are being considered
equal within inferences; this in turn requires careful adjustements in the underlying
orderings and normalization steps of Alascaθ, and later also in unification within
Alasca. In Lasca terms are rewritten in their so-called Q-normalized form, while
equality inference rules exploit equivalence modulo AC. Lifting such inference
rules is however tricky. Consider for example the application of the rewrite rule
j(ks) → (jk)s (triggered by j(ks) ≈ (jk)s) over the clause C[jx, x]. In order to
lift all instances of this rewrite rule, we would need to derive C[(jk)x, kx] for
every k ∈ Q, which would yield an infinite number of conclusions. In order to
resolve this matter, Alascaθ takes a different approach to term normalization
and handling equivalence. That is, unlike Lasca, we formulate all inference rules
using equivalence modulo Aeq, and do not consider the normalization of terms as
simplification rules.

As Alascaθ rules use equivalence modulo Aeq, we also need to impose that
the simplification ordering used by Alascaθ is Aeq-compatible4. Intuitively,
Aeq-compatibility means that terms that are equivalent modulo Aeq are in one
equivalence class wrt the ordering. This allows us to replace terms by an arbitrary
normal form wrt these equivalence classes before and after applying any inference
rules, allowing it to use a normalization similar to Q-normalization that does
not need to be lifted. Hence, we introduce Aeq-normalized terms as being terms
4 A formal definition of Aeq-compatibility is given later (See Property 3).

18 Schoisswohl et al.

whose sort is not τQ or of the form 1
k (k1t1 + · · · + kntn), such that ∀i.ki ∈ Z \ 0,

∀i ̸= j.ti ̸≡ tj , ∀i.ti is atomic, k is positive, and gcd({k, k1 . . . kn}) = 1. Obviously
every term can be turned into a Aeq-normalized term. For the rest of this section
we assume terms are Aeq-normalized, and write ≡ for ≡Aeq . We also assume that
literals with interpreted predicates ⋄ are being normalized (during preprocessing)
and to be of the form t ⋄ 0. We write s ≈̂ t for equalities, with sorts different
from τQ, and for equalities of sort τQ that can be rewritten to s ≈ t such that s is
an atomic term. Finally, Alascaθ also extends Lasca by not only handling the
predicates > and ≈, but also ≥, and ̸≈, which has the advantage that inequalities
are not being introduced in purely equational problems in Alascaθ.

As discussed in Example 2, the (FM) rule of Alascaθ is similar to binary
resolution, as it can be seen as “resolving” atomic subterms instead of literals.
To formalize such handling of terms in (FM), we distinguish so-called atoms(t),
atoms of some term t. Doing so, given an Aeq-normalized term t = 1

k (±1k1t1 +
. . . ±n kntn), we define atoms±(t) = ⟨k, k1 ∗ {̇ ±1 t1}̇ ∪ . . . ∪ kn ∗ {̇ ±n tn}̇⟩ and
atoms(t) = ⟨k, k1 ∗ {̇t1}̇ ∪ . . . ∪ kn ∗ {̇tn}̇⟩. We extend both of these functions
f ∈ {atoms, atoms±} to literals as follows: f(t ⋄ 0) = f(t), assuming that the
term t has been normalised to 1

k = 1 before. For (dis)equalities s ≈ t (s ̸≈
t) of uninterpreted sorts, we define atoms to be ⟨1, {̇s, t}̇⟩. Further we define
maxAtoms(t), to be the set of maximal terms in atoms(t) with respect ≺, and
maxAtom(t) = t0 if maxAtoms(t) = {t0}.

In addition, in order to present the calculus more compactly, and to account
for our normalization of equalities (s ≈ t ⇒ s − t ≈ 0) we merge the rules
Gaussian Elimination, and Ordered Paramodulation, that are present in Lasca,
into one rule. In order to do this we introduce the following equivalence relation
on equality literals: Let ≡≈ be the least relation such that L ≡ L′ =⇒ L ≡≈ L′,
s ≈ t ≡≈ t ≈ s, and ks + t ≈ 0 ≡≈ s ≈ − 1

k t. We write s ≈̂ t to denote some
literal L such that L ≡≈ s ≈ t.

Alascaθ Inferences. The inference rules of Alascaθ are summarized in Fig. 5.
All rules are parametrized by a Aeq-compatible ordering relation ≺ on ground
terms, literals and clauses. Underlining a literal in a clause or an atomic term in
a sum means that the underlined expression is non-strictly maximal wrt to the
other literals in the clause, or atomic terms in the sum. We use double-underlining
to denote that the expression is strictly maximal.

In the classic superposition calculus rewriting factoring is performed only for
positive literals. The reason for this is that only these literals can be productive
(a notion we will define later). As we, for example, normalize ¬s > 0 to −s ≥ 0
there are no negative inequalities therefore we need to generalize this notion of
potentially productive literals. Therefore we define the set Lθ

+, called the set of

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 19

Fourier-Motzkin Elimination

C1 ∨+js + t1 ≳1 0 C2 ∨ −ks′ + t2 ≳2 0
(FM)

C1 ∨ C2 ∨ kt1 + jt2 > 0

where – js + t1 > 0 ≻ C1

– −ks′ + t2 > 0 ⪰ C2

– s ≡ s′

– {>} ⊆ {≳1,≳2} ⊆ {>,≥}

Tight Fourier-Motzkin Elimination

C1 ∨+js + t1 ≥ 0 C2 ∨ −ks′ + t2 ≥ 0
(FM≥)

C1 ∨ C2 ∨ kt1 + jt2 > 0 ∨ −ks′ + t2 ≈ 0

where – js + t1 > 0 ≻ C1

– −ks′ + t2 > 0 ⪰ C2

– s ≡ s′

Inequality Factoring

C ∨+js + t1 ≳1 0 ∨+ks′ + t2 ≳2 0
(IF)

C ∨ kt1 − jt2 ≳3 0 ∨+ks′ + t2 ≳2 0

where – s ≡ s′

– ∀L ∈ (C ∨ js + t1 ≳1 0).ks′ + t2 ≳2 0 ⪰ L or
∀L ∈ (C ∨ ks′ + t2 ≳2 0).js + t1 ≳1 0 ⪰ L

– ≳i∈ {>,≥}

– ≳3=
{
≥ if ≳1=≥, and ≳2=>

> else

Term Factoring

C ∨ js + ks′ + t ⋄ 0
(TF)

C ∨ (j + k)s′ + t ⋄ 0

where – s ≡ s′

– ⋄ ∈ {>,≥, ≈̂, ̸≈}
– s, s′ ∈ maxAtoms(C ∨ js + ks′ + t ⋄ 0)
– there is no uninterperted literal in C

Contradiction

(((((C ∨ ±k ⋄ 0 (Triv)
C

where – ⋄ ∈ {>,≥,≈, ̸≈}
– k ∈ Q
– Q ̸|= ±k ⋄ 0

Superposition

C1 ∨ s ≈̂ t C2 ∨ L[s′]
(Sup)

C1 ∨ C2 ∨ L[s′ → t]

where – s ≡ s′

– s ≈̂ t ≻ C1

– L[s′] ∈ Lθ
+ & L[s′] ≻ C2 or

L[s′] ̸∈ Lθ
+ & L[s′] ⪰ C2

– s′ ⊴ x ∈ maxAtoms(L[s′])
– s ≈ t ∨ C1 ≺ C2 ∨ L[s′]

Equality Resolution

C ∨ s ̸≈ s′
(ER)

C

where – s ≡ s′

– s ̸≈ s′ ⪰ C

Equality Factoring

C ∨ s ≈̂ t1 ∨ s′ ≈̂ t2

(EF)
C ∨ t1 ̸≈ t2 ∨ s ≈ t1

where – s ≡ s′

– s′ ≈ t2 ⪰ C ∨ s ≈ t1

Binary Resolution

C ∨ P (t1 . . . tn) D ∨ ¬P (t′
1 . . . t′

n)
(BR)

C ∨D

where – P (t1 . . . tn) ≡ P (t′
1 . . . t′

n)

Factoring

C ∨ P (t1 . . . tn) ∨ P (t′
1 . . . t′

n)
(F)

C ∨ P (t1 . . . tn)

where – P (t1 . . . tn) ≡ P (t′
1 . . . t′

n)

Fig. 5. Rules of the ground calculus Alascaθ.

20 Schoisswohl et al.

Variable Elimination

C ∨
∨
i∈I

x + bi ≳i 0 ∨
∨

j∈J

−x + bj ≳j 0 ∨
∨

k∈K

x + bk ≈ 0 ∨
∨

l∈L

x + bl ̸≈ 0
(VE)

∧
K+⊆K



C ∨
∨

i∈I,j∈J

bi + bj ≳i,j 0 ∨
∨

i∈I,k∈K−
bi − bk ≥ 0 ∨

∨
i∈I,l∈L

bi − bl ≳i 0

∨
∨

j∈J,k∈K+
bj + bk ≥ 0 ∨

∨
j∈J,l∈L

bj + bl ≳j 0

∨
∨

k1∈K+,k2∈K−
bk1 − bk2 ≥ 0 ∨

∨
k∈K+,l∈L

bk − bl ≥ 0

∨
∨

k∈K−,l∈L

bl − bk ≥ 0

∨
∨

⟨l1,l2⟩∈pairs(L)

bl1 − bl2 ̸≈ 0


where

– x is an unshielded variable
– K− = K \K+

– C does not contain x

– ≳i,≳j∈ {≥, >}

– (≳i,j) =
{

(≥) if ≥∈ {≳i,≳j}
(>) otherwise

Fig. 6. Inferene rules used to define the calculus Alasca.

potentially productive literals, as follows.

Lθ
+ ={P (t1 . . . tn) | ti ∈ Tθ}

∪{s ≈ t | s, t ∈ Tθ}
∪{+ks + t ≳ 0 | s, t ∈ Tθ,≳∈ {>, ≥}}

Further, the classic superposition calculus is only performs rewrites within
maximal argumens of an equality literal. This is done, as only these literals
need to be processed by other rules. In our calculus we can restrict this even
further for arithmetic terms, only rewriting with maximal atomic terms in their
respective sums. Further, for uninterpreted predicates we need to rewrite all of
their arguments. Therefore we introduce the helper function active, returning the
set of terms that need to be rewritten in a given literal.

active(L) =
{

{t1 . . . tn} if L ∈ {P (t1 . . . tn), ¬P (t1 . . . tn)}
maxAtoms(L) else

Finding a right ordering relation is non-trivial, as many different require-
ments, like compatibility, subterm property, well-foundedness, and stability under
substitutions, need to be met [24, 25, 38, 40]. For Alasca, we use a modified
version of the Qkbo ordering of [25], with the following two modifications.

(i) Firstly, the Alasca ordering is defined for non-ground terms. This means
that the abstraction function abs (See in the definition of the ordering below)

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 21

might be undefined for terms in cases where there is no maximal element in a sum.
An example for this are terms like x + y. These terms are incomparable to any
other term with respect to our ordering. In addition, our ordering needs to be
stable under substitutions in order to work with non-ground terms. Note however
that our atom functions atoms and atoms± are not stable under substitutions, as
the term f(x) − f(y) and the substitution {x 7→ y} demonstrates. Therefore, we
parametrize our Alasca ordering by the relation subsSafe. The subsSafe relation
fulfils the property that if subsSafe(1

k (±1k1t1 + · · · ±n kntn)), then there is no
substitution θ such that ±ikitiθ ≡ ∓jkjtjθ, for any i, j. In general, checking the
existence of such a θ is as hard as unifying modulo Aeq. Nevertheless, we can
overapproximate the subsSafe relation using the canAbstract predicate. For each
of the functions atoms, and atoms± we define a respective function atomssafe,
and atoms±

safe that is equal to the respective function on all arguments where
subsSafe holds, and undefined otherwise. We only use this guarded version of
the functions in the definition of the ordering in order to ensure that it is stable
under substitutions.

(ii) Secondly, we adjusted the Alasca ordering to be Aeq-compatible, instead
of AC-compatible. This is done as follows: The case corresponding to 2b in the
original Qkbo makes sure that two terms that are equivalent modulo AC are
ordered in the same way, that is they are in one equivalence class wrt to the
ordering. As we require Aeq-compatibility (See Property 3), we modified this
case such that terms that are equivalent modulo Aeq are being ordered in the
same way.

For defining orderings we introduce the following additional notation. Consider
relations ≺ and ≡ are relations on the same set, and relation ≺′ on a potentially
different set. We define s ≺ t ⊗≡ s′ ≺′ t′ iff either s ≺ t, or s ≡ t and s′ ≺′ t′.
We consider ⊗≡ to be right-associative, and write ⊗ for ⊗≡Aeq

.

Definition 10 (Qkbo). Let Kbo be a Knuth-Bendix Ordering with a weight

function w and a precedence relation ≪, such that for all terms t : τQ that do

not contain a numeral multiplication, or addition, we have 1 ⪯Kbo t.

We define s ≺Qkbo t iff

1. abs(s) ≺Kbo abs(t), or

2. abs(s) = abs(t), and either

(a) s = f(s1 . . . sn), t = f(t1 . . . tn), and ⟨s1 . . . sn⟩ ≺Qkbo
lex ⟨t1 . . . tn⟩ for

some uninterpreted f

(b) atoms±
safe(s) ≺̇wmul atoms±

safe(t)

where – abs(x) = x
– abs(f(t1 . . . tn)) = f(abs(t1) . . . abs(tn))
– abs(k1t1 + . . . + kntn) = max≺Kbo{abs(t1) . . . abs(tn)}
– k1s ≺̇ k2t ⇐⇒ s ≺Qkbo t ⊗ k1 ≺̈ k2
– + ≺̈ −

22 Schoisswohl et al.

The ordering in defined in such a way that if fulfills the following properties.
In the following lemmas let a, ai, b be arbitrary ground atomic terms, and

s, t, s′, t′, ti, u be arbitrary ground terms.

Property 1 (Atomic Subterm Property). a ◁Aeq t =⇒ a ≺ t

Property 2 (Totality modulo Aeq). s ≺ t ∥ s ≻ t ∥ s ≡ t

Property 3 (Aeq-compaility). s′ ≡ s ≻ t ≡ t′ =⇒ s′ ≻ t′

Property 4 (Well-founded). There are no infinite descending chains t1 ≻ t2 ≻

Property 5 (Context Stability). a ≻ t =⇒ u[a] ≻ u[a 7→ t]

Property 6 (Product Property). a ≻ b =⇒ ja ≻ kb

Property 7 (Sum Property). ka ≻ kiai =⇒ ka ≻ k1a1 + · · · + knan

Property 8 (One Minimality). If s ̸= 0 and s is of sort τQ, then s ⪰ 1.

Property 9 (Irreflexivity modulo Aeq). s ≡ s′ =⇒ s ̸≺ s′

Property 10 (Transitivity). s ≺ t ≺ u =⇒ s ≺ u

Property 11 (Antisymmetry). s ≺ t =⇒ t ̸≺ s

Property 12 (Negative Maximality). −ja ≻ +ka

Property 13 (Sub-Sum Property). If there is no i such that ai ≡ a, and sign(ki) ̸=
sign(k), then ka ≺ ka +

∑
i∈I kiai.

Definition 11 (Literal Ordering). We extend the term ordering ≺ to literals

as follows. L1 ≺ L2 iff

1. sym(L1) is interpreted, and sym(L2) is uninterpreted
2. sym(L1) and sym(L2) are uninterpreted, and

sym(L1) ≪ sym(L2) ⊗= args(L1) ≺lex args(L2) ⊗ pol(L1) ≺ pol(L2)

3. sym(L1), and sym(L2) are interpreted, and

atomslvl
safe(L1) ≺̇wmulatomslvl

safe(L2) ⊗ L1 ≺̈ L2

where – atomslvl
safe(L) = ⟨k, {̇⟨t, lvl(L)⟩ | t ∈ T }̇⟩ where ⟨k, T ⟩ = atomssafe(L)

– lvl(s ≈ t) = 0
– lvl(s ⋄ t) = 1, for ⋄ ∈ {>, ≥, ̸≈}
– ⟨s, j⟩ ≺̇ ⟨t, k⟩ iff s ≺ t ⊗ j < k
– s ≳1 0 ≺̈ t ≳2 0 ⇐⇒ s ≺ t ⊗ (≳1) ≪ (≳2) for ≳i∈ {>, ≥}
– s ≈ 0 ≺̈ t ≈ 0 ⇐⇒ s ̸≈ 0 ≺̈ t ̸≈ 0 ⇐⇒ nf≈̂(s) ≺mul nf≈̂(t) ⊗ s ≺ t
– nf≈̂(t) = {̇

∑
i:ki≥0 kiti,

∑
i:ki≤0 kiti}̇, where 1

k

∑
kiti = nfeq(t)

– pol(¬P (. . .)) = −, pol(P (. . .)) = +, and + ≺ −
– args(L) = ⟨t1 . . . tn⟩, for L ∈ {P (t1 . . . tn), ¬P (t1 . . . tn)}
– sym(L) = P , for L ∈ {P (t1 . . . tn), ¬P (t1 . . . tn)}

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 23

Definition 12 (Clause Ordering). We extend the literal ordering ≺ to clauses

C, D as follows.

C ≺ D iff C ≺mul D ⊗ C ≺̇mul D

where s ⋄ 0 ≺̇ t ⋄ 0 ⇐⇒ atomssafe(s) ≡wmul atomssafe(t) for ⋄ ∈ {≈, ̸≈, >, ≥}
In order to establish completeness for our calculus, we will need the following

lemmas for our literal ordering. In the following lemmas, we consider L, L′, K, K ′,
to be ground literals, a, a′, a′′ to be a ground atomic term, s, t, ti, t′

i, u to be a
ground term, C to be a ground clause, ≳i∈ {>, ≥}, and ⋄ ∈ {>, ≥, ≈, ̸≈}.
Lemma 3 (Totality on Ground Literals). L ≺ L′ ∥ L ≻ L′ ∥ L ≡ L′

Proof. Assume assuming that L ̸≻ L′ and L′ ̸≻ L. Then either of the following
cases must hold. Both L and L′ are uninterpreted, and their symbols and polarites
are the same, and their arguments are equivalent, or both are positive or negative
equalities s1 ⋄ s2, t1 ⋄ t2, and {̇s1, s2}̇ ≡ {̇t1, t2}̇, which obviously means that
L ≡ L′, or both are inequalities s ≳ 0, t ≳ 0, and s ≡ t, which again means that
L ≡ L′. ⊓⊔
Lemma 4 (Context stability). a ≻ t =⇒ L[a] ≻ L[a 7→ t]
Proof. If L[a] = P (. . .) , for some uninterpreted predicate P it follows from
context stability of terms (Property 5).

Further if a ≻ t, then obviously atomslvl
safe(L[a]) ≻wmul atomslvl

safe(L[a 7→ t]),
which means that the lemma holds for interpreted L[a] as well. ⊓⊔
Lemma 5. If ti ≡ t′

i for all i, then ¬P (t1 . . . tn) ≻ P (t′
1 . . . t′

n)
Proof. Follows straight from the definition. ⊓⊔
Lemma 6. If ⋄ ∈ {>, ≥, ≈, ̸≈}, and a ≡ a′ ≡ a′′, then C ∨ ja′ + ka′′ + t ⋄ 0 ≻
C ∨ (j + k)a + t ⋄ 0
Proof. This follows straight from the definition of the clause ordering. ⊓⊔
Lemma 7. s ≺ t =⇒ s ≳1 0 ≺ t ≳2 0
Proof. If s ≺ t then it obviously must be the case that atomslvl

safe(s ≳1 0) =
atomslvl

safe(s ≳2 0) ⪯ atomslvl
safe(t ≳2 0). Therefore it must be the case that s ≳1

0 ≺ t ≳2 0. ⊓⊔
Lemma 8. +ka + t ≳1 0 ≺ −ka − t ≳2 0

Proof. Obviously atomslvl
safe(+ka + t ≳1 0) = atomslvl

safe(−ka − t ≳2 0).

+ka ≺ −ka Property 12
=⇒ +ka − t ≺ −ka sum property Property 7
=⇒ +ka − t ≺ −ka − t Property 13

Hence by the definition of the literal ordering this means that the lemma holds.
⊓⊔

24 Schoisswohl et al.

Lemma 9 (Weak ≡≈-Compability). K ′ ≡≈ K ̸≡≈L ≡≈ L′ & K ≺ L =⇒
K ′ ≺ L′

Proof. For uniterpreted L, K this obviously holds.
We observe that L ≡ L′ implies that atomslvl

safe(L) ≡ atomslvl
safe(L′), nfeq(L) ≡

nfeq(L′), and sym(L) = sym(L′), and the same for K, K ′ respectively. From
these observations the lemma follows straight away. ⊓⊔

Lemma 10. Let a ∈ Atomicθ, t1, t2 ∈ Tθ.

a ≻ t1 & a ≻ t2 =⇒ a ≈ t2 ≻ t1 ̸≈ t2

Proof. We observe that due to the subterm property (Property 1), we have
a ≻ u =⇒ a ≻ ui for ui ∈ atomssafe(u). Further as ⟨a, 0⟩ ∈ atomslvl

safe(a ≈ t2),
and atomslvl

safe(t1 ̸≈ t2) = {̇⟨u, 1⟩ | u ∈ atomssafe(t1 − t2)}̇, this means that
a ≈ u ≻ t1 ̸≈ t2. ⊓⊔

Lemma 11. s ⪰ t =⇒ ∃s′ ∈ atomssafe(s)∀t′ ∈ atomssafe(t).s′ ⪰ t

Proof. Proof by contraposition. Assume ∀s′ ∈ atomssafe(s)∃t′ ∈ atomssafe(t).s′ ̸⪰
t′. This means by totality (Property 2) that the maximal of all these t′ is strictly
greater than all s′, which means by the sum and the product property (Property 7,
Property 6), that t ≻ s. ⊓⊔

Lemma 12. If L[u] is not a positive equality, then u ⪰ s =⇒ L[u] ≻ s ≈ s

Proof. Suppose u ⪰ s. If L[u] is uninterpreted the lemma obviously holds. So
let’s consider the case where L[u] is interpreted.

If u is a subterm of some atomic term u′ such that {̇u′, u′}̇ ∈ atomslvl
safe(L[u]),

then by the subterm property u′ ⪰ s, and furhter u′ ⪰ s′ for any s′ ∈ atomssafe(s).
If u is not the subterm of some atomic term then u must be an interpreted term.

This means that {̇⟨u′, 1⟩ | u′ ∈ atomssafe(u)}̇ ⊆ atomslvl
safe(L[u]). By Lemma 11, we

know that there is some u′ such that u′ ⪰ s′ for s′ ∈ atomssafe(s).
This means in both cases we have ⟨u′, 1⟩ ∈ atomslvl

safe(L[u]), which is obviously
bigger than any element of atomslvl

safe(s ≈ s) = {̇⟨s′, 0⟩ | s′ ∈ atomssafe(s − s)}̇.
Hence L[u] ≻ s ≈ s. ⊓⊔

Lemma 13. t ≥ 0 ≻ t ≈ 0

Proof. Follows straight from the defintion. ⊓⊔

Lemma 14. If L1, L2 are interpreted, then maxAtom(L1) ≻ maxAtom(L2) =⇒
L1 ≻ L2

Proof. Follows straight from the defintion. ⊓⊔

Lemma 15. maxAtoms(L) = maxAtoms(¬L)

Proof. Follows straight from the defintion. ⊓⊔

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 25

Lemma 16. If L1, L2 are interpreted, but not positive equalities, then

maxAtoms(L1) ≻ maxAtoms(L2) =⇒ L1 ≻ L2

Proof. Follows straight from the defintion. ⊓⊔

Lemma 17. a ̸≈ t1 ≻ L ≻ a ≈ t1 =⇒ ∃t2 ∈ Tθ
(

L ≡≈ a ≈ t2

)
Proof. Obviously L cannot be uninterpreted.

Due to Lemma 14, Lemma 15, and totality on ground terms (Property 2) we
know that maxAtom(L) = maxAtom(L′) = a′ ≡ a.

If L would be an inequality, then from L ≺ a ≈ t1 ≺ ¬L it follows that
atomssafe(L) ≺ atomssafe(a ≈ t1) ≺ atomssafe(¬L). But this is not possible as
atomssafe(L) = atomssafe(¬L) for inequalities.

If L would be a negative equality then ¬L ≺ L, which is also not possible.
Therefore we know that L must be a positive equality with maxAtom(L) = a′,

hence L ≡≈ a ≈ t2 with a ≻ t2.
⊓⊔

Lemma 18. −ka − t1 ≳1 0 ≻ L ≻ +ka + t1 ≳2 0 =⇒ ∃t2 ∈ Tθ
(

L ≡ ja + t2 ≳3

0
)

Proof. Obviously L cannot be uninterpreted. Further atomssafe(−ka − t1 ≳1 0) =
atomssafe(+ka + t1 ≳2 0), hence it must be the case atomssafe(+ka + t1 ≳2 0) ≡
atomssafe(L).

This further means that L must be an inequality L = j1a1 + . . . + jnan ≳3 0.
It cannot be the case that ∀i.ai ≺ a, because otherwise by the sum property
(Property 7), the product property (Property 6), and stability under contexts
(Property 5), we would know that −j1a1 − . . .− jnan ≺ a ≺ ka+ t1, which means
by Lemma 7 mean that ¬L ≺ +ka + t1 ≳2 0.

Further it cannot be the case that ∃i.ai ≻ a, as otherwise due to the same
assumptions we would have that j1a1 + . . . + jnan ≻ ai ≻ −a − t1, which would
mean that L ≻ −ka − t1 ≳1 0.

Let j =
∑

i:ai≡a ji. It’s easy to see then that L ≡ js + t2 ≳3 0, for some
t2 ∈ Tθ. ⊓⊔

Lemma 19. If L[a] ̸≡≈a ≈ t1, then a ≈ t1 ≻ L[a] =⇒ ∃t2 ∈ Tθ.
(

L[a] ≡≈ a ≈

t2

)
Proof. Obviously L[a] cannot be interpreted.

Suppose L[a] is not a positive equality. Then ∃u[a].⟨u[a], 1⟩ ∈ atomslvl
safe(L[a]).

This means that atomssafe(a ≈ t2) ≺mul atomssafe(L[a]), since the maximal element
in this multiset is ⟨a, 0⟩ ≺ ⟨u[a], 1⟩ due to the subterm property (Property 1),
which cannot be the case.

Therefore we know that L[a] is a positive equality. Suppose a occurs as a strict
subterm of some uninterpreted term. That would mean that ∃u[a].⟨u[a], 0⟩ ∈
atomssafe(L[a]) & a ◁Aeq u[a] which would again by the subterm property (Prop-
erty 1)mean that atomssafe(a ≈ t2) ≺ atomssafe(L[a]), which is not possible.

Therefore we know that L[a] ≡≈ a ≈ t2 for some t2 ∈ Tθ with a ≻ t2. ⊓⊔

26 Schoisswohl et al.

Model construction. We will now define our model functor I◦
∞, mapping sets of

clauses to what we call the canonical model of the respective set. In this model, as
in the classic Bachmair-Ganzinger model construction for regular superposition,
the domain will be equivalence classes over the Herbrand universe of the signature.
This means that τQ will not be interpreted as Q. Its domain can be rather thought
of as some sort of ordered vector spaces over field of rationals. It is to note that
Q is a vector space of this very kind, hence everything we prove with our calculus
does indeed hold for Q.

The idea of the model construction is – as in the model construction a lá
Bachmair & Ganzinger – to first build a rewrite system from a set of ground
clauses, and then to build a model, which has the normal forms wrt to this rewrite
system as its domain. We will be reasoning modulo an equational background
theory Aeq, so our rewrite system as well as the domain of our model will use
equivalence classes modulo Aeq instead of plain terms t. On the semantics side
we will just write t for the equivalence class of t modulo Aeq in order to keep
our definitions more readable. As we do not only want to interpret equality, but
also, inequalities and uninterpreted predicates, we need to collect the data to
interpret the other predicates in parallel with the data to interpret equality (i.e.
the rewrite system).

The model construction is structured as follows. First we will build a sequence
of sets of so-called atomic assertions, based on the clause ordering ≺. Then we
will define the actual model as the limit of this sequence.

Definition 13. Let s, t, t1, . . . tnbe equivalence classes of ground terms terms

modulo Aeq, and P be a predicate symbol, and s be atomic, and s ≻ t. We define

an atomic assertion is one of the following:

– a rewrite rule s → t
– an atom P (t1 . . . tn)
– a lower bound s > t

Definition 14. Let I be a set of atomic assertions. We define

I≈ = {s → t ∈ I}
IP = {P (t1 . . . tn) ∈ I | P is an uninterpreted predicate symbol.}
I> = {s > t ∈ I}

Each set of atomic assertions is meant to represent an AQ-model. Therefore
we need to define how to turn a AQ-model into a first-order structure. We will
call this first-order structure an AQ-structure. Its domain are equivalence classes
of terms; more specifically tall the normal forms of I≈ modulo Aeq. In that way
we make sure that our AQ-model actually models Aeq. We will denote the normal
form of a term t wrt the rewritesystem R by t ↓R.

Definition 15. Let I be a set of atomic assertions. We call I an AQ-structure
if for all for all s → t ∈ I we have that s is irreducible in I≈ \ {s → t},for

all P (t1 . . . tn) ∈ I, t1 . . . tn are irreducible in I≈,and for all s > t ∈ I≈, s is

irreducible in I≈.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 27

Definition 16. Let I be an AQ-structure.

Then we identify I with the first-order structure interpreting symbols as

follows:

I(τ) = {t ↓I≈ | t ∈ T, t : τ}
I(t) = t ↓I≈

I(P)(t1 . . . tn) ⇐⇒ P (t1 . . . tn) ∈ IP

I(≥ 0)(t) ⇐⇒ (I(> 0)(t) ∥ I(t) = 0)

I(> 0)(t) ⇐⇒


Q ⊨ t > 0 if t ∈ Q
∃s > l ∈ I>.I |= kl + t′ ≥ 0 if t = +ks + t′

I ⊭ +ks − t′ ≥ 0 if t = −ks + t′

Lemma 20. If I is an AQ-structure, then I |= AQ.

Proof. As a first step we need to show that our term-interpretation is well-defined.
That is, we need to show that the rewrite system I≈ is confluent, and terminating.
The rewrite system is obviously terminating as for every rewrite rule s → t ∈ I≈,
we have that s ≻ t, and by Property 4, s is well-founded.

Let us now show local confluence.
Let s1 → t1, s2 → t2 ∈ I, and u be a term that can be rewritten by

both of the rules. By definition of an AQ-structure, we know that it cannot
be the case that s1 ⊴Aeq s2, or s2 ⊴Aeq s1. From this it is easy to see that
u[s1 → t1][s2 → t2] ≡ u[s2 → t2][s1 → t1].

All axioms in Aeq obviously hold as our domain is terms modulo Aeq.
So let us have a look at the other axioms.
We will first show transitivity holds. First we normalize the axiom to the

clause ¬y − x > 0 ∨ ¬z − y > 0 ∨ z − x > 0. The clause holds, iff it holds for every
I(x), I(y), I(z). We proof transitivity holds by induction on the term ordering
≺.

Let I(x) = jxsx + ŝx, I(y) = jysy + ŝy, and I(z) = jzsz + ŝz.

Suppose transitivity does not hold for these. That would mean I |= I(y) −
I(x) > 0 ∧ I(z) − I(y) > 0 ∧ I(x) − I(z) ≥ 0. If I(x) − I(z) ≈ 0, then we would
have I(y) − I(x) > 0 ∧ I(x) − I(y) > 0, which is a contradiction. This means
that we have I |= I(y) − I(x) > 0 ∧ I(z) − I(y) > 0 ∧ I(x) − I(z) > 0.

Let us now show the following lemma.

28 Schoisswohl et al.

I |= (j1s1 + ŝ1) − (j2s2 + ŝ2) > 0 (A)

&I |= (j2s2 + ŝ2) − (j3s3 + ŝ3) > 0 (B)

&I |= (j3s3 + ŝ3) − (j1s1 + ŝ1) > 0 (C)

=⇒(s3 ≻ s1 =⇒ s2 ≻ s3)

This can be shown as follows: Assume s3 ≻ s1, and s3 ≻ s2

case j3 > 0:

(C) ⇐⇒ ∃s3 > l ∈ I.I |= j3l + ŝ3 − (j1s1 + ŝ1) ≥ 0
=⇒ ∃s3 > l ∈ I.I |= j3l + ŝ3 − (j2s2 + ŝ2) ≥ 0 by I.H. and (A)
⇐⇒ I |= j3s3 + ŝ3 − (j2s2 + ŝ2) > 0

Which contradicts (B). ⊣
case j3 < 0:

(C) ⇐⇒ I ̸|= −j3s3 − ŝ3 + j1s1 + ŝ1 ≥ 0

=⇒ I ̸|= −j3s3 − ŝ3 + j1s1 + ŝ1 > 0

⇐⇒ ̸ ∃s3 > l ∈ I.I |= −j3l − ŝ3 + j1s1 + ŝ1 > 0
⇐⇒ ∀s3 > l ∈ I.I |= j3l + ŝ3 − j1s1 − ŝ1 ≥ 0
=⇒ ∀s3 > l ∈ I.I |= j3l + ŝ3 − j2s2 − ŝ2 ≥ 0 by I.H. and (A)
⇐⇒ I ̸|= −j3s3 − ŝ3 + j2s2 + ŝ2 > 0

Which contradicts (B). ⊣

As we have

I |= (jxsx + ŝx) − (jysy + ŝy) > 0

I |= (jysy + ŝy) − (jzsz + ŝz) > 0

I |= (jzsz + ŝz) − (jxsx + ŝx) > 0

which means by the lemma, that we get

sx ≻ sy =⇒ sz ≻ sx =⇒ sy ≻ sz

sy ≻ sx =⇒ sz ≻ sy =⇒ sx ≻ sz

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 29

Both of these implication chains are contradictory, hence transitivity must hold.
For all other axioms one can easily see that they follow from the definition of

a AQ model by simple definition unfolding.

Definition 17 (Canonical Model). Let N be a ground set of clauses, and

C ∈ N , then we call IN
≺C the AQ-model up to C wrt. N , IN

C the AQ-model for
C wrt. N , and IN

∞ the canonical model wrt. N .

IN
∞ =

⋃
C∈N

IN
C

IN
C = IN

≺C ∪ produceN (C)

IN
≺C =

⋃
D∈N,D≺C

IN
D

produceN (C ′ ∨ L) =



∅ if IN
≺C |= C ′ ∨ L

∅ else if t ∈ active(L) that is reducible in IN
≺C

{s > − 1
k t} else if L = +ks + t ≳ 0, where ≳∈ {>, ≥}

& ∀k1t1 + . . . + kntn ≳′ 0 ∈ C ′.Q |= Σi:ti≡ski ≤ 0
{s → t} else if L ≡≈ s ≈ t

& ∀s ≈̂ u ∈ C ′.IN
≺C |= t ̸≈ u

{P (t1, . . . , tn)} else if L = P (t1 . . . tn)
∅ else

We say a clause C = C ′ ∨ L is productive for L iff produceN (C) ̸= ∅.

Completeness. In order to show that our Alascaθ is refutationally complete, by
using the framework mentioned in Sect. 4, we need to establish that our calculus
reduces counterexamples. For that we will need to establish some lemmas first.

First of all we need to make sure that every of our potential models can
indeed be used to interpret clauses.

Lemma 21. For every set of clauses N , IN
C , IN

≺C , and IN
∞ are AQ-structures.

Proof. Follows straight from the definition. ⊓⊔

Next we observe that the interpretation of equality of some term stabilizes as
soon as a literal greater than the term itself is processed in the model construction.
Formally we establish this as the following lemma.

Lemma 22 (Equality Stabilisation).

C ⪰ s ≈ s =⇒ IN
∞(s) = IN

≺C(s) = IN
C (s)

30 Schoisswohl et al.

Proof. Firstly as IN
≺C ⊆ IN

C ⊆ IN
∞, any rule used to rewrite s in IN

≺C will also
be in IN

∞.
Let u → v ∈ IN

∞. If u → v is used in a rewriting of s, then there must be some
atomic subterm s′ ⊴ s, such that s′ ⪰ u, which means by the subterm property
that s ⪰ u. Then there is some productive clause D = D′ ∨ u ≈̂ v. Since u ≻ v,
we have u ≈ u ≻ u ≈ v. Further by Aeq-compatibility (Property 3), and well-
foundedness (Property 4) we know that u̸≡Aeqv. Therefore by ≡≈-compatibility
(Lemma 9), this means that D′ ≺ u ≈̂ v ≺ u ≈ u ⪯ s ≈ s ⪯ C. Which further
means that D ≺ C, hence that u → v ∈ IN

≺C as well. ⊓⊔

Lemma 23. Let L[u] be a ground literal that is not a positive equality

C ⪰ L[u] & u ⪰ s =⇒ IN
∞(s) = IN

≺C(s) = IN
C (s)

Proof. This follows straight from Lemma 22, and Lemma 12. ⊓⊔

Lemma 24 (Monotonicity). Let L ∈ Lθ, C ∈ N .

L ⪯ C & IN
C |= L =⇒ IN

∞ |= L

L ⪯ C & IN
≺C |= L =⇒ IN

∞ |= L

Proof. We proof by induction on L, and C along ≺.
Let’s case split on L

case s ≈ t: For I ∈ {IN
≺C , IN

C } we have I ⊂ IN
∞, which means that if s, and t

rewrite to the same term in I, then they also do so in IN
∞.

case s ̸≈ t: By Lemma 23 we have that IN
∞(s) = IN

≺C(s) = IN
C (s) , and IN

∞(t) =
IN

≺C(t) = IN
C (t). This means both IN

C |= s ̸≈ t, and IN
≺C |= s ̸≈ t imply, that

IN
∞ |= s ̸≈ t.

case t > 0: By Lemma 23 we have that IN
∞(t) = IN

≺C(t) = IN
C (t). We case split

on IN
∞(t).

case k: This means by definition that if IN
∞ |= t > 0 ⇐⇒ Q |= k > 0 ⇐⇒

IN
C |= t > 0 ⇐⇒ IN

≺C |= t > 0.
case +ks + t′: Note that since +ks+ t′ = IN

∞(t) = IN
≺C(t) = IN

C (t), it must
be the case that s = IN

∞(s) = IN
≺C(s) = IN

C (s). Further note that by
construction for every s > l ∈ IN

C ⊇ IN
≺C , s ≻ l, and s ∈ Atomicθ. This

means that maxAtom(s) ≻ maxAtom(l), and maxAtom(s) ≻ maxAtom(t′),
which means that we have that +ks + t′ > 0 ≻ +kl + t′ ≥ 0. This means
we can reason as follows.

I |= t > 0 ⇐⇒ ∃s > l ∈ I.I |= kl + t′ ≥ 0
=⇒ ∃s > l ∈ IN

∞.I |= kl + t′ ≥ 0 (I ⊆ IN
∞)

=⇒ ∃s > l ∈ IN
∞.IN

∞ |= kl + t′ ≥ 0 (by induction hypothesis)
⇐⇒ IN

∞ |= t > 0

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 31

case −ks + t′: Suppose IN
∞ ̸|= t > 0. This is the cases iff IN

∞ |= +ks−t′ ≥ 0.
if IN

∞ |= +ks − t′ > 0: That means there is a s′ > l ∈ IN
∞ such that

IN
∞ |= kl − t′ ≥ 0, and s ≡ s′. This means that there must be a

productive clause D = D′ ∨ js′ − jl ≳ 0.

js ≺ −ks (Property 12)
=⇒ js − jl ≺ −ks (Property 7)
=⇒ js − jl ≺ −ks + t′ (Property 13)
=⇒ js − jl ≳ 0 ≺ −ks + t′ > 0 (Lemma 7)
=⇒ D′ ∨ js − jl ≳ 0 ≺ −ks + t′ > 0
=⇒ D′ ∨ js − jl ≳ 0 ≺ t > 0 (Lemma 7)
=⇒ D′ ∨ js − jl ≳ 0 ≺ t > 0 ∨ C ′

Hence by construction it must be the case that s > l ∈ IN
≺C ⊂ IN

C .
We know that IN

∞ |= kl−t′ ≥ 0 ⇐⇒ IN
∞ ̸|= −kl+t′ > 0. As s ≻ l, and

s ≻ −t′, by the sum property (Property 7), and Lemma 7 we know
that −kl + t′ > 0 ≺ L, which means that by induction hypothesis for
I ∈ {IN

≺C , IN
C } we have I ̸|= −kl + t′ > 0, hence I |= kl − t′ ≥ 0.

Combining that we get that I |= −ks + t′ > 0.
else: That means that IN

∞(t) = 0, which means that IN
C (t) = 0 as well.

case t ≥ 0: For I ∈ {IN
≺C , IN

C }, we can reason as follows. This is the case iff
I |= t > 0, or I |= t ≈ 0
If I |= t > 0, then we can reason as in the case where L = t > 0 to establish
that IN

∞ |= t > 0.
Otherwise if I |= t ≈ 0, by Lemma 23, we know that I(t) = IN

∞(t), which
means that IN

∞ |= t ≈ 0 as well.
case P (t1 . . . tn): For both I ∈ {IN

≺C , IN
C }, we can reason as follows.

I |= P (t1 . . . tn) ⇐⇒ P (I(t1) . . . I(tn)) ∈ I
=⇒ P (I(t1) . . . I(tn)) ∈ IN

∞ (as I ⊆ IN
∞)

=⇒ P (IN
∞(t1) . . . IN

∞(tn)) ∈ IN
∞ (due to Lemma 23)

⇐⇒ IN
∞ |= P (t1 . . . tn)

case ¬P (t1 . . . tn): By Lemma 23 we know that IN
∞(ti) = IN

C (ti) = IN
≺C(ti).

Suppose P (IN
∞(t1) . . . IN

∞(tn)) ∈ IN
∞. Then there is some productive clause

D = D′ ∨ P (t′
1 . . . t′

n) with IN
∞(t′

i) = IN
∞(ti). As D is productive t′

i = IN
D (t′

i),
and by Lemma 23 t′

i = IN
∞(t′

i) = IN
∞(ti). This means as we only rewrite to

smaller things that P (t1 . . . tn) ⪰ P (t′
1 . . . tn). Together with Lemma 5 this

means that D ≺ C, hence P (t′
1 . . . t′

n) ∈ IN
≺C ⊆ IN

C as well.

Lemma 25. If C = C ′ ∨ L is a productive clause, then for I ∈ {IN
∞, IN

C }.

I |= L & I ̸|= C ′.

32 Schoisswohl et al.

Proof. Obviously due to Lemma 24, we know that if the lemma holds for I = IN
C ,

then it will also hold for I = IN
∞. Hence we only need to have a look at the case

where I = IN
C .

We first show that IN
C |= L by case splitting on produceN (L)

case s → t: That means that L = s ≈̂ t, which obviously holds in IN
C .

case s > l: That means that L = js − jl ≳ 0, which obviously holds in IN
C ,

since jl − jl ≥ 0 holds in IN
C .

case P (t1 . . . tn): That means that L = P (t1 . . . tn), which obviously holds in
IN

C .

Next we show that IN
C ̸|= C ′. Let L′ be any literal of C ′. As C is productive

we know that L′ ≺ L, and that IN
≺C ̸|= L′. If ¬L′ ≺ L then by Lemma 24 we

know that IN
∞ |= ¬L′, which means IN

∞ ̸|= L′, which means by the same lemma
that IN

C ̸|= L′, hence IN
C |= ¬L′.

Hence by Lemma 3 we can assume that L′ ≺ L ⪯ ¬L′.
We case split on L′.

case s ̸≈ t, or ¬P (t0 . . . tn): Not possible since then it would be the case that
¬L′ ≺ L′. ⊣

case s ≈̂ t1: Since C is productive we know that it cannot be the case that
L ≡≈ s ≈̂ t1, due to the side condition of produceN (C).
As ¬L′ ≻ L ≻ L′, this means by weak compatibility (Lemma 9), that
s ̸≈ t1 ≻ L ≻ s ≈ t1, which further means by Lemma 17 that L ≡≈ s ≈̂ t2.
As C is productive this means by definition that IN

≺C |= t1 ̸≈ t2, hence by
Lemma 23 we know that IN

C |= t1 ̸≈ t2. Futher as IN
C |= L ≡≈ s ≈ t2, this

means that IN
C ̸|= s ≈ t1.

case t ≳ 0: Obvisously t ≳ 0 ≡ ks + t′ ≳ 0.

if k < 0: Then by Lemma 8, and weak compatibility (Lemma 9), it would
be the case ¬L′ ≺ L′, which contradicts L′ ≺ L ≺ ¬L′. ⊣

else k > 0: It cannot be the case that L ≡ L′ due to the side condition of
produceN C.
Hence by t ≳ 0 ≺ L ≺ ¬(t ≳ 0), and weak compatibility (Lemma 9), we
know that ks + t′ ≳ 0 ≺ L ≺ −ks − t′ ≳′ 0. By Lemma 18 we therefore
know that L ≡ js + t2 ≳′′ 0. As C is productive this means by the same
side condition of the definition of produceN (C) that this cannot be the
case. ⊣

case P (t1 . . . tn): We know IN
≺C ̸|= P (t1 . . . tn). Suppose IN

C |= P (t1 . . . tn).
Then it must be the case that C is productive with L = P (t′

1 . . . t′
n), such

that t′
i ≡ ti. This would mean that L is not strictly maximal though, which

would mean that C is not productive. ⊣

Theorem 4. Alascaθ is a counterexample-reducing inference system with re-

spect to I ·
∞ and ≺.

Proof. Let C = C ′ ∨L be a minimal counterexample that is not the empty clause.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 33

if C is productive: Then by Lemma 25, we know that IN
∞ |= C, hence C

cannot be a counterexample. ⊣.
else if IN

≺C |= C ′ ∨ L: Then by Lemma 24 IN
∞ |= C ′ ∨ L, which means that C

cannot be a counterexample either. ⊣
else if C = C ′′ ∨ L′ ∨ L, and L ∈ Lθ

+: Then due totality (Lemma 3) we know
that L ≡ L′. We case split on ⟨L, L′⟩
case ⟨s ≈τ t, s′ ≈τ t′⟩ where τ ̸= τQ: If s ≡ t, or s′ ≡ t′, then the C would

not be a counterexample. So due to totality (Property 2) we can assume
without loss of generality that s ≻ t, s′ ≻ t′, which means by irreflexivity
compatibility (Property 3 and Irreflexivity (Property 9), that s ≡ s′, and
t ≡ t′

There is an instance of Rule (EF)
C ′ ∨ s ≈ t ∨ s′ ≈ t′

C ′ ∨ t ̸≈ t′ ∨ s′ ≈ t′

Therefore since IN
∞ ̸|= C it must also be the case that IN

∞ ̸|= C ′ ∨ t ̸≈
t′ ∨ s′ ≈ t′. Further the hypothesis is smaller than the conclusion, as from
s ≻ t ≡ t′, Property 3, and Lemma 14 it follows that s ≈ t ≻ t ̸≈ t′.

case ⟨k ⋄ 0, L′⟩ or ⟨L, k ⋄ 0⟩: Then either Q |= k ⋄ 0, hence C cannot be
a counterexample, or there is an instance of (Triv) that reduces the
counterexample.

case ⟨+js ± ks′ + t ⋄ 0, L′′⟩, or ⟨L′′, +js ± ks′ + t ⋄ 0⟩ where s ≡ s′: Then
due to Lemma 6, there is an instance of rule (TF) that reduces the coun-
terexample.

case ⟨+js + t ⋄ 0, +js′ + t′ ⋄ 0⟩: Note that the coefficient of +j must be
posive as L ∈ Lθ

+, and the coefficients of s and s′ must be the same as
L ≡ L′, and t ≡ t′ for the same reason.
We case split on ⋄
case ≈: Then L = s ≈̂ − 1

j t, and L′ = s′ ≈̂ − 1
j t′. Hence there is an

instance of Rule (EF) that reduces the counterexample.
case ≥, or >: Then there is an instance of the rule (IF) that reduces

the counterexample.
case ⟨P (t1 . . . tn), P (t′

1 . . . t′
n)⟩ Then there is an instance of the Rule (F),

that reduces the counterexample.
else if ∃t ∈ active(L) that is reducible in IN

∞: In this case superposition will
reduce the counterexample:
We case split on the rewrite rule that is used to rewrite t.
case s → t1 where s ∈ Atomicθ: This means that there is some produc-

tive clause D = D′ ∨ s ≈̂ t1 with s ◁ L.
if L ≡ s ≈ t1: Then we know by Lemma 25 that IN

∞ ⊨ s ≈ t1, hence
IN

∞ ⊨ C which contradicts the assumption that C is a counterexample.
⊣

else if s ≈̂ t1 ≻ L: Then we know by Lemma 19 that L ≡≈ s ≈̂ t2.
This means that there is an instance of Rule (Sup)

C ′ ∨ s ≈̂ t2 D′ ∨ s ≈̂ t1
C ′ ∨ D′ ∨ t2 ≈̂ t1

34 Schoisswohl et al.

As D is productive, and C is a counterexample we know by Lemma 25
that IN

∞ ̸|= D′ ∨ C ′ ∨ s ≈ t2, and IN
∞ |= s ≈̂ t1. Therefore IN

∞ |= s ≈
t1 ∧ s ̸≈ t2, which implies IN

∞ |= t2 ̸≈ t1, hence the conclusion is a
smaller counterexample.

else: Note that either L is strictly maximal or it is weakly maximal
and not in Lθ

+, which means that Rule (Sup) is applicable. Therefore
there is an instance of Rule (Sup)

D′ ∨ s ≈̂ t1 C ′ ∨ L[s]
C ′ ∨ D′ ∨ L[t1]

As D is productive we know by Lemma 25, that IN
∞ ̸|= D′. Further

we already know that IN
∞ ̸|= C ′ ∨ L[s], and as IN

∞ |= s ≈ t1 we know
that also IN

∞ ̸|= L[t1], hence the conclusion is a counterexample as
well. Due to the stability under contexts (Lemma 4), we know that
L[t1] ≺ L[s]. Further as L[s] ≺ s ≈̂ t1 we know that the conclusion is
smaller than the premise, which means that superposition reduced
the counterexample.

else if +js ± ks + t′ ∈ C ′ and s is a max atom: Then the Rule (TF) reduces
the counterexample.

else: We know that
– ∀t ∈ active(L).t is irreducible in IN

∞
– IN

≺C ̸|= C ′

– C is not productive
– L ∈ Lθ

+ ⇒ C = C ′ ∨ L

– L ̸∈ Lθ
+ ⇒ C = C ′ ∨ L

– IN
≺C = IN

C

Let’s case split on L

case +ks + t2 ≳2 0: As C is not productive it must be the case that ∃ +
js + t1 ≳1 0 ∈ C ′.s′ ≡ s.

if IN
∞ |= kt1 − jt2 > 0: This means that IN

∞ ̸|= jt2 − kt1 ≥ 0. Hence
there is an instance of Rule (IF)

C ′′ ∨ +js′ + t1 ≳1 0 ∨ +ks + t2 ≳2 0
C ′′ ∨ jt2 − kt1 ≳4 0 ∨ +js′ + t1 ≳1 0

which reduces the counterexample.
else if IN

∞ |= jt2 − kt1 > 0: This means that IN
∞ ̸|= kt1 −jt2 ≥ 0 Hence

there is an instance of Rule (IF)
C ′′ ∨ +js′ + t1 ≳1 0 ∨ +ks + t2 ≳2 0
C ′′ ∨ kt1 − jt2 ≳3 0 ∨ +ks + t2 ≳2 0

which reduces the counterexample.
else IN

∞ |= jt2 − kt1 ≈ 0: if ≳1=≳2: Then there is an instance of Rule (IF)
C ′′ ∨ +js′ + t1 ≳1 0 ∨ +ks + t2 ≳1 0
C ′′ ∨ kt1 − jt2 > 0 ∨ +ks + t2 ≳2 0

which reduces the counterexample.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 35

else if ≳1=>, and ≳2=≥: Then there is an instance of Rule (IF)
C ′′ ∨ +js′ + t1 > 0 ∨ +ks + t2 ≥ 0
C ′′ ∨ kt1 − jt2 > 0 ∨ +ks + t2 ≥ 0

which reduces the counterexample.
else if ≳1=≥, and ≳2=>: Then there is an instance of Rule (IF)

C ′′ ∨ +js′ + t1 ≥ 0 ∨ +ks + t2 > 0
C ′′ ∨ jt2 − kt1 > 0 ∨ +js′ + t1 ≥ 0

which reduces the counterexample.
case s ≈̂ t: As C is not productive we know that there is an s′ ≈̂ u ∈ C ′

such that s′ ≡ s, and IN
≺C ̸|= t ̸≈ u. This means there is an instance of

Equality Factoring (Rule (EF)) that reduces the counterexample.
case s ≈ s′ where s ≡ s′: Then C cannot be a counterexample. ⊣
case s ̸≈ s′ where s ≡ s′: Then there is an instance of equality resolution

(ER) that reduces the counterexample.
case s ̸≈ t where s̸≡t: As s is not reducible, and s ≻ t, and t can only be

reduced to smaller terms, we know that s ↓≠ t ↓. Hence IN
∞ |= s ̸≈ t,

which means C cannot be a counterexample. ⊣
case k ≳ 0 where ≳∈ {>, ≥}: Here we can reason in the same way as in

the case where L = k ≳ 0 was not strictly maximal.
case −ks + t > 0: Note that −k is negative as all positive coefficients have

are being removed by termfactoring in the case before.

IN
∞ ̸|= −ks + t > 0 ⇐⇒ IN

∞ ̸|= −k′s + t > 0
⇐⇒ IN

∞ |= +ks − t ≥ 0
⇐⇒ IN

∞ |= +ks − t > 0 ∥ IN
∞ |= +ks − t ≈ 0

if IN
∞ |= +ks − t ≈ 0: This is not possible as s is irreducible. ⊣

else: That means that IN
∞ |= kl − t ≥ 0 for some s′ > l ∈ IN

∞.
By construction of IN

∞ this means that there must be some productive
clause D = D′ ∨ js′ − jl ≳ 0. This further means that there is an
application of (FM)

D′ ∨ +js′ − jl ≳ 0 C ′ ∨ −ks + t > 0

C ′ ∨ D′ ∨ jt − jkl > 0
As D is productive, by Lemma 25 we know that IN

∞ |= ¬D′ ∧ js −
jl ≳ 0. Hence we know that IN

∞ ̸|= C ′ ∨ D′. Further we know that
IN

∞ |= kl − t ≥ 0, which means that IN
∞ ̸|= t − kl > 0, which means

that the conclusion is a counterexample.
We know that if there is some summand k′′s′′ of t with s ≡ s′, then
k′′ must be negative, as otherwise term factoring would be applicable,
which case we already handled before.

36 Schoisswohl et al.

+js ≺ − ks (Property 12)
=⇒ +js − jl ≺ − ks (Property 7)
=⇒ +js − jl ≺ − ks + t (Property 13)
=⇒ D′ ≺ +js − jl ≺ − ks + t

=⇒ D′ ∨ C ′ ≺ − ks + t ∨ C ′

Further as s′ = maxAtom(js′ − jl ≳ 0), and due to totality (Prop-
erty 2), we know that ∀s′′ ∈ maxAtoms(−ks + t > 0).s′′ ≡ s. This
implies that maxAtoms(−ks+ t > 0) ≻ maxAtoms(jt− jkl > 0). This
means by Lemma 16 that the conclusion is a smaller counterexample.

case −ks + t ≥ 0:

IN
∞ ̸|= −ks + t ≥ 0 ⇐⇒ IN

∞ ̸|= −ks + t > 0 & IN
∞ ̸|= −ks + t ≈ 0

⇐⇒ IN
∞ |= +ks − t ≥ 0 & IN

∞ ̸|= −ks + t ≈ 0
⇐⇒ IN

∞ |= +ks − t > 0 & IN
∞ ̸|= −ks + t ≈ 0

As previously means that IN
∞ |= kl − t ≥ 0 for some s′ > l ∈ IN

∞, hence
by construction of IN

∞ this means that there must be some productive
clause D = D′ ∨ js′ − jl ≳ 0. If ≳=> then we can reason as in the case
where L = −ks + t > 0.
If ≳=≥ then there is an instance of (FM≥).

D′ ∨ +js − jl ≥ 0 C ′ ∨ −ks + t ≥ 0

C ′ ∨ D′ ∨ jt − jkl > 0 ∨ −ks + t ≈ 0
As D is productive, by Lemma 25 we know that IN

∞ |= ¬D′ ∧ js − jl ≥ 0.
Hence we know that IN

∞ ̸|= C ′ ∨ D′. Further we know that IN
∞ |= kl − t ≥

0, which means that IN
∞ ̸|= jt − jkl > 0. Hence the conclusion is a

counterexample.
Further we can reason as in the case where L = −ks + t > 0 to establish
that C ′ ∨ D′ ∨ jt − jkl > 0 ≺ −ks + t ≥ 0. Together with Lemma 13 we
know that the conclusion is a smaller counterexample.

case ¬P (t1 . . . tn): Then we know that P (t1 . . . tn) ∈ IN
∞, hence there must

be a productive clause D = D′ ∨ P (t′
1 . . . t′

n), with ti ≡ t′
i for all i.

This means that there is a resolution inference (BR), that reduces the
counterexample.

D′ ∨ P (t1 . . . tn) C ′ ∨ ¬P (t′
1 . . . t′

n)
C ′ ∨ D′

As D is productive we know by Lemma 25 that IN
∞ ̸|= D′, hence the

conclusion is a smaller counterexample.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 37

5.2 ALASCA Lifting and Completeness

Variable Elimination. Theorem 4 establishes completeness of Alascaθ for ground
clauses wrt AQ. We next lift this result (and calculus) to non-ground clauses.

We introduce the concept of an unshielded variable. We say a term t : τQ is a
top level term of a literal L if t ∈ atoms(L). We call a variable x unshielded in
some clause C if x is a top level term of a literal in C, and there is no literal with
an atomic top level term t[x], and no uninterpreted literal L[x]. Observe that
within the Alascaθ rules, only maximal atomic terms in sums are being used in
rule applications. This means, lifting Alascaθ to Alasca is straightforward for
clauses where all maximal terms in sums are not variables. Further, due to the
subterm property, if a variable is maximal in a sum then it must be unshielded.
Hence, the only variables we have to deal within Alasca rule applications are
unshielded ones.

The work of [39] modifies a standard saturation algorithm by integrating it
with a variable elimination rule that gets rid of unshielded variables, without
compromising completeness of the calculus. Based on [39] and the variable elimi-
nation rule of [3], we extend Alascaθ with the Variable Elimination Rule (VE),
as given in Fig. 6. In what follows, we show that the handling of unshielded
variables in Fig. 6 can naturally be done within a standard saturation framework.

The (VE) rules replaces any clause with a set of clauses that is equivalent and
does not contain unshielded variables. We assume that the clause is normalized,
such that in every inequality x only occurs once with a factor 1 or −1, whereas for
for equalities, x only occurs with factor 1. A simple example for the application of
(VE) is the clause a − x > 0 ∨ x − b > 0 ∨ a + b + x ≥ 0, where x ∈ V, and a, b are
constants. By reasoning about inequalities, it is easy to see that this is equivalent
to a > x ∨ a + b ≥ x ∨ x > b, thus further equivalent to a > b ∨ a + b ≥ b, which
illustrates the benefit of variable elimination through (VE).
Lemma 26. The conclusion of (VE) is equivalent to its premise.

Proof. We will call a rule equivalence preserving iff its premises are equivalent to
its conclusion.

We will proof the fact that the rule is equivalence preserving reducing it to
the same fact about a simpler rule that does not contain equalities but only
inequalities, using the fact that every positive and negative equality can be
defined in terms of disequalities.

So let’s first consider the simplified version of the rule, where all predicate
symbols of the variable are either (>) or (≥)

C ∨
∨

i∈I

(x + bi ≳i 0) ∨
∨

j∈J

(−x + bj ≳j 0)
(VE∗)

C ∨
∨

i∈I,j∈J

(bi + bj ≳i,j 0)

where – (≳i), (≳j) ∈ {(≥), (>)}

– (≳i,j) =
{

(>) if (≳i) = (≳j) = (>)
(≥) otherwise

38 Schoisswohl et al.

Lemma 27. The conclusion of the rule (VE∗) is equivalent to its premise.

Proof. “=⇒”) The basic idea of this part of the proof is the following. Assuming
the conclusion of the rule is false, it defines a set of bounds, that must contain a
value m. This value m can then be used as an x to make the assumption false as
well. We will now formalize this intuition:

Suppose M ⊨ Hyp. In case M ⊨ C, we’re done, so let’s consider M ̸⊨ C. This
means we need to show that M ⊨

∨
i∈I

(x + bi ≳i 0) ∨
∨

j∈J

(−x + bj ≳j 0) =⇒ M ⊨∨
i∈I,j∈J

(bi + bj ≳i,j 0)

We will do that by contraposition

M ̸⊨
∨

i∈I,j∈J

(bi + bj ≳i,j 0)

⇔M ⊨
∧

i∈I,j∈J

¬(bi + bj ≳i,j 0)

⇔M ⊨
∧

i∈I,j∈J

(bj ̸≳i,j −bi)

⇔M(bj) ̸≳i,j M(−bi) (1)

Let us now find the least upper and greatest lower bounds for a value x that
will make

∨
i∈I

(x + bi ≳i 0) ∨
∨

j∈J

(−x + bj ≳j 0) false:

j− = argmaxj∈J(M(bj)) i+ = argmini∈I(−M(bi))
b− = M(bj−) b+ = −M(bi+)

Let m be an arbitrary value such that

m ∈


[b−, b+] if ⟨≳j− ,≳i+⟩ is ⟨>, >⟩
]b−, b+] if ⟨≳j− ,≳i+⟩ is ⟨≥, >⟩
[b−, b+[if ⟨≳j− ,≳i+⟩ is ⟨>, ≥⟩
]b−, b+[if ⟨≳j− ,≳i+⟩ is ⟨≥, ≥⟩

Note that due to the definition of ≳i,j , and (1), the value m exists: If on the
one hand (≥) ∈ {(≳i+), (≳j−)} then we have that (≳i+,j−) = (≥), which means
that by (1) we have that b− ̸≥ −b+ which means that b− < −b+, hence we could
choose the value b−−b+

2 . On the other hand if (>) = (≳i+) = (≳j−), then we
have (≳i+,j−) = (>), hence by (1) we know that b− ̸> −b+, which means that
b− ≤ −b+, which means we can again choose the same value.

Let’s show first that M{x 7→ m} ⊭ −x + bj ≳j 0 for any j ∈ J . If m ̸= M(bj)
then it is strictly greater, since it is greater or equal to b− which is the maximum

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 39

of all M(bj). If m = M(bj), then (due to the definition of m), ≳j must be >,
which means that we are done because ̸⊨ −bj + bj > 0.

Finally we need to show that M{x 7→ m} ⊭ x+ bi ≳i 0 for any i ∈ I. This can
be done analogous to the case before: If m ≠ −M(bi) then it is strictly less, since
it is less or equal to b+ which is the maximum of all −M(bi). If m = −M(bi),
then (due to the definition of m), ≳i must be >, which means that we are done
because ̸⊨ −bj + bj > 0.

“⇐=”) The intuition here is that if conclusion of the rule is true, then must
be some value m within the bounds of some −bi, bj . Which means that every x
will either be less then this m, hence less than bj , or it will be greater than this
m, hence greater than −bi, which means that the hypothesis is true.

Let us formalize this argument: As in the case before, if M ⊨ C, we’re done. So
let’s assume that M ⊨ bi + bj ≳i,j 0 for some ⟨i, j⟩ ∈ I × J . We define m = bi+bj

2 .

if M(x) > m: Then we have that M(x) > m ≥ −bj , which means M ⊨ x+bj > 0.
if M(x) < m: We have that M(x) < m ≤ bi, hence M ⊨ −x + bi > 0.
if M(x) = m: We make a case distinction base on ≳i and ≳j :

if (≳i) = (≳j) = (>): Then (≳i,j) = (>). This means −M(bi) < m <
M(bj), which means that M ⊨ x + bi > 0.

if (≥) = (≳i): Then (≳i,j) = (>), hence −M(bi) ≤ m ≤ M(bj), which
means that M ⊨ x + bi ≥ 0.

if (≥) = (≳j): Then (≳i,j) = (>), hence −M(bi) ≤ m ≤ M(bj), which
means that M ⊨ −x + bj ≥ 0.

Now that we have established that (VE∗) is equivalence preserving we can
proof it for the more general rule (VE) by reducing it to the simpler one. We first
rewrite the premise of the general rule to be a disjunction of inequalities.

C ∨
∨
i∈I

x + bi ≳i 0 ∨
∨
j∈J

−x + bj ≳j 0 ∨
∨

k∈K

x + bk ≈ 0 ∨
∨
l∈L

x + bl ̸≈ 0

⇐⇒C ∨
∨
i∈I

x + bi ≳i 0 ∨
∨
j∈J

−x + bj ≳j 0 ∨
∨

k∈K

x + bk ≈ 0 ∨
∨
l∈L

x + bl > 0 ∨
∨
l∈L

−x − bl > 0

⇐⇒

C ∨
∨

i∈I

x + bi ≳i 0 ∨
∨

j∈J

−x + bj ≳j 0 ∨
∨

k∈K

(
x + bk ≥ 0 ∧ −x − bk ≥ 0

)
∨

∨
l∈L

x + bl > 0 ∨
∨

l∈L

−x − bl > 0


⇐⇒

∧
K+⊆K

C ∨
∨

i∈I

x + bi ≳i 0 ∨
∨

j∈J

−x + bj ≳j 0 ∨
∨

k∈K+
x + bk ≥ 0 ∨

∨
k∈K−

−x − bk ≥ 0

∨
∨

l∈L

x + bl > 0 ∨
∨

l∈L

−x − bl > 0


where K− = K \ K+.

40 Schoisswohl et al.

Then we can apply (VE∗)

∧
K+⊆K



C ∨
∨

i∈I,j∈J

bi + bj ≳i,j 0 ∨
∨

i∈I,k∈K−
bi − bk ≥ 0 ∨

∨
i∈I,l∈L

bi − bl ≳i 0

∨
∨

j∈J,k∈K+
bj + bk ≥ 0 ∨

∨
j∈J,l∈L

bj + bl ≳j 0

∨
∨

k1∈K+,k2∈K−
bk1 − bk2 ≥ 0 ∨

∨
k∈K+,l∈L

bk − bl ≥ 0

∨
∨

k∈K−,l∈L

bl − bk ≥ 0

∨
∨

l1∈L,l2∈L

bl1 − bl2 > 0


which we can simplify to

∧
K+⊆K



C ∨
∨

i∈I,j∈J

bi + bj ≳i,j 0 ∨
∨

i∈I,k∈K−
bi − bk ≥ 0 ∨

∨
i∈I,l∈L

bi − bl ≳i 0

∨
∨

j∈J,k∈K+
bj + bk ≥ 0 ∨

∨
j∈J,l∈L

bj + bl ≳j 0

∨
∨

k1∈K+,k2∈K−
bk1 − bk2 ≥ 0 ∨

∨
k∈K+,l∈L

bk − bl ≥ 0

∨
∨

k∈K−,l∈L

bl − bk ≥ 0

∨
∨

⟨l1,l2⟩∈pairs(L)
bl1 − bl2 ̸≈ 0


where pairs(S) = {⟨x, y⟩ ∈ S × S, x ≺ y} for some ordering ≺ on S. Which
concludes our proof.

Alasca Calculus - Non-Ground Version with Unification with Abstraction. We
now define our lifted calculus Alasca, as follows. Let Alasca− be the calculus
Alascaθ being lifted for clauses without unshielded variables. We define Alasca

to be Alasca− chained with the variable elimination rule. That is, the result of
every rule application is simplified using (VE) as long as applicable.

Formally define Alasca = {γ (VE) | γ ∈ Alasca−}, where ◦∗ and ◦ (VE) are
defined as follows:

γ(VE) =
{

γ∗ if the conclusion of γ contains an unshielded variable
γ else

(
C1 . . . Cn

D

)∗
=

(C1 . . . Cn

D (VE)
D′

)

Theorem 5. Alasca is the lifting of a counterexample-reducing inference sys-

tem for sets of clauses without unshielded variables.

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 41

Proof. We observe that by definition Alasca will never produce clauses with
unshielded variables. Further by Lemma 26 it will derive sets of clauses equivalent
to Alasca−. Thus the only thing to show is that in cases where Alasca− reduces
a counterexample Cn to D, the clause D′, the result of simplifying D using (VE),
will be smaller than Cn as well. As Alasca− is a lifting of Alascaθ, only
ground instances of Alasca− inferences that actually are inferences of Alascaθ

are relevant for reducing counterexamples. These inferences can only introduce
unshielded variables x, if x has been shielded by some term si in a hypothesis si

such that si ∈ active(Ci). Further for such a rule the conclusion D′ only contains
atoms that were contained in some hypothesis before, but does not contain the
maximal atom si anymore. Therefore, as the literal ordering orders literals by
their atomssafe, and clauses by the multiset extension of that literal ordering, the
result is also smaller than Cn. ⊓⊔

Theorem 5 implies that Alasca is refutationally complete wrt AQ for sets of
clauses without unshielded variables. As (VE) can be used to preprocess arbitrary
sets of clauses to eliminate all unshielded variables, we get the following.
Corollary 1. If N is a set of clauses that is unsatisfiable with respect to AQ,

then N can be refuted using Alasca.

We conclude this section by specifying the lifting of Alascaθ to get Alasca−.
To this end, we use our uwa results and properties for unification with abstraction
(Sect. 4). We note that using unification modulo Aeq would require us to develop
an algorithmic approach that computes a complete set of unifiers modulo Aeq,
which is a quite challenging task both in theory and in practice. Instead, using
Theorem 1 and Theorem 3, we need to only specify a canAbstract predicate that
guards interpreted functions and captures Aeq within uwa. This is achieved
by defining canAbstract(s, t) iff any function symbol f ∈ {sym(s), sym(t)} is an
interpreted function f ∈ Q ∪ {+}.This choice of the canAbstract predicate is a
slight modification of the abstraction strategy one_side_interpreted of [33].
We note that this is not the only choice for the predicate to fulfil the canAbstract
properties. Consider for example the terms f(x) + a, and a + b. There is no
substitution that will make these two terms equal, but our abstraction predicate
introduces a constraint upon trying to unify them. In order to address this, we
introduce an alternative canAbstract predicate that compares the atoms of a
term, instead of only looking at the outer most symbol:

We define canAbstract(s, t) iff
– sym(s) = sym(t) is interpreted, or
– there is a variable in atomssafe(s) ∪ atomssafe(t), or
– ⟨n, {̇f | f(. . .) ∈ A}̇⟩ =wmul ⟨m, {̇f | f(. . .) ∈ B}̇⟩,

where ⟨n, A⟩ = atomssafe(s), ⟨m, B⟩ = atomssafe(t).

6 Implementation and Experiments

We implemented Alasca 5 in the extension of the Vampire theorem prover [26].
5 available at https://github.com/vprover/vampire/tree/alasca

https://github.com/vprover/vampire/tree/alasca

42 Schoisswohl et al.

Benchmarks (#) Alasca Cvc5 Vampire Yices UltElim SmtInt veriT solved
all (6374) 5744 5626 5585 5531 5218 828 465 5988
LRA (1722) 1572 1401 1396 1722 1469 623 89 1722
NRA (3814) 3800 3804 3803 3809 3669 0 0 3812
UFLRA (10) 10 10 10 0 0 10 10 10
Triangular (34) 24 10 13 0 0 0 6 25
Limit (280) 100 90 81 0 80 0 90 100
SH (514) 238 311 282 0 0 195 270 319

Table 1. Experimental results, showing the numbers of solved problems.

Benchmarks. We evaluated the practicality of Alasca using the following six
sets of benchmarks, resulting all together in 6374 examples, as listed in Table 1
and detailed next. (i) We considered all sets of benchmarks from the SMT-LIB
repository [7] set that involve real arithmetic and uninterpreted functions, but no
other theories. These are the three benchmark sets corresponding to the LRA,
NRA, and UFLRA logics in SMT-LIB. (ii) We further used Sledgehammer
examples generated by [15], using the SMT-LIB syntax. From the examples
of [15], we selected those benchmarks that involve real arithmetic but no other
theories. We refer to this benchmark set as SH. (iii) Finally, we also created two
new sets of benchmarks, Triangular, and Limit, exploiting various mathemat-
ical properties. The Triangular suite contains variations of our motivating
example from Sect. 2, and thus comes with reasoning challenges about triangular
inequalities and continuous functions. The Limit benchmark set is comprised of
problems that combine various limit properties of real-valued functions.
Experimental Setup. We compared our implementation against the solvers from
the Arith (arithmetic) division of the SMT-COMP competition 2022. These
solvers, given in colums 3–8 of Table 1, are: Cvc5 [5], Vampire [34], Yices [19],
UltElim [8], SmtInt [21], and veriT [2]. We note that Vampire is run in
its competition portfolio mode, which includes the work from [33]. Alasca

uses the same portfolio but implements our modified version of unification with
abstraction (Sect. 4), disabling the use of theory axioms relying on our new
Alasca rules (Sect. 5). We ran our experiments using the SMT-COMP 2022
competition setup: based on the StarExec Iowa cluster, with a 20 minutes timeout
and using 4 cores. Benchmarks, solvers and results are publicly available6.
Experimental Results. Table 1 summarizes our experimental findings and indicates
the overall best performance of Alasca. For example, Alasca outperforms the
two best arithmetic solvers of SMT-COMP 2022 by solving 118 more problems
than Cvc5 and 159 more problems than Vampire. An interesting fact to point
out here is that Vampire outperforms Alasca on the problem set SH. Looking
into the results in detail revealed that some problems can be solved by Vampire

by applying only one rule, like demodulation, or unit resulting resolution, the
applications of which are prevented in Alasca, as literals are normalized so
that the rules are not applicable anymore. For this reason believe that future
6 https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=535817

https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=535817

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 43

adjustments of first-order simplification rules (such as subsumption resolution and
demodulation) for Alasca will further push the overall superiority of Alasca.

7 Conclusions and Future Work

We introduced the Alasca calculus and drastically improved the performance
of superposition theorem proving on linear arithmetic. Alasca eliminates the
use of theory axioms by introducing theory-specific rules such as an analogue
of Fourier-Motzkin elimination. We perform unification with abstraction with a
general theoretical foundation, which, together with our variable elimination rules,
serves as a replacement for unification modulo theory. Our experiments show
that Alasca is competitive with state-of-the-art theorem provers, solving more
problems than any prover that entered the arithmetic division in SMT-COMP
2022. Future work includes designing an integer version of Alasca, developing
different versions for the canAbstract predicate, and improving literal/clause
selections within Alasca.
Acknowledgements. This work was partially supported by the ERC Consolida-
tor Grant ARTIST 101002685, the TU Wien Doctoral College SecInt, the FWF
SFB project SpyCoDe F8500, and the EPSRC grant EP/V000497/1.

References

1. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity Com-
piler’s Model Checker. In: CAV, LNCS, vol. 13371, pp. 325–338, Springer (2022),
https://doi.org/10.1007/978-3-031-13185-1_16

2. Andreotti, B., Barbosa, H., Fontaine, P., Schurr, H.J.: veriT at SMT-COMP 2022.
https://smt-comp.github.io/2022/system-descriptions/veriT.pdf (2022)

3. Bachmair, L., Ganzinger, H.: Ordered Chaining Calculi for First-Order
Theories of Transitive Relations. J. ACM 45(6), 1007–1049 (1998),
https://doi.org/10.1145/293347.293352, URL https://doi.org/10.1145/293347.
293352

4. Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Handbook of Automated
Reasoning, pp. 19–99, Elsevier and MIT Press (2001), https://doi.org/10.1016/b978-
044450813-3/50004-7

5. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mohamed, A.,
Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds,
A., Sheng, Y., Tinelli, C., , Zohar, Y.: CVC5 at the SMT Competition 2022.
https://smt-comp.github.io/2022/system-descriptions/cvc5.pdf (2022)

6. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M.,
Mohamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: A Versatile and Industrial-
Strength SMT Solver. In: TACAS, LNCS, vol. 13243, pp. 415–442, Springer (2022),
https://doi.org/10.1007/978-3-030-99524-9_24

7. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

https://doi.org/10.1007/978-3-031-13185-1_16
https://smt-comp.github.io/2022/system-descriptions/veriT.pdf
https://doi.org/10.1145/293347.293352
https://doi.org/10.1145/293347.293352
https://doi.org/10.1145/293347.293352
https://doi.org/10.1016/b978-044450813-3/50004-7
https://doi.org/10.1016/b978-044450813-3/50004-7
https://smt-comp.github.io/2022/system-descriptions/cvc5.pdf
https://doi.org/10.1007/978-3-030-99524-9_24

44 Schoisswohl et al.

8. Barth, M., Dietsch, D., Heizmann, M., Podelski, A.: Ultimate Eliminator at
SMT-COMP 2022. https://smt-comp.github.io/2022/system-descriptions/
UltimateEliminator%2BMathSAT.pdf (2022)

9. Baumgartner, P., Bax, J., Waldmann, U.: Beagle - A Hierarchic Superposition
Theorem Prover. In: CADE, LNCS, vol. 9195, pp. 367–377, Springer (2015),
https://doi.org/10.1007/978-3-319-21401-6_25

10. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Satisfiability Modulo Theories
and Assignments. In: CADE, LNCS, vol. 10395, pp. 42–59, Springer (2017),
https://doi.org/10.1007/978-3-319-63046-5_4

11. Bromberger, M., Fleury, M., Schwarz, S., Weidenbach, C.: SPASS-SATT - A
CDCL(LA) solver. In: CADE, LNCS, vol. 11716, pp. 111–122, Springer (2019),
https://doi.org/10.1007/978-3-030-29436-6_7

12. Bruttomesso, R., Pek, E., Sharygina, N., Tsitovich, A.: The OpenSMT Solver. In:
TACAS, LNCS, vol. 6015, pp. 150–153, Springer (2010), https://doi.org/10.1007/978-
3-642-12002-2_12

13. Cook, B.: Formal Reasoning About the Security of Amazon Web Services. In: CAV,
LNCS, vol. 10981, pp. 38–47, Springer (2018), https://doi.org/10.1007/978-3-319-
96145-3_3

14. Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induction,
and Beyond. Ph.D. thesis, Ecole Polytechnique, Paris, France (2015)

15. Desharnais, M., Vukmirovic, P., Blanchette, J., Wenzel, M.: Seventeen
Provers Under the Hammer. In: ITP, LIPIcs, vol. 237, pp. 8:1–8:18 (2022),
https://doi.org/10.4230/LIPIcs.ITP.2022.8

16. Distefano, D., Fähndrich, M., Logozzo, F., O’Hearn, P.W.: Scaling Static Analyses at
Facebook. Commun. ACM 62(8), 62–70 (2019), https://doi.org/10.1145/3338112

17. Duarte, A., Korovin, K.: Implementing Superposition in iProver (System
Description). In: IJCAR, LNCS, vol. 12167, pp. 388–397, Springer (2020),
https://doi.org/10.1007/978-3-030-51054-1_24

18. Elad, N., Rain, S., Immerman, N., Kovács, L., Sagiv, M.: Summing up
Smart Transitions. In: CAV, LNCS, vol. 12759, pp. 317–340, Springer (2021),
https://doi.org/10.1007/978-3-030-81685-8_15

19. Graham-Lengrand, S.: Yices-QS 2022, an extension of Yices for quantified satisfiability.
https://smt-comp.github.io/2022/system-descriptions/YicesQS.pdf (2022)

20. Gurfinkel, A.: Program Verification with Constrained Horn Clauses (Invited Paper).
In: CAV, LNCS, vol. 13371, pp. 19–29, Springer (2022), https://doi.org/10.1007/978-
3-031-13185-1_2

21. Hoenicke, J., Schindler, T.: SMTInterpol with Resolution Proofs. https://smt-
comp.github.io/2022/system-descriptions/smtinterpol.pdf (2022)

22. Kapur, D., Narendran, P.: Double-exponential Complexity of Computing a Com-
plete Set of AC-Unifiers. In: LICS, pp. 11–21, IEEE Computer Society (1992),
https://doi.org/10.1109/LICS.1992.185515

23. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict Resolution. In: CP, LNCS, vol.
5732, pp. 509–523, Springer (2009), https://doi.org/10.1007/978-3-642-04244-7_41

24. Korovin, K., Voronkov, A.: An AC-Compatible Knuth-Bendix Order. In: CADE, LNCS,
vol. 2741, pp. 47–59, Springer (2003), https://doi.org/10.1007/978-3-540-45085-6_5

25. Korovin, K., Voronkov, A.: Integrating Linear Arithmetic into Superposition Calculus.
In: CSLs, LNCS, vol. 4646, pp. 223–237, Springer (2007), https://doi.org/10.1007/978-
3-540-74915-8_19

26. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: CAV, LNCS,
vol. 8044, pp. 1–35, Springer (2013), https://doi.org/10.1007/978-3-642-39799-8_1

https://smt-comp.github.io/2022/system-descriptions/UltimateEliminator%2BMathSAT.pdf
https://smt-comp.github.io/2022/system-descriptions/UltimateEliminator%2BMathSAT.pdf
https://doi.org/10.1007/978-3-319-21401-6_25
https://doi.org/10.1007/978-3-319-63046-5_4
https://doi.org/10.1007/978-3-030-29436-6_7
https://doi.org/10.1007/978-3-642-12002-2_12
https://doi.org/10.1007/978-3-642-12002-2_12
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.1007/978-3-319-96145-3_3
https://doi.org/10.4230/LIPIcs.ITP.2022.8
https://doi.org/10.1145/3338112
https://doi.org/10.1007/978-3-030-51054-1_24
https://doi.org/10.1007/978-3-030-81685-8_15
https://smt-comp.github.io/2022/system-descriptions/YicesQS.pdf
https://doi.org/10.1007/978-3-031-13185-1_2
https://doi.org/10.1007/978-3-031-13185-1_2
https://smt-comp.github.io/2022/system-descriptions/smtinterpol.pdf
https://smt-comp.github.io/2022/system-descriptions/smtinterpol.pdf
https://doi.org/10.1109/LICS.1992.185515
https://doi.org/10.1007/978-3-642-04244-7_41
https://doi.org/10.1007/978-3-540-45085-6_5
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1007/978-3-540-74915-8_19
https://doi.org/10.1007/978-3-642-39799-8_1

ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version) 45

27. de Moura, L.M., Bjørner, N.S.: Efficient E-Matching for SMT Solvers. In: CADE,
LNCS, vol. 4603, pp. 183–198, Springer (2007), https://doi.org/10.1007/978-3-540-
73595-3_13

28. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: TACAS, LNCS, vol.
4963, pp. 337–340, Springer (2008), https://doi.org/10.1007/978-3-540-78800-3_24

29. de Moura, L.M., Jovanovic, D.: A Model-Constructing Satisfiability Calculus. In:
VMCAI, LNCS, vol. 7737, pp. 1–12, Springer (2013), https://doi.org/10.1007/978-3-
642-35873-9_1

30. Nieuwenhuis, R., Rubio, A.: Paramodulation-Based Theorem Proving. In: Hand-
book of Automated Reasoning, pp. 371–443, Elsevier and MIT Press (2001),
https://doi.org/10.1016/b978-044450813-3/50009-6

31. Passmore, G.O.: Some Lessons Learned in the Industrialization of Formal Methods for
Financial Algorithms. In: FM, LNCS, vol. 13047, pp. 717–721, Springer (2021),
https://doi.org/10.1007/978-3-030-90870-6_39

32. Reger, G., Bjørner, N.S., Suda, M., Voronkov, A.: AVATAR Modulo Theories.
In: GCAI, EPiC Series in Computing, vol. 41, pp. 39–52, EasyChair (2016),
https://doi.org/10.29007/k6tp

33. Reger, G., Suda, M., Voronkov, A.: Unification with Abstraction and Theory
Instantiation in Saturation-Based Reasoning. In: TACAS, LNCS, vol. 10805, pp.
3–22, Springer (2018), https://doi.org/10.1007/978-3-319-89960-2_1

34. Reger, G., Suda, M., Voronkov, A., Kovács, L., Bhayat, A., Gleiss, B., Hajdu,
M., Hozzova, P., Evgeny Kotelnikov, J.R., Rawson, M., Riener, M., Robillard, S.,
Schoisswohl, J.: Vampire 4.7-SMT System Description. https://smt-comp.github.
io/2022/system-descriptions/Vampire.pdf (2022)

35. Reynolds, A., King, T., Kuncak, V.: Solving Quantified Linear Arithmetic
by Counterexample-Guided Instantiation. FMSD 51(3), 500–532 (2017),
https://doi.org/10.1007/s10703-017-0290-y

36. Schulz, S., Cruanes, S., Vukmirovic, P.: Faster, Higher, Stronger: E 2.3. In: CADE,
LNCS, vol. 11716, pp. 495–507, Springer (2019), https://doi.org/10.1007/978-3-030-
29436-6_29

37. Voronkov, A.: AVATAR: The Architecture for First-Order Theorem Provers. In: CAV,
LNCS, vol. 8559, pp. 696–710, Springer (2014), https://doi.org/10.1007/978-3-319-
08867-9_46

38. Waldmann, U.: Extending Reduction Orderings to ACU-Compatible Reduction
Orderings. Inf. Process. Lett. 67(1), 43–49 (1998), https://doi.org/10.1016/S0020-
0190(98)00084-2

39. Waldmann, U.: Superposition for Divisible Torsion-Free Abelian Groups. In: CADE,
LNCS, vol. 1421, pp. 144–159, Springer (1998), https://doi.org/10.1007/BFb0054257

40. Yamada, A., Winkler, S., Hirokawa, N., Middeldorp, A.: AC-KBO
Revisited. Theory Pract. Log. Program. 16(2), 163–188 (2016),
https://doi.org/10.1017/S1471068415000083

https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-73595-3_13
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1016/b978-044450813-3/50009-6
https://doi.org/10.1007/978-3-030-90870-6_39
https://doi.org/10.29007/k6tp
https://doi.org/10.1007/978-3-319-89960-2_1
https://smt-comp.github.io/2022/system-descriptions/Vampire.pdf
https://smt-comp.github.io/2022/system-descriptions/Vampire.pdf
https://doi.org/10.1007/s10703-017-0290-y
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-030-29436-6_29
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1007/978-3-319-08867-9_46
https://doi.org/10.1016/S0020-0190(98)00084-2
https://doi.org/10.1016/S0020-0190(98)00084-2
https://doi.org/10.1007/BFb0054257
https://doi.org/10.1017/S1471068415000083

	ALASCA: Reasoning in Quantified Linear Arithmetic (Extended Version)

