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UNCERTAINTY IMPACT ON MICRO-VIBRATION CONTROL OF AN 
ORBITING LARGE ADAPTIVE SPACE STRUCTURE 

Federica Angeletti* and Paolo Gasbarri†  

Large deployable structures are required for the advancement of modern space 

activities. A wide variety of EO (Earth Observation) satellites are actually using 

and will profit by large antenna systems supported by truss-like structures with 

low mass and stiffness. A net of smart actuators can be embedded in the sup-

porting frame elements to make the structure adaptive itself and to limit unde-

sired elastic vibrations. In the present paper, the supporting structure of a very 

large mesh reflector is investigated. An optimization procedure has been carried 

out to evaluate the damping efficacy of the actuators. After having assessed the 

best authority of the devices belonging to the active net, a control strategy has 

been implemented to coordinate their simultaneous action. One of the most rele-

vant issue to ensure a good performance of a spacecraft integrated control strat-

egy is related to its robustness when some uncertainty parameters are considered 

at design stage. In addition, the properties of space modules may be affected by 

slight changes due to launch loads. The effects of the attitude control authority 

and its robustness to uncertainties on mechanical and elastic parameters of both 

passive structure and actuators have been analysed and discussed. 

INTRODUCTION 

The tendency of implementing large structures on spacecraft and narrowing performance requirements 

has significantly affected space activities lately. As for that, a consistent investigation aimed at coping with 

the interaction between platform control and flexible dynamics of the system is currently needed. The Con-

trol/Structure Interaction (CSI) can arise in various situations, thus entailing a deterioration of in-orbit per-

formance that could be achieved by space systems. In-flight instability phenomena and even failure of the 

mission are undesired potential scenarios. Both latter and former have concerned telecommunication mis-

sions, with loss of operations time and achievable data.1 Satellites equipped with wide lightweight flexible 

elements, as hoop reflector antennas, booms and long masts, call for the capacity of performing fast and 

precise manoeuvres without losing a strict control over flexible parts. Spacecraft equipped with large highly 

flexible appendages implies closely spaced structural modes and overlapping bandwidth.2 Consequently, 

considering the CSI problem when designing satellites control systems is of paramount importance.  

In recent years, advancements in counteracting CSI led to a significant increase of spacecraft reliability 

and operative life in modern space missions. Be it as it may, there exist a lack in alternative solutions other 

than classical suppression by feedback control system of the main rigid platform. The most widely used 

techniques are single loop frequency design methods, in particular a PID control for the rigid platform cou-

pled with filters to eliminate resonant peaks of predominant elastic modes.3 The shortage of available tech-

niques stems mainly from scarcity of comprehensive understanding and implementation in the design phase 
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of the aforementioned interaction problem. It is therefore fundamental the design process is considered at 

an integrated system level.  

Research has been conducted on active distributed control for large and highly flexible structures. This 

approach consists in stiffening the structure in an active control way by avoiding implementing more mass 

or material with higher Young modulus. Nevertheless, in the majority of current space missions, large an-

tennas are supported by passive Extendable Supporting Structures (ESSs), thus unable to react to disturb-

ances originated from platform operations and environmental perturbations. In a recent investigation con-

ducted by Luo et al.4, the problem of active damping by piezo devices for hoop truss structures is ad-

dressed. Furthermore, a Fuzzy-based approach by Xu et al.5 is implemented for a Gossamer space structure. 

On the contrary, according to the proposed approach, a network of smart piezoelectric devices can be em-

bedded in the structure to make it adaptive.6 In more detail, the attention has been focused on a specific 

kind of actuators, i.e. linear PZT stacks, where a small physical expansion along their length occurs when 

applying a voltage potential. This actuators category is currently available on the international market as 

devices to be used both in vacuum and extreme temperatures. In view of the above, in the paper a PD-

feedback scheme with gains derived by a preliminary optimization procedure aimed at identify the devices 

authority is implemented and a robustness analysis (via Monte Carlo simulations) is performed to assess the 

efficacy of the strategy.  

In this work, the mathematical model of an in-orbit spacecraft equipped with a mesh reflector support-

ing structure is reported. The equations of motion of the system are derived according to a classical La-

grangian formulation coupled with an alternative FEM formulation describing embedded piezo-actuators. 

Then, two optimization algorithms are implemented to find the set of gains that minimizes the power con-

sumption of the control system. The method providing with the lowest sum of the gains is selected for fur-

ther use. To conveniently implement a feedback control law based on the aforementioned gains, a state-

space formulation is introduced. The main numerical results obtained after simulating a general spacecraft 

manoeuvre are reported and discussed. In the last section, the effects of uncertainties affecting piezo-

devices and passive structures physical properties are investigated, as well as the impact of damaged actua-

tors on the damping capabilities of the controller is considered and discussed.  
 

MATHEMATICAL MODELLING 

The purpose of this paper is to investigate the ability of a network of piezo actuators to reduce the elas-

tic vibrations induced on flexible appendices during an attitude manoeuvre, even if some parameters in-

volved in the control laws are not known exactly. To this aim, a system configuration comprised of a cen-

tral rigid satellite (1), a flexible boom (2) and a large antenna mesh structure (3) has been chosen to validate 

the active distributed control solution. The analysed antenna model is a planar structure composed of active 

truss elements, in a way to reproduce the reticular system that supports the reflector in the actual tri-

dimensional case (see Figure 1). 

 

Figure 1. Planar system model 

 

Figure 2. Reference frames 
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The spacecraft is hereby considered as a rigid hub equipped with a flexible appendage. The equations of 

motion of a flexible body in space environment are here presented according to a Lagrangian formulation 

complemented with FEM theory. 7,8 

 

Kinematics 

The motion of a generic point P of the body is given by the superposition of a rigid motion plus a set of 

structural modes.9 As for that, the vector representing the position of the point P in an inertial, Earth-

centred, reference frame is  

  1
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where 
O

I
X represents the position vector of a generic body reference point in the inertial frame (selected as 

the platform centre of mass in this study),  is the aforementioned rigid motion associated at the point P in 

the body reference frame, 
k

are the first N-set of the structure eigenvectors and 
k

A their relevant modal 

amplitudes. The matrix R  describes the rotation from the body reference frame to the inertial one. This op-

eration is accomplished in two steps. In the first place, we move from body reference frame to orbital axes 

by the means of the matrix 
1
( )R   describing the attitude of the body with respect to the local vertical. 

Then, by using the matrix 
2
( )R   depending on the orbital parameter   (in-orbit position of the satellite), 

we arrive in the inertial frame. It is worth noting the terms in Equation (1) are of different orders of magni-

tude. The first one is of the order of the Earth equatorial radius, the second one of a characteristic dimen-

sion L of the body and the third one is the elastic deformation, a small fraction of L.  

 

Energy functionals 

To write the equations of motion according to Hamilton’s principle, the proper functionals have to be 

defined. The kinetic energy is defined as 
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where 
.

X  is the derivative with respect to time of the position vector representing point P in the body refer-

ence frame. It can be expressed as 
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with x position of the point, rigid plus elastic, in the body reference frame. The term U is an anti-symmetric 

matrix containing the angular velocity of the body. 

For the potential energy we consider the elastic and piezoelectric contributions. For each finite element, 

the piezo materials constitutive equations can be written under the form8 
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F

S

F

T c S e E

D e S E
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 
  (5) 

where T  is the stress vector, S  the strain vector, 
F

E the electric field, D  the electric displacement, 
E

c  the 

elastic coefficient at constant electric field, 
T

e the piezoelectric coupling term and  
S  the dielectric coeffi-

cients at constant strain. According to linear piezoelectricity theory and IEEE88 standard, the electrical en-

thalpy H is defined as 10 
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the potential function can be written as 

 
1

2
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S T E D dB       (7) 

By using the FEM approach, the displacement field X  and the electric potentials 
i
 over the elements 

are related to the nodal values by the means of shape functions Γ, as described in the following relations: 

 
X i
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x x

 

 

 
  (8) 

Therefore, the strain field and the electric field are related to nodal values by shape functions deriva-

tives B 
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where D is a matrix containing differential operators. Considering Equations (7)-(9), the potential energy 

becomes 
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The gravitational potential can be defined as a Newtonian potential acting on a point at distance r from 

the Earth center. The expression is presented below 
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where 
O

 is the Earth’s gravitational constant. 

 

FEM formulation 

The antenna structure is composed of ten modules (or bays) with the same geometrical and physical 

properties. To study the dynamic behaviour of the flexible appendix, the FEM approach is needed (see Fig-

ure 3). The structural components are modelled as beams with three degrees of freedom for each node as 

indicated in Figure 5. Each truss is further divided into three elements to enhance the finite elements repre-

sentation of the system dynamics. The boom is made up of eight beams elements, with different geometric 

and physics properties with respect to the antenna ones. The system comprises 251 elements connected by 

212 nodes, reaching a total of 636 degrees of freedom.  

The local stiffness and mass matrices of the two-node passive beam are implemented according to clas-

sical FEM theory. The local matrices are then assembled in global ones by using a mapping matrix describ-

ing the interconnections and orientation of nodes and trusses in the plane. The complete stiffness and mass 

matrices, as well as the eigenvalue and modes originated from the assembled system, have been computed 

by the means of a MATLAB FEM code and then validated by comparison with a commercial software (i.e. 

MSC Nastran).  

To effectively counteract undesired elastic vibrations on both boom and antenna structures, a set of pie-

zo-electric devices has been embedded within the beams. The mass associated to the active devices is not 

neglected in this study. The device action is meant to be applied only to the axial beam direction, due to the 

reticular nature of the structure. It is possible to determine the equivalent stiffness parameter to be used in 

the finite element formulation. 11 We can imagine segmenting the adaptive-truss in three parts: a central ac-

tive and two symmetrical passive parts. The parts are considered as rigidly connected between them. The 
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central part length is equal to the dimension of the piezo-devices, while the lateral ones can vary according-

ly to the selected structure. In this case, they have equal lengths. Concerning the central active part, an 

equivalent stiffness coefficient can be defined by considering the stiffness of the host structure in parallel 

with the stiffness of the active device embedded in it. 

 

Figure 3. FEM discretization 

 

 

Figure 4. Equivalent stiffness formulation 

 

Figure 5. Passive beam element 

 

Referring to Figure 4, we can write 
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The equivalent stiffness parameter for the whole element is finally defined as the series of three “elastic 

springs” 
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  (15) 

Equilibrium equations 

The equations of motion can be derived according to a classical Lagrangian approach. By referring to L 

as the Lagrangian 

 L K V     (16) 

the equations can be written in the form 

 
L

d L L
F

dt SS

 
 
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  (17) 

with  the generalized forces acting on the system (other than the gravitational ones, as the control forces). 

By performing the relevant algebra, not reported here for the sake of brevity, it is possible to obtain the 

non-linear dynamics of a flexible spacecraft under the gravity and gravity gradient field effects when the 

structural elements contain piezoelectric stacks actuators. The equations of motion are hereby reported:  
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where M is the total mass of the system, ω indicates the angular velocity of the spacecraft, J is the rota-

tional inertia of the system, 
k

  represents the k-th eigenfrequency of the structure, 
k

  is the damping coef-

ficient and Q  is the electric displacement vector. The control forces applied to the platform are referred as 

C
F  and 

C
 . It is worth noting the static moment p derives from the choice of the body reference frame 

origin as the centre of mass of the platform without the flexible appendage. Furthermore, the static moment 

depends also on the elastic displacements through the modal participation factors 
kT and the modal ampli-

tudes. Indeed, we can write 

 
1

k

N

T k

k B

withp p A p dB 


      (22) 

where the modal participation factors are  
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  (23) 

Due to the large number of the finite element model DOFs, a truncated modal matrix including only the 

first h modes (normalized with respect to mass) has been introduced to reduce the system variables and 

avoid an exceedingly high computational cost. The nodal displacement vector   can be written in the modal 

domain as 

 
S

x A   (24) 

As a consequence, after having left-multiplied the third equation of motion by the transposed modal matrix 

the electro-mechanical coupling matrix becomes 

 T

X X
K K    (25) 

The gravitational terms are listed below  
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where 
G

F  is the vector of gravitational forces in the Inertial Reference frame, 
G

C  indicates the gravity 

gradient torque in the Body Reference frame and ,G k
F  is the generalized gravitational force projected on 

the k-th elastic mode. The term ŝ  is the versor of the local vertical passing through the origin of the Body 

Reference Frame. 
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OPTIMIZATION PROCESS 

To better understand the effect of purely active damping on the structure the flexible structure has 

been initially studied blocking the satellite’s degrees of freedom, i.e. in a cantilever configuration. On ac-

count of this the rigid motion of the spacecraft is avoided and the relevant dynamic equations reduce to the 

ones of its flexible parts that are modelled via FEM approach through the mass, the stiffness and the damp-

ing matrices. Considering the piezo actuators effect as a direct velocity feedback, their contribution to the 

system dynamics can be schematized considering an additional damping 
pz

C  in the FEM modelling: 

 ( )
S pz

MX C C X KX F      (27) 

where   
S

C M K  models the structure passive damping. It is demonstrated [26] the active damping 

matrix can be formulated for each element as 

 
,

1 1
2

1 1

 
  

 
k

pz pz

pz k

pz pz

E A G
C g

L
  (28) 

where 
k

g is the gain of the k-th element (and it is associated to the power consumption necessary to intro-

duce an active damping in the adaptive-truss), G is a coefficient dependent on the piezo-device physics 

properties (Young module, area, length, electrical resistance, electromechanical coupling coefficient), 
pz

 is 

an non-dimensional parameter referring to the piezo-electric device length. The global matrix can be ob-

tained by following the conventional FEM assembling methods. The model here investigated is the one re-

ported in Figure 3. Each structural part has a length of 1 meter. The spacecraft appendage is composed of a 

deployed boom and the antenna supporting truss structure. Their physical and geometrical properties are 

listed in Table 1. The boom and the antenna frame are realized in composite material, with different section 

areas. The main mechanical properties are presented in Table 2. 

Table 1. Properties of the system 

 Platform Boom Antenna 

Length (m) 2 4 20 

Mass (kg) 500 152.3 57.95 

Inertia (kg m²) 333.3 1.464e4 

F.E.  / 8 243 
 

Table 2. FEM mechanical properties 

 Boom Antenna 

Area (m²) 0.0236 3.92e-4 

Young Modulus 

(GPa)  
150 200 

Density (kg/m³) 1800 1700 

 

 

A modal analysis has been performed to assess the first frequencies and modal shapes of the appendage 

in the case the boom is clamped at its end. The first five frequencies are reported in Table 3. For conven-

ience’s sake, the corresponding modal shapes obtained by using the Matlab FEM code are presented too. 

By projecting the equations of motion on a modal basis, the damping coefficient 0.02   has been added. 

The eigenvalues observed in the case of structural damping are reported in complex conjugated couples as 

well. 

In the following sections, two methods to actively control the first five modes of the structure are in-

troduced and their results presented.  

 

Optimization procedure A: Genetic Algorithm 

The pole placement procedure aims at individuating the minimum gain distribution such that the real 

parts of a selected number of eigenvalues from the homogeneous eq. (43) have an assigned value higher 

than the respective eigenvalues originated by the presence of the solely passive structural damping. 
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Table 3. Frequencies of the clamped appendage 

N°  Frequency (Hz) Modal Shape Eigenvalues 

1 1.92 

 

-0.24  12.09i  

2 9.80 

 

-1.23  61.59i  

3 20.26 

 

-2.55  127.27i  

4 43.04 
 

 -5.41  270.42i  

5 51.11 

 

 -6.52  326.10i  

 

The problem may be formulated as a constrained optimization problem in the following terms: 

Find the gains vector g  to minimize the function ( ) g  subjected to the constraints * 
i i

,  

with ( 1,...,
c

i N ) and  
l k u

g g g   

where 
C

N  is the number of constraints, ( )g  is the objective function defined as  

 
1

( )
aN

k

k

g g


    (29) 

a
N  is the number of active trusses and *

i
  the assigned constrained value on the real part of the eigenvalue 

( )g  obtained from the equations 

 ( ) 0A g B    (30) 
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     

  (31) 

where the generic eigenvalue is defined by  

 j       (32) 

In this case study, the first five modes are simultaneously controlled. The imposed constraints guarantee 

an increase on the real part of the controlled eigenvalue greater than 10% of the respective passive struc-

ture, i.e.  

 *

0
(1 0.1) , 1,...,5

i i i
i        (33) 

The optimization algorithm is here performed through a Genetic Algorithm (GA) technique based on Aug-

mented Lagrangian Genetic Algorithm (ALGA), in order to solve the optimization problem subjected to 

non-linear constraints. 

In this case, the project variables to be determined are 251, one gain for each potentially active element 

of the entire structure. Due to the great amount of variables and to the excessive computational time, a 

trade-off choice has been validated: the piezo-electric devices are solely activated (i.e. their gain is greater 

than zero) if they exist in the middle elements of each bay (as highlighted in red in Figure 6). According to 
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this approach, the parameters to be optimized reduce to 81 variables. The algorithm converged to an opti-

mal solution in the gains range [0-50]. The gain distribution histogram plot is presented in Figure 7.  

 

 

 

Figure 6. Position of active devices 

 

 

Figure 7. Gains distribution histogram 

 
A good enhancement of the damping properties of the system can be observed, due to the piezo-electric 

devices contribution. The new values of the first five structural eigenvalues are listed in Table 4. After hav-

ing obtained the best authority of the adaptive trusses thanks to the optimization process, the structure dy-

namic behaviour when perturbed with some external forces has been investigated.  

 

Table 4. Active damping: Genetic algorithm 

N° Eigenvalues  

1-2 -0.31  12.09i   

3-4 -3.06  62.02i   

5-6 -9.11  130.27i   

7-8  -19.35  287.42i   

9-10  -23.12  358.10i   
 

The total sum ( )g  of the network gains can be assumed as a quality parameter giving information 

about the power consumption: the less the sum, the less the power consumption. In the present analysis, the 

total sum is equal to 1703.5.  

 

Optimization procedure B: Reinforcement Learning Algorithm 

An alternative method to find an optimal distribution of derivative gains is to adopt a Reinforcement 

Learning (RL) algorithm. Roughly speaking, the RL agent wants to learn how to select the controller gains 

in order to maximize a given reward signal.12 The aim here is to estimate an action-value function and con-

sequently to optimize a policy Q(s,a), i.e. to estimate the best decisional policy Q*(s,a) for a set of states s 

and actions a by improving the initial one until the condition Q(s,a)~ Q*(s,a) is achieved. This leads to a 

mapping of the actions (i.e. the gains) the agent can select to optimally control the first five modes of the 

flexible system, according to its initial state.  

The choice of states and actions is of paramount importance for a successful RL method. According to 

the objective of this paper, the actions are chosen as the actuators gains itself. The agent can decide if as-

sign to the net of active device an equally spaced finite value included in the interval [0-50]. The states var-

iables are referred to the real part of the eigenvalues with respect to the desired increased value *

i
 . Indeed, 

the state variables are five, one for each mode to be controlled. They can assume a single value between the 

numbers [-0.5, 0, 0.5], respectively if the real part of the eigenvalue is lower, equal or higher than the corre-

sponding *

i
 . This leads to a total amount of 5

3  possible states combination. If considering 51 possible ac-
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tions values, each Q-table will be composed of 243 rows and 51 columns, for a total of 81 Q-tables of 

12393 elements each (i.e. one Q-table per actuator). 

The reward function is needed to define the desired goal in the RL problem. This operation associates a 

combination of state-action with a numerical signal which indicated the “goodness” of that state-action 

pair. In this perspective, the RL agent search to maximize the absolute value of the real part of the first five 

eigenvalues to reduce undesired vibrations. Since the goal of the agent is to increase the damping capability 

of the structure while maintaining minimum the sum of the gains, the reward signal is here defined as: 

 

 2

1 2

5
*

1 2

1

1

( )

S

i i i

i

R d d with

d d
sum g



  


 

  
  (34) 

where   is a scaling coefficient introduced to match the orders of magnitude of the two rewarding terms. 

The variable 
i

  is a weighting coefficient different for each eigenvalue, here adopted to give more empha-

sis to the damping of the first fundamental frequency in the perspective of CSI issue mitigation. 

The adopted algorithm is named SARSA (State Action Reward State Action), whose updating rule in-

volves the current state and action and the reward corresponding to the transition into the next state by se-

lecting one of the next available actions. In particular, the change to the policy after an agent’s interaction 

with the environment influence future decisions. At the end of the procedure, we can obtain a set of gains to 

be implemented in the control scheme. The relevant gain distribution histogram is reported in Figure 8. The 

new values of system eigenvalues are reported in Table 5. We can notice the first ones are in agreement 

with those individuated by using the GA algorithm. 

 

Table 5. Active damping: RL algorithm 

N° Eigenvalues  

1-2 -0.32  12.09i   

3-4 -3.20  61.98i   

5-6 -8.89  129.87i   

7-8  -19.66  286.43i   

9-10  -21.13  357.20i   

 

In particular, Figure 9 depicts the progression of the reward signal through iterations. The convergence 

of the learning process is reached after few iterations and the fitted learning curve is reported in red. 

 

 
Figure 8. Gains distribution histogram 

 

Figure 9. Learning curve 

The total sum of the gains is equal to 1782.3. In this case, we can notice a good enhancement of the 

damping properties of the system with slightly higher gains than the previous case.  
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INTEGRATED CONTROL SYSTEM 

As stated before, the interaction between satellite motion and flexible vibrations can heavily disturb the 

stability of the system. Many control strategies have been developed for solving this issue. Some of them 

are focused on the attitude dynamics, building on robust controllers that consider flexibility as a disturb-

ance, as well as on model-based controllers in which an effort is done to include a dynamic model both for 

the rigid and the elastic dynamics. The objective of this paper is to study a different approach, consisting in 

facing the problem from the structural point of view, trying to actively damp the vibrations induced by the 

attitude control system and the orbital perturbations, by using smart material stack devices. As for that, the 

objective results in simultaneously optimizing the controller gains and the damping of the flexible modes, 

to avoid coupling between the control system and the satellite flexible structure dynamics. The gains de-

rived from the RL optimization procedure are further used to validate the control for a typical spacecraft 

manoeuvre.  

To solve the problem of the spacecraft dynamics, the system of equations (18)-(21) have been recast as 

a set of first order differential equations, written in the state-space form, to be easily implemented and 

computed by using MATLAB/Simulink environment. By defining the state vector X, the electric displace-

ment output vector y and the control input u as  

 

0

0

S a

X

A
X y Q u

X

A







 
 
 
 

   
 
 
 
  

  (35) 

the equations can be re-arranged in the state-vector space as  
 

 
X AX Bu g
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
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  (36) 
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  (38) 

where 
L

N  indicates the non-linear terms, g

G
F  is the vector of the aforementioned generalized gravitational 

forces and g

C
F  the generalized control forces acting on the spacecraft. Furthermore, the following notation 

had been adopted 

 
2
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0 0 0 0 0 0

0 0 0 0 2

T

T

R

T T

T R

m p

M p J K C

I





  

     
     

  
     
           

  (39) 

The matrix 
RM

D  is introduced here to take into account the contribution of the modes outside the band-

width. The term is often called “residual modes” and the formulation is presented below 8,10 

  
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2
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



  


   (40) 
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In particular, the model has been implemented in MATLAB/Simulink environment to simulate the be-

haviour of the dynamic system (see). The general model accepts as inputs the voltages required by the pie-

zo actuators to damp the elastic vibrations induced on the antenna by the platform control commands. To 

actively damp elastic vibration induced in flexible structures smart devices can be used both as actuators 

and sensors. A control strategy has been implemented to control the elastic vibrations induced on the an-

tenna supporting structures due to a spacecraft re-orienting manoeuvre. Furthermore, the control inputs are 

processed by a saturation block before being assigned to each smart actuator, thus ensuring the piezoelec-

tric materials operates in a safety state.  

 

 

Figure 10. General state-space formulation 

 

Figure 11. Dynamic system scheme (State-space formulation block of Figure 10) 

A PD strategy can be applied to actively control the vibrations of the appendage. The actuation voltages 

are  

 
a

A A      (41) 

By comparing Equation (27) and Equation (20) the gains for the PD control law can be established as 

  ( )
pz h X X pz h

C K K C g    
     (42) 

where X
K 


 represents the Moore-Penrose inverse of the electro-mechanical coupling matrix. The coeffi-

cient α is introduced to simultaneously act on the stiffness of the system. According to this approach, the 

results coming from the optimization procedure can be directly inserted in the control scheme. 

 

NUMERICAL RESULTS 

The control strategy has been applied to the case of an orbiting spacecraft to analyse its effectiveness. 

The system consists of a main platform and a flexible appendage. The properties of the whole system are 

presented in Table 1. The truss-like frame is equipped with smart actuators whose properties are listed in 

Table 6. To consider a real case, the chosen orbit is similar to the one adopted for the SMAP mission, 

which is currently equipping a mesh reflector. The chosen parameters are presented in Table 7.  
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Table 6. Smart devices physical properties 

 Smart device 

Area (m²) 5.92e-5 

Young Modulus (GPa)  130 

Density (kg/m³) 7000 

Electro-mechanical coupling coefficient 
33

d  (V/m) 400e-12 

Resistance, R (Ohm) 2000 

Electric capacitance 
P

C   (μF) 33 

Max/Min Voltage (V) ±140 
 

Table 7. Orbital parameters 

 Symbol Value 

Eccentricity e 0 

Orbital radius  R 7078 km 

Initial position on the orbit 

(angle) 

β 25 deg 

Initial orientation w.r.t. the 

local vertical  

φ 5 deg 

Orbital period  
o

T   98.77 min 

 

Two attitude manoeuvres have been simulated to study the influence of the control on the antenna elas-

tic displacements. Two simple bang-bang manoeuvres are reported in Figure 12 and Figure 13. Manoeuvre 

A aims at reproducing a possible attitude modifying operation, by using only a platform control torque. On 

the contrary, the other option represents a faster manoeuvre, thus demanding a higher control effort.  
 

 

Figure 12. Attitude manoeuvre A 

 

Figure 13. Attitude manoeuvre B 

The resulting displacements at the tip of the antenna are presented in Figure 14 and Figure 15. The ac-

tive network is able to effectively damp the unwanted elastic vibrations in few seconds. Then, the time his-

tories related to actuator N°9 input voltages are reported in Figure 16 and Figure 17. A factor of safety was 

introduced to the control scheme to additionally lower the maximum allowable input signal and enhance 

the reliability of the system.  

According to this approach, the voltage level corresponding to the physical limit of piezoelectric devic-

es is not reached by the control system. It is worth noting the actuators with a higher derivative gain (corre-

sponding to the one obtained from the optimization procedure) reach the saturation condition (as in Figure 

17). As for that, the control channel is saturated for a few seconds, but this event still does not compromise 

the effective damping capability of the active system.  
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All things considered, manoeuvre B has been selected for further analyses as it leads to a larger maxi-

mum tip displacement and the aim of the paper is to validate the control strategy assuming the worst oper-

ating conditions. 

 

Figure 16. Manoeuvre A: Input voltage time 

history (actuator N° 9) 

 
 

Figure 17. Manoeuvre B: Input voltage time his-

tory ( actuator N° 9) 

To evaluate the power consumption required by the active devices network, the mean power absorbed 

by each actuator has been computed as 

 2

0 0

1 1
( ) ( )

T T

i i P i

F F

P P t dt C V t dt
T T

     (43) 

where the i-index indicates the actuator number, 
F

T  is the total manoeuvre time, 
P

C  the electrical capaci-

tance (as reported in Table 6) and 
i

V  the voltage supplied to each device. The average power consumption 

iP , referred to each actuator, is showed in Figure 18. 
It can be noticed the actuators requiring most of the power are those placed near the boom. This result is 

expected if considering that the antenna frame structure receives the perturbation originated by the satellite 

motion through the boom itself. 

The total mean power consumption is computed as 

 
81

1

23.97i

i

P P W


    (44) 

 

Figure 14. Manoeuvre A: Tip displacement 

 

Figure 15. Manoeuvre B: Tip displacement 
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Figure 18. Mean power consumption per actuator 

According to the available data about SMAP (Soil Moisture Active Passive) spacecraft accoutred with the 

patented Astromesh reflector, its solar panels can generate 1500 Watts of electric power. As for that, the 

power amount reserved to the active damping system seems to be bearable for the mission.  

 

LIMITED NUMBER OF ACTUATORS 

A further analysis has been performed to assess what happens if the control system switches off some 

actuators associated to gains under a specific threshold. By way of explanation, two operative modes have 

been assigned to the smart devices: ON and OFF. Once identified a threshold   
G

T in the range [0-50], if the 

piezoelectric element is actuated with a gain whose value is over 
G

T  its mode will be ON. It will be then 

operated by using the unmodified gain value, otherwise its mode will be OFF (i.e. gain equal to zero). The 

number of ON-mode devices and the required total average power are listed in Table 8. 

Table 8. Different thresholds 

Threshold 
N° of ON 

actuators 

N° of 

OFF ac-

tuators 

Average 

Power 

(W) 

20
G

T    40 41 16.03 

30
G

T   21 60 12.25 

40
G

T   12 69 8.66 

45
G

T   6 75 5.02 

 

 
 

Figure 19. First modal amplitude  

It can be noticed the damping capability of the system decreases when reducing the number of active 

devices. In parallel, the absorbed power diminishes as the gains remain the same. The ON-actuators left 

when considering 45
G

T   are showed in Figure 20. 
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Figure 20. Gains over 45
G

T   

 

   Figure 21. Effects of increasing gains over 45
G

T   

If the gains of the six actuators are increased by a factor 3
10 , no significant improvement in damping the 

vibration amplitude is noticed as depicted in Figure 21, even if the total power consumption reaches 72 

Watts. We can deduce that by using all the optimized gains the system is able to cope with elastic vibra-

tions better than by having some of them switched off, allowing a lower power consumption in addition. 
 

DAMAGED ACTUATORS 

In this section, another aspect will be analysed: the robustness of the actuators network in damping the 

vibration when one or more devices are in a “damaged” condition. The decrease of the piezoelectric physi-

cal and electromechanical properties is modelled as a gain reduction of the 50% on randomly chosen actua-

tors. In particular, a number N of randomly selected devices has been considered as damaged and a Monte 

Carlo simulations campaign has been carried out to verify the impact of properties decrease on the control-

ler efficacy. 

A first analysis has been performed by fixing N=40. More thoroughly, five-hundred simulations has 

been repeated to study the change in the network damping behaviour. The data concerning the maximum 

tip displacement gathered via simulations are depicted in Figure 22. A Normal fit distribution has been 

evaluated starting from data density, as indicated in Figure 23. 

 

Figure 22. Maximum tip displacement: N=40,       

μ = 4.3480e-04, σ = 1.8222e-06 

 

Figure 23. Normal distribution of tip displace-

ment data set 
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The change in the tip displacement maximum value has been analysed. The collected data have been 

processed by the means of the MATLAB Distribution Fitting Toolbox. Their mean value μ and standard 

deviation σ have been computed as  

 
2

1 1

1 1

1i i

N N

TIP TIP

i i

Y Y
N N

  
 
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

    (45) 

According to the results, no significant impact has been detected on the controller, since the maximum tip 

displacement is not increasing if some actuators are damaged.  

To enhance the reliability of the control scheme, a random number N between the half and the total 

number of the actuators has been considered as damaged during the manoeuvre simulation. In order to have 

a representative set of results, 500 scenarios were considered. To make a comparison with the previous case 

study, both the trend of maximum tip displacements and the data normal fit are presented in Figure 24 and 

Figure 25. 

It is worth noting that, according to simulations, also in this case the system proves to not be significantly 

influenced by the damages of piezo-electric devices. No heavy differences between the two cases are iden-

tified, thus meaning that even if the number of imperfect actuators overcomes the half of the total the active 

network is still able to counteract the undesired elastic oscillations. 
 

ROBUSTNESS ANALYSIS 

The verification of the control performance is based on a Monte Carlo campaign. This method has been se-

lected as it allows to study the behaviour of a simulated system under different conditions. Four case stud-

ies, as described in Table 9, have been investigated. The properties of both active network devices and pas-

sive supporting structure are assumed as uncertain to simulate a possible change in the mechanical and 

electrical characteristics after launch or due to in-orbit aging. 

Affected features are: 

 Piezo devices: length 
pz

L  , Young modulus 
pz

E , area 
pz

A , mass 
pz

m , electro-mechanic cou-

pling coefficient 33
d , electrical capacitance 

p
C ; 

 Passive supporting structure: Young modulus stru
E , area stru

A , bending stiffness stru
I . 

 

 

Figure 24.  Maximum tip displacement: N random, 

μ =  4.3556e-04, σ =  1.8880e-06 

 

Figure 25. Normal distribution of tip displace-

ment data set 
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Table 9. Robustness analysis: study cases 

Study Case 1 10% uncertainty on piezo devices mechanical and electrical properties 

Study Case 2 10% uncertainty on piezo and supporting structure mechanical and electrical properties 

Study Case 3 20% uncertainty on piezo devices mechanical and electrical properties 

Study Case 4 20% uncertainty on piezo and supporting structure mechanical and electrical properties 

 

 

Figure 26.  Study Case 1 - Maximum tip displace-

ment: μ = 4.3358e-04, σ = 1.4823e-06 

 

 

Figure 27. Study Case 1 - Normal distribution 

of tip displacement data set 

 

Figure 28. Study Case 2 - Maximum tip displace-

ment: μ = 4.3542e-04, σ = 1.9784e-05 

 

Figure 29. Study Case 2 - Normal distribution 

of tip displacement data set 

 
The controller robustness has been assessed by adding uncertainties to the aforementioned parameters. In 

Figure 26 to Figure 33 the maximum tip displacement and its normal fit are reported, along with the data 

mean value and standard deviation. As expected, the presence of uncertainties affecting piezo-electric actu-

ators properties does not lead to excessive changes in the system response, thus in accordance with previ-

ous analyses about damaged devices. On the contrary, it is worth noting that, by introducing uncertainties 

on structural parameters, the mean value of the maximum tip displacement increases with respect to the 

cases in which only stack devices characteristics are uncertain. Furthermore, the standard deviation tends to 

grow by an order of magnitude. 



 19 

 

Figure 30. Study Case 3 - Maximum tip displace-

ment: μ = 4.3357e-04, σ = 3.3683e-06 

 

Figure 31. Study Case 3 - Normal distribution 

of tip displacement data set 

 

Figure 32. Study Case 4 - Maximum tip dis-

placement: μ = 4.4358e-04, σ = 4.0159e-05 

 

Figure 33. Study Case 4 - Normal distribution 

of tip displacement data set 

 

Nevertheless, such modifications does not represent a significant reduction of the damping capabilities of 

the active network, as demonstrated by the satisfactory narrow normal distributions associated to collected 

data. 

 

CONCLUSIONS 

This paper aims at investigating the effects of uncertainties on the damping control system of a large 

space antenna supporting structure. The system equations of motion are derived accordingly to a classical 

Lagrangian formulation complemented with FEM theory. A network of active piezo-stack devices has been 

embedded into the passive supporting structure to counteract undesired disturbances originated by platform 

operations. The authority of each smart actuator is defined by the means of an optimization procedure: the 

optimal feedback gains distribution ensuring a minimum power consumption has been found and imple-

mented. The dynamics of an orbiting satellite equipped with the truss-like supporting frame of a mesh re-

flector has been simulated, under orbital parameters selected to comply with real missions scenarios. 
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An integrated control system is proposed to damp the elastic vibrations induced on the flexible append-

age by two attitude manoeuvres. The attitude re-orientation leading to the higher maximum tip displace-

ment has been chosen for further analyses. By simulation analysis, the optimal gains identified by using a 

genetic algorithm demonstrated their effectiveness in damping unwanted elastic oscillations. The power to 

be supplied to the control system is affordable for a mesh reflector-equipped EO space mission.  

In addition, the impact of a reduction of the actuators number is presented. The system was affected by 

such a decrease, thus leading to the conclusion that the more actuators are employed, the more vibrations 

are damped and the less power consumption is required. Furthermore, the robustness of the system to dam-

ages of the actuators has been explored. The damage has been simulated has a reduction of the 50% of the 

gain associated to randomly chosen actuators. Both by selecting a number N of randomly damaged piezo 

stacks and fixing N=40, the net demonstrated to guarantee a satisfactory damping capability.  

Considering that space systems can vary their characteristics as a result of both launch campaign and in-

orbit aging processes, a Monte Carlo simulations campaign has been carried out to evaluate the perfor-

mance of the controller (which has been designed for the nominal case). Results have shown that the PD 

feedback controller is quite robust even to significant variations of both actuators and passive structure 

physical properties.  

On account of this, it can be remarked that vibration damping by piezo stack actuators is a promising 

field of research for space antennas applications. 
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