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Abstract. Variational Data Assimilation (DA) is a technique aimed at
mitigating the error in simulated states by integrating observations. Vari-
ational DA is widely employed in weather forecasting and hydrological
modeling as an optimization technique for refining dynamic simulation
states. However, when constructing the cost function in variational DA it
is necessary to establish a transformation function from simulated states
to observations. When observations come from ground sensors or from
remote sensing, representing such a transformation function with explicit
expressions can sometimes be challenging or even impossible. Therefore,
considering the strong mapping capabilities of Neural Network (NN)s in
representing the relationship from simulated states to observations, this
paper proposes a method utilizing a NN as the transformation function.
We evaluate our method on a real dataset of river discharge in the UK
and achieved a 39% enhancement in prediction accuracy, measured by
Mean Square Error (MSE), compared to the results obtained without
DA.
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1 Introduction

In the simulation of dynamic systems, prediction errors arise from simulation pro-
cesses. To mitigate these errors, incorporating observations is necessary. How-
ever, it is important to acknowledge that observation errors also exist within
the observations. DA, as an optimization method, effectively addresses this is-
sue. By leveraging observations, DA seeks to improve simulated states, thereby
bringing simulation states closer to real values [1]. Variational DA, as a sub-
type of DA, updates simulated states by minimizing the cost function between
simulated states and observations [2]. A pivotal component in the cost function
of variational DA is the transformation function. This function represents the
transition from simulated states to observations and is typically encoded using
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a selection matrix (to represent location information) or a physical formula (to
represent the relationship between physical quantities). Variational DA, with
its capability to address DA issues arising from nonlinear relationships between
simulated states and observations, is progressively gaining popularity in practi-
cal applications [3]. This trend is fueled by the common occurrence of nonlinear
relationships between simulated states and observations in real-world scenarios.
Variational DA finds widespread application in hydrology [4-8]. These applica-
tions showcase the effectiveness of variational DA in hydrology for improving the
accuracy of simulation results.

However, in practice, establishing the relationship between observations ob-
tained and simulated states (whether based on location or physical relations)
using explicit expressions is challenging, rendering it difficult to obtain the trans-
formation function. For instance, there might be no explicit physical expression
to represent the relationship from simulated states to observations, or the res-
olution of simulated states may differ from that of observations. Hence, this
presents a challenging issue in the practical implementation of DA. To address
this challenge, Cheng et al. [9] proposed a method to compress simulated states
and observations into a shared latent space. However, the execution of this ap-
proach in an online update necessitates retraining the model whenever updates
occur in the inputs to the parametric model, thereby demanding additional com-
putational resources. NNs, as a machine learning method, can be trained to
capture the relationship between two correlated variables [10]. In this paper,
leveraging the inherent capabilities of NNs, we propose an offline method that
employs a NN as the transformation function to address the aforementioned
challenge. We evaluated our method using a real-world dataset comprising two
sources: European Flood Awareness System (EFAS) [11] and National River
Flow Archive (NRFA) [12]. EFAS is utilized for simulation, while NRFA serves
as observations. We opt for MSE as our evaluation metric. Our data assimilation
method exhibits an average improvement of 15% in accuracy compared to the
raw simulation results.

The organization of the remainder of this article is as follows. Section 2
describes the test case. Section 3 introduced the method we proposed. Section 4
presents the results of our experiments. Section 5 summarizes the entire paper
and proposes future work.

2 Test case

To validate the feasibility of our method, real-world data is selected as our test
case. River discharge from the UK is selected for DA in this experiment. The
data chosen for the simulated states consists of simulated river discharge data
provided by EFAS. This data provides daily river discharge for the whole of
the UK at a spatial resolution of 5 km x 5 km. The NRFA provides data on
daily river flows from 1600 river stations within the UK, which serve as our
observations in this experiment.
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The data in the EFAS dataset consists of 2D images, where each pixel rep-
resents the river discharge for the corresponding area. The size of the data is
200 x 200 pixels, with only 14120 pixels containing valid values. The number of
stations suitable for experimentation in the NRFA dataset is 924. The details of
these two datasets are shown in Table 1. In this experiment, DA is conducted
every three days for simulated states.

Table 1. the detail of two datasets

name EFAS NRFA
spatial resolution 5 km x 5 km
temporal resolution one-day one-day
size of sample 14120 x 1 924 x 1

3 Proposed Method

3.1 Idea

The cost function in variational DA is shown in given by

T00 = 5(x =) B = x0) + 5y — HE) Ry ~ H(x), (1)

where x; represent simulated states, y represents observations, B and R repre-
sent the covariance matrix of simulated states and observations, and H represents
the transformation function.

From Eq. 1, it is evident that the transformation function H can be regarded
as a mapping relation from simulated states to observations. Given the nonlinear
mapping capabilities, NNs represent a rational choice for serving as the trans-
formation function. Therefore, in practical applications where it is challenging
to represent the relationship from simulated states to observations with explicit
expressions, utilizing NNs for mapping purposes presents a viable solution.

3.2 Implementation

In the experiment, the dataset of simulated states can be represented by X =
{x1,x%2,...,x,} and the dataset of observations can be represented by Y =
{y1,¥2, -, ¥n}, where n represents the number of samples, which corresponds
to individual time step. The input of the NN is the simulated state x; and the
output of the NN is the observation y;. The structure of the transformation
function obtained via the NN approach is depicted in Fig. 1.

In designing the structure of the NN model, the input x; of the network is a
vector of size 14120 x 1, and the output y; is a vector of size 924 x 1. Given the
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Fig. 1. Structure of transformation function

shape of the input and output vectors, Multi-Layer Perceptron (MLP) is chosen
as the network architecture for this experiment. In the MLP structure, which
comprises 4 fully connected layers, the activation function used for each layer is
the LeakyReLU.

The training of the transformation function is shown in Algorithm. 1, where
kmax represents the number of iterations, € represents the threshold of training
loss and L represents the loss function.

Algorithm 1 training transformation function
Inputs: X, Y, H
Parameters: €, kmax,xi € X,y; € Y
k=20
while k < kmax and £ > € do
yi = H(xi)
L= 130 |y — Hx)l?
k=k+1
end while

output: H

In the training process, a training strategy that combines mini-batch and
Stochastic Gradient Descent (SGD) is employed, which aids in achieving results
with smaller error [13]. This approach enhances the NN’s ability to more accu-
rately represent the mapping relationship from simulated states to observations.
The NN is trained on these two datasets for 300 epochs with a batch size of
4. SGD with a momentum of 0.9 and the weight decay of le-4 is chosen as the
optimizer. In addition, the cosine annealing strategy is utilized to update the
learning rate, starting with an initial learning rate of le-2 and a cycle length of
150 epochs [14].

The loss function utilized in our method is MSE, selected to minimize the
discrepancy between observations and the mapping result of simulated states to
observations via the NN.
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4 Result

This section assesses the performance of our proposed method. In this experi-
ment, MSE is selected as the evaluation metric by measuring the error between
the ground truth and simulated results. A temporal span of 30 days is selected
for the presentation of our findings. The predictive model utilized is Long Short-
Term Memory (LSTM) [15]. The result of MSE is shown in Fig. 2.
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Fig. 2. MSE of our proposed method and the simulated result without DA

In Fig. 2, the red dots represent the MSE between the simulated results with-
out DA and the ground truth, while the orange dots represent the MSE between
our proposed method and the ground truth. From Fig. 2, it is evident that the
results of our proposed method outperform the simulation results without DA
in terms of the MSE metric, with an average improvement of 39%. Additionally,
the highest improvement observed exceeds 50%. This metric demonstrates that
our method effectively enhances the accuracy of the assimilation results.

Additionally, the Structural Similarity Index (SSIM) is used as an auxiliary
evaluation metric. SSIM is an evaluation metric that assesses the structural
similarity between two images. The formula for SSIM is given by

(2pxpty + 1) (20xy + ¢2)
(2 4 p2 +c1)(02 + 02 +c2)’

SSIM(x,y) = (2)



6 Wang et al.

where pix represents the pixel sample mean of simulated states, u, represents the
pixel sample mean of observations, ox represents the variance of the simulated
states, oy represents the variance of the observations, oy represents the covari-
ance of simulated states and observations, ¢; and ¢y represents two variables to
stable the division. SSIM is employed here to assess the similarity between the
states obtained after DA and the ground truth. The result is shown in Fig. 3.
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Fig. 3. SSIM of our proposed method and the simulated result without DA

The SSIM of our proposed method is higher than the simulated results with-
out DA. This result indicates that the states obtained by our proposed method
are structurally closer to the ground truth, meaning that the variance and mean
of the river discharge in the results are closer to the true values.

5 Conclusion

The inability to represent the transformation function with an explicit expres-
sion poses a challenge for DA in practical applications. In this paper, we propose
to address this issue by employing a NN as the transformation function. This ap-
proach leverages the excellent nonlinear mapping properties inherent in NNs. We
conduct a test of the proposed method on a real dataset, and the experimental
results demonstrate that our approach improves the evaluation metric of MSE
by 39% compared to the results obtained without DA. These results validate the
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feasibility of using NN as the transformation function. The utilization of a NN
as the transformation function expands the range of observation types viable for
the DA. In future work, addressing the issue of sparse observation distribution
in data assimilation, which leads to localized correction of the simulated state,
will be imperative.

Acronyms

EFAS European Flood Awareness System
DA Data Assimilation

LSTM Long Short-Term Memory

MLP Multi-Layer Perceptron

MSE Mean Square Error

NN Neural Network

NRFA National River Flow Archive
SGD Stochastic Gradient Descent

SSIM Structural Similarity Index
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