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Abstract. The probabilistic Hopfield model known also as the Boltz-
man machine is a basic example in the zoo of artificial neural networks.
Initially it was designed as a model of associative memory, but played a
fundamental role in understanding the statistical nature of the realm of
neural networks. The close relation between the Boltzman machine and
the Ising model was a challenging observation in [1]. In this note we go
further, we establish another type of structural similarity between these
models sharing the methods of the Bethe ansatz family of integrable sta-
tistical mechanics. We examine the asymmetric model on the triangular
lattice with arbitrary weights. We show that the probability of passing
a trajectory in time dynamics obeys the Gibbs distribution with a par-
tition function of the Ising model on the cubic lattice with additional
weights on diagonals.

1 Introduction

The field of artificial neural networks was born in the 40s, underwent
intensive development in the 60s, was actively fueled by the ideas of
statistical physics in the 80’s, and in applications made a giant leap in
the last 10 years. This leap is largely due to the intensive growth in the
performance of modern parallel computing systems.

The field was born as an attempt to systematize the mechanisms of
nervous activity of living beings. It turned out that learning rules like the
Hebb rules are so universal that artificial neural networks, which differ
significantly from natural ones, began to show high results in generalizing
ability.

The actual formulation of the problem of evaluating the generalizing
ability of the network arose due to the introduction of ideas of statistical
mechanics in the field of neural networks.

The Hopfield network has its proper application as one of the fundamen-
tal models of content-addressable associative memory system [1]. This
model have demonstrated some very interesting collective properties of
the neural network behavior and is used in artificial neural networks as
like as in neurophysiology [3] in research of memory capacities, memory
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retrieval process, short-term plasticity, working memory properties and
many other questions.

The main goal of this work is to transfer methods for the exact solution
of statistical physics models to neural network models. In this regard,
it is necessary to recall what results are considered important in this
area. The main model example is the two-dimensional Ising model, which
has been solved explicitly by many groups of scientists using different
methods [4]. It has a critical behavior, that is, in the vicinity of the
critical temperature, it has the property of a phase transition of the
second kind. The memory capacity of the Hopfield model demonstrated
a similar property of the phase transition in[5].

The most common method to solve such models is the Bethe ansatz in
termodynamic limit. The principal goal of this paper is to establish a re-
lation between the anisotroppic Hopfield model on the triangular lattice
and the Ising on the appropriately chosen lattice. This work extends some
ideas of [7, 8] to the anisotropic case. Another purpose of this note is the
extension of the ideas of the cluster algebraic structures [12,13] to the
world of neural networks which could produce interesting invariants for
the neural networks with respect to the mutaions of the “star-triangle”

type.
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1.1 Hopfield model

The Hopfield model is represented by the complete graph with NV vertexes
(neurons) with a connectivity matrix W;; characterizing the conductivity
of the synapse between i-th and j-th neurons. At each time the system
is characterized by its neurons states {z;},2 = 1,...,N z; = £1. Our
interest is focused on the network which undergoes the synchronous evo-
lution in discrete time. In the deterministic version the state of the i-th
neuron at the next step z is determined by the formula:

1 if Ej Wija:j >t
JJ; = -1 if Zj Wij{Ej <t (1)
x; else.

Here t; is the threshold level for the activation of the i-th neuron. The
probabilistic Hopfield model differs from the deterministic one by the
property that the transition is performed with the probability specified
by the Fermi sigmoid function

P’ z) = H(l + e P Wijej=ti))=1,

k3
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For the threshold level ¢; = 0 this expression can be rewritten as

P(:L‘,7:L‘) = @7§ > Wz‘jz;zj/ze*% i) Wijz;'zj' (2)

z!

The similarity of such an expression with the partition function of the
Ising model was remarked in [1].

We need to say some words about the learning stage in the Hopfield
model. The Hebbian paradigm for the learning process of the Hopfield
network on the set of m patterns {e!,...,e™} each of which is a vector

ekz(elf,...,eﬁ)

is achieved instantaneously by fixing the weight matrix in a following
way

m
k k
€i€j~

k=1

Wij =

S

The work of the network in the recall stage consists of iterative time
dynamics defined by the transformation probability (2).

The principal interplay of the Hopfield network and the Ising model is
due to the energy functional. It turns out that for the symmetric weight
function in asynchronous regime the expression

E = —% ZWijximj — Ztlxl
1,7 7

plays the role of the Lyapunov function, due to the time dynamics it
either lower or stays the same. This observation allows to analyze the
asymptotic behavior of the Hopfield model. The stable points for its time
dynamics are hence the states of local minimum energy for the Ising
model on the same lattice. In this paper we explore another relationship
between two such models: the Hopfield network on a two-dimensional
lattice and the Ising model on the 3-dimensional lattice, making one of
the spacial directions relevant to the time evolution.

1.2 Time evolution and the Ising model

Let us consider the Hopfield model on the triangular lattice (Fig. 1)
colored by 3 colors in Z/3Z. The nontrivial weights are defined by rule:
the neuron with the color c is influenced only by the neurons with the
colors (¢—1) mod 3. This network is not symmetric despite the canonical
definition.

This lattice can be viewed as a projection of the cubic lattice to the
plane ¢ + j + k = 0. The verteces with different colors represent the
planes i + j + k = ¢ mod 3. The temporal behavior of this lattice is
equivalent to the 3 independent 3-dimensional cubic lattices. We then
consider the one of these 3 lattices.

3
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Fig. 1. Triangular lattice

The conditional probability that the model passes throw the states with

free initialization data is:

b

1
pP= H (1 + exp(@iji(WipTi-1jk + WikTij—16 + WiETijr—1))

i+j+k=a

B ﬁ exp((wijr (Wi 17k + WijTij— 1k + WYETijk—1)/2)

i+j+k=a

Let us define a matrix

11 1 1

2 2 2 2

11 _1 1

2 27272

A=

1 _1 1 _ 1

2 72 272

11 1 1

272 72 2
which is a square root of 1

2

A =1.

Let us consider a transformation f: w — w
1.2 3 0 12 13
f(w bl w ) w ) = (w ) w ) w b w

given by the system of equations

w® log cosh((w* + w +w
w? | A log cosh((w' + w —w
w | log cosh((w* — w +w
w?® log cosh((w* — w? — w

23)

2 cosh((zijn(wijpTi—1jk + W5 Tij—1k + W5 Tij6-1)/2)
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Lemma 1 Let f(w',w? w?) = (w° w'? w', w?®)

equation holds

than the following

(cosh((w's1 + w?ss +w’s3)/2)) ™" = exp ((wo +w'?s1s0 +w'Psis3 + w235253)/1)4)

VSZ' = +1.

Proof

Both sides of 4 are invariant with respect to the total change of signs
si — —s;. Hence it is sufficient to prove this statement for 4 combinations
of spins with s; = 1. In this way we get a system of linear equation with
the defining matrix A. The fact that it is square root of unity gives the
result.

|

Remark 1 The transformation f restricted to the last 3 variables F' :
(whw?, w?) = (w2, w',w**) was known in the theory of the Ising
model as a “star-triangle” transformation [9]. It appears to be a solu-
tion for the Zamolodchikov tetrahedron equation [10].

Theorem 1 The conditional probability 3 coincides with the Ising-type
partition function:

b
1 2 3
P= T e (@ur(wipzin +wiizi-1. + wipzie-1)/2) x
i+j+k=a
b
12 13 23
X H €xXp ((wijkmifljkxijflk + Wik Ti—1kTijk—1 T ’wijkﬁﬂij—lkmijkﬂ)/?)
i+j+k=a

12 13 23\ _ 1 2 3
where (wijkvwijkv wijk) = F(wijkv wijkvwijk)'

Remark 2 This model can be interpreted as an Ising model on the reg-
ular cubic lattice with additional diagonal edges with weights defined by

(w}fk, ng?’k,wf]-sk). We illustrate the weight distribution on Fig. 2.

1.3 Conclusion

The principal aim of this work concerns the possibility of the Bethe
ansatz method application to the description of the critical behavior of
the Hopfield neural network. This could be fruitful in such a technique as
the simulated annealing in neural networks [11]. In this note we general-
ized a relation between the Hopfield model and the Ising one in the case
of the completely anysotropic models. This is interesting for us also for
the reason that this case allows to apply the methods of cluster algebraic
structures [12] and [13] for the case of neural network models.
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Fig. 2. Cubic lattice
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