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Abstract- Fuzzy clustering algorithm is one of the

most widely used clustering algorithm in the field

of big data. Although fuzzy c-means (FCM)

algorithm performs well, it still has some problems

like sensitive to initial clustering center and

difficult to determine the number of clusters. To

solve these problems, we put forward an improved

fuzzy clustering algorithm based on kmeans++

algorithm. The improved algorithm optimized the

kmeans++ algorithm with the Canopy algorithm,

integrated the L2 norm, and parallelized based on

spark. Experimental result shows that the

improved algorithm performs better on clustering

accuracy and computational performance.
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Ⅰ. INTRODUCTION

Fuzzy clustering algorithm is an important soft

clustering algorithm. Compared with the hard

clustering algorithm which stick to “one sample

belongs to one cluster”, fuzzy clustering algorithm

based on membership degree performs better on data

description. Among fuzzy clustering algorithms, the

fuzzy c-means clustering (FCM) algorithm [1] which

improved by the hard c-means clustering (HCM)

algorithm is one of the most completely and widely

used algorithm. However, the FCM algorithm still has

the defects that the number of clusters is difficult to

determine and the local extremum is easy to fall into.

To solve these problems, researchers at home

and abroad did a lot of research. Han Zhe [2]

proposed using genetic algorithm to initialize the

cluster center and applied it to image segmentation.

Liang Bing [3] proposed using the artificial bee

colony algorithm to initialize the cluster center. Some

researchers [4-6] proposed using biological

evolutionary algorithms to improve fuzzy clustering

algorithms, but such algorithms have a large overhead

computation. The Canopy algorithm [7] has made

good progress in rapidly clustering large-scale and

multi-feature data sets, and it is the mainstream

method for quickly determining the number of

clusters currently. The kmeans++ algorithm [8] which

selects cluster center based on Euclidean distance

performs well in avoiding local extremum. Bahmani

[9] implemented the kmean|| algorithm for distributed

computing based on the kmeans++ algorithm.

This article proposed an improved fuzzy

clustering algorithm. First, the algorithm used the L2

norm instead of the Euclidean distance to optimize the

distance calculation. Second, the algorithm combined

the Canopy algorithm and the kmeans++ algorithm to

initialize clustering center. Third, the algorithm was

implemented based on the big data platform Spark

[10]. Experimental result shows that the improved

algorithm performs better on both algorithm accuracy

and big data adaptability.

Ⅱ. PRELIMINARY

A. FCM Algorithm

The optimization objective function of the FCM



algorithm is:
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Where, U =[uij]c*n is the membership matrix, the

value range of uij is [0,1] , X is the dataset, V is the

cluster center matrix, dij2 is Euclidean distance, c is the

number of clusters, n is the total number of samples,

m is the fuzzifification parameter.

In the HCM algorithm, the value of uij is 0 or 1,

which means a sample only belongs to one specific

cluster. However, many samples do not have strict

classification boundaries because of the ambiguity and

uncertainty. The FCM algorithm extends the range of

membership degrees (uij values 0 to 1) to have a better

data representation. uij also should meet the

normalization constraints:
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The FCM algorithm is an algorithm that

iteratively solves the minimum value of the objective

function. The iterative formula of the vi and ui can be

obtained by Lagrangian multiplication:
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The execution steps of the FCM algorithm are:

Step1: Initialize the cluster center V. Specify the

number of clusters c and the iteration stop threshold ε.

Step2: According to Equation (4), calculate the

membership matrix U .

Step3: Calculate and update the cluster center V

according to Equation (3).

Step4: Calculate the objective function JFCMm

according to Equation (1). The iteration will stop

when the value is less than the threshold. Then we get

the membership matrix U and the cluster center matrix

V. Otherwise the algorithm will go back to Step2.

B. Improved Canopy-kmeans++ algorithm

FCM algorithm is sensitive to initial clustering

center. Most scholars have proposed to use biological

evolutionary algorithms (genetic, ant colony, bee

colony, bat, etc) to initialize the cluster center.

However, such algorithms have large overhead

computation and perform poorly on dealing with large

data sets. In this article, the Canopy algorithm was

used to improve the kmeans++ algorithm to initialize

the cluster center, and the L2 norm was used to

instead of the Euclidean distance to simplify the

distance iterative calculation.

Firstly, to quickly obtaine the number of clusters,

we used the Canopy algorithm to cluster the dataset

“Roughly”. Then we used the kmeans++ algorithm to

cluster dataset “Finely” [11]. The L2 norm calculation

formula is shown in Equation (5), the Euclidean

distance calculation formula is shown in Equation (6).

The L2 norm is smaller than the Euclidean distance,

and is easier to calculate, which optimizes the distance

calculation.
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Among them, the center point is (a1, b1) and the

sample point is (a2, b2).

The main steps of the cluster center initialization

improvement algorithm are as follows:

Step1: Read the data set, convert it to vector and store

it in the list, define the distance thresholds T1 and T2
(T1>T2). T1 and T2 can be determined by cross-check.

Step2: Randomly selecte a sample point P in the list,

and calculate the L2 norm distance between the

sample point and the center point of all Canopy

subsets, the calculation formula is shown in Equation

(7). If the distance is less than T1, point P will be

added to this Canopy, else if P is less than T2 with any

Canopy center, P will be removed from the list.

2 2( , ) ( , )L LD x V d x v （7）

Step3: Iterate Step2 until the list is empty, finally the



data set will be divided into class c.

Step4: Calculate the cost of the sample set relative to

the cluster center matrix, and calculate the formula as

follows:
2
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Step5: Calculate the probability that the sample is

selected as the cluster center. Select it until the

quantity is equal to c. The probability calculation

formula is as follows:
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Step6: Summarize the cluster center points, and obtain

the initialized cluster center matrix.

C. Spark MLlib

To improve the big-data adaptability of the

algorithm, the algorithm was parallelized on the

distributed computing platform Spark. At present,

Apache Spark and Apache Hadoop [12] are the

mainstream distributed computing platforms. The

reasons for using Spark are as follows:

(1) Spark has a higher computing speed. It saves the

intermediate results in the memory, and can better

adapt to the machine learning algorithm based on

iterative operation.

(2) The core of Spark computing is RDD. Spark

provides a rich set of operations for RDD, such as

conversion operations, motion operations, and

persistence operations.

(3) Currently, Spark has the best open source

distributed machine learning library, MLlib.

Since the FCM algorithm has attributed the

clustering problem to the mathematical problem

(iteratively solving the minimum value of the

objective function), there are a large number of vector

and matrix operations in the algorithm. Spark MLlib

implements the common calculation operations of

RDD vectors and matrices by encapsulating Breeze

library and BLAS library, including the following

contents:

(1) Vector operation.

axpy(a, x, y) // y = y + ax

scal(a, x) //multiplication

Vectors.norm(x, 2) //L2 norm of the vector

Vectors.sqdist(x, y) //squared distance between

vectors

(2) Matrix operation.

//Transpose operation, A is matrix

A.transpose

//Addition operation, C = aA + bB.

gemm(a, A, B, b, C)

//multiplication operation

A.multiply(B)

(3) Distributed matrix operations.

MLlib also provides common matrix operations

such as add,multiply and transpose. In addition,

literature [13] has also conducted sufficient research

on matrix calculations.

Ⅲ. IMPROVED FCM BASED ON SPARK

A. Algorithm implementation points

(1) Initial clustering center. Initialized the cluster

center with the improved kmeans++ algorithm based

on Canopy algorithm. Used the L2 norm instead of the

Euclidean distance to simplify the distance iterative

calculation.

(2) Cache and persist data. FCM is an iterative

algorithm. For the data that needs to be read

repeatedly, it can be cached or persisted into memory

to improve the efficiency of algorithm execution.

(3) Data format conversion. Since the L2 norm was

used instead of the Euclidean distance, the sample

vector and the L2 norm can be encapsulated to form a

new data format for the convenience of calculation.

The RDD format conversion is shown in Figure 1.

The process of converting sample data into

RDD[VectorWithNorm] format is: RDD[String] ->

RDD[Vector] -> RDD[Double] -> RDD[Vector,

Double)] -> RDD[VectorWithNorm].

Figure 1. RDD format conversion

(4) Calculate and update the cluster center. When



adding the value of current sample point to the sum of

the clusters, the vector addition method “axpy” can be

used. When updating the cluster center point, vector

multiplication method “scal” can be used.

(5) Accumulator and broadcast variables. During

Hadoop's MapReduce, calculate the sum is a common

operation. Spark provides method “accumulator” to

achieve the summation and the counting of RDD.

Spark also provides method “broadcast” to broadcaste

variables. During the FCM algorithm, broadcast the

cluster center point can save the time of nodes

communication and improve the efficiency of the

algorithm.

B. Parallelization based on spark

The algorithm based on Spark can improve the

robustness, convergence speed and accuracy,

especially when dealing with large-scale sample data

[14]. The improved fuzzy clustering algorithm was

parallelized on Spark.

The execution steps of the improved algorithm

based on Spark are as follows:

Step1: Build a Spark object, SparkContext is the

entrance of the Spark program.

Step2: Read the sample data from the distributed file

storage system HDFS, cache it to the memory.

Calculate the L2 norm value of the sample vector and

convert it to the RDD[VectorWithNorm] format.

Step3: Initialize cluster center by the improved

Canopy-kmeans++ algorithm based on L2 norm.

Broadcast the cluster center to each partition.

Step4: Calculate the membership matrix, and use the

“mapPartitions” method of Spark RDD to apply the

function to each partition.

Step5: Calculate the cluster center, use the method

“reduceByKey” and “collectAsMap” of Spark RDD to

calculate the sum and count of the sample under the

same cluster.

Step6: Calculate the objective function value, if the

value is less than the threshold, the iteration stops.

Otherwise update the cluster center and return to

Step4.

Step7: Get the FuzzyCMeansModel model after

iteration.

The algorithm flow chart is shown in Figure 2.

Figure 2. Spark FCM algorithm flow

The pseudo code is shown in algorithm 1.

Algorithm1 Improved algorithm pseudo code

Input：txt //local files

Output：FuzzyCMeansModel //Trained model
1) Read sample data from HDFS

data <- sc.textFile().map()

2) Use the improved Canopy-kmeans algorithm based

on L2 norm to initialize the cluster center

centers <- data.Ck()

sc.broadcast(centers) // broadcast center

3) Iterative calculation, calculate the membership and

assign sample to the cluster center

for(i <- 0 to maxIterations){

data.mapPartitions()

sum <- reduceByKey()

count <- collectAsMap()

newCenter <- scal(1.0 / fuzzyCount, sum)

if ( Ji - Ji+1 <ε) {break}

else {centers <- newCenter}

}

4) Finally get the FuzzyCMeansModel model

FuzzyCMeansModel <- Spark FCM



Ⅳ. EXPERIMENTAL EVALUATION

A. Experimental Environment and dataset

The Spark cluster runs in a model of “Spark on

Yarn”. It was built on Hadoop Distributed File System

(HDFS) and Resource Scheduling System (Yarn). The

Spark cluster consists of six virtual machines created

by three PCs. Each PC creates two virtual machines.

One virtual machine was used as the master node and

the others were used as work nodes. The configuration

of each PC is as follows: Win7 system, VM ware

14.0.0 virtual machine software, Intel Core i5-8400

@2.80 GHz CPU, GEFORCE GTX 1050 Ti NIC, 16

GB memory and 2 TB hard drive. The configuration

of each virtual machine is as follows: the system

version is CentOS 7.4, the Java environment is

jdk_1.8.0, the Hadoop version is 2.6.0, the Scala

version is 2.10.6, and the Spark version is 1.6.0.

The experimental data set was taken from the

UCI machine learning library, including iris (Iris

flower dataset), Wine (wine dataset) and KDDcup

(simulated network attack dataset). The specific

features are shown in Table 1.

Table 1. Data set from UCI

Data set
Number of

samples

Number of

attributes

Number

of clusters

iris 150 4 3

Wine 178 13 3

KDDcup 44 10 42 23

B. Comparison of clustering effects

For the convenience of recording, the improved

fuzzy clustering algorithm proposed in the paper will

be abbreviated as FCM-Ck. Analyze the clustering

effect of improved algorithm by testing cluster center

results and clustering accuracy. The algorithms for

comparison experiments are as follows: FCM

algorithm, IABC-KGFCM artificial algorithm based

on bee colony (literature [3] algorithm), kmeans++

algorithm. Cluster center results experiment using iris

as test data set. The actual clustering center of iris data

set is: {(5.00,3.42,1.46,0.24), (5.93,2.77,4.26,1.32),

(6.58,2.97,5.55,2.02) }, The clustering center results

of the four algorithms under the iris data set are shown

in Table 2.

Table 2. Comparison of cluster center results

Algori

thm
Cluster center results

Distance from

the actual

cluster center

FCM

v1=(5.010,3.411,1.469,0.254) 0.021

v2=(5.891,2.762,4.379,1.411) 0.155

v3=(6.810,3.049,5.671,2.049) 0.273

IABC

-KGF

CM

v1=(5.008,3.415,1.450,0.253) 0.017

v2=(5.972,2.786,4.133,1.394) 0.152

v3=(6.461,2.779,5.673,2.041) 0.257

kmea

ns++

v1=(5.006,3.423,1.467,0.225) 0.018

v2=(5.896,2.779,4.411,1.311) 0.155

v3=(6.741,3.102,5.687,2.001) 0.250

FCM-

Ck

v1=(5.003,3.419,1.471,0.231) 0.014

v2=(5.890,2.778,4.326,1.396) 0.108

v3=(6.711,2.895,5.694,2.018) 0.209

From Table 2, the FCM-Ck algorithm has a

higher clustering accuracy. It is closer to the actual

cluster center than FCM algorithm, IABC-KGFCM

algorithm and kmeans++ algorithm. That is due to the

improvement of the cluster center initialization

method. The sample point farther from the center are

more easily selected as the cluster center. FCM-Ck

algorithm performs better in mitigates the problem of

falling into the local optimal solution.

The cluster accuracy experiment is based on the

iris, Wine, and KDDcup data sets. Divide the data set

into a training set and a test set in a scale of 0.7:0.3.

The accuracy of the algorithm is calculated as

P=(N-W)/N, Where N is the total number of samples,

and W is the number of error clustering samples.The

algorithm accuracy rate results are shown in Figure 3.

Figure 3. experiment on algorithm accuracy

According to Figure 3, the accuracy of



kmeans++ algorithm is higher than FCM, which is

due to the method of selecting the cluster center based

on the Euclidean distance. FCM-Ck algorithm

performs better than kmeans++ algorithm and

IABC-KGFCM algorithm, moreover, compared to

small-scale data sets (such as iris and Wine), the

improvement of accuracy is more obvious in the

large-scale data set (like KDDcup).

C. Algorithm efficiency analysis

Analyze the running time of each algorithm on

different data sets. The results are shown in Table 3.

Table 3. Average clustering time

Algorithm
Data set

iris Wine KDDcup

FCM 0.72 0.74 61.72

kmeans++ 0.67 0.71 56.64

IABC-KGFCM 0.81 0.84 72.37

FCM-Ck 0.64 0.67 29.47

According to Table 3 and Figure 3, compared

with FCM, the IABC-KGFCM algorithm based on

artificial bee colony has improved the accuracy. But it

also paid a certain cost of time, and it did not perform

well when dealing with large-scale data set. The

FCM-Ck algorithm has significantly improved the

time performance, which is due to its distance

calculation strategy and Spark-based parallel

computing strategy.

On the data set KDDcup, The average number of

iterations for each algorithm to converge is shown in

Table 4. Among them, the FCM-Ck algorithm and the

kmeans++ algorithm have the least number of

iterations. That indicates their initial cluster center

method is more reasonable and more accessible to the

actual cluster center.

Table 4. Number of iterations

Algorithm
Data set

iris Wine KDDcup

FCM 27 31 64

kmeans++ 9 8 16

IABC-KGFCM 11 14 22

FCM-Ck 6 6 13

Speed ratio and expansion ratio are also

important indicators to measure the efficiency of

parallel algorithms [15]. Speed ratio is the ratio of the

time spend on single node and multiple nodes. It is

used to measure the time performance improvement

of the algorithm in the cluster. The calculation

formula for speed ratio is:

1

p

TS
T

 （11）

Where, S is the speed ratio, P is the number of

cluster nodes, T1 is the running time of a single node,

Tp is the running time of p nodes.

Expansion ratio is an important criterion for

measuring the scalability of parallel algorithms. The

higher the expansion ratio, the better the scalability of

parallel algorithms. The formula for calculating the

expansion ratio is:

P
SE  （12）

The experimental data set of the speed ratio and

the expansion ratio is taken from the UCI machine

learning library, and the test results are shown in

Figure 4 and Figure 5.

Fig.4 speed ratio experiment

Fig.5 extension ratio experiment

According to Figure 4 and Figure 5, when

processing small-scale data (below 500,000), the

speed ratio increases linearly and then stabilizes.

Because fewer nodes are sufficient to process the data



of this scale, and the acceleration of adding nodes is

no longer obvious. Therefore, the expansion ratio will

also decrease when the nodes increases to a certain

number. However, when dealing with big data (up to 1

million), FCM-Ck algorithm improves the

performance of the algorithm obviously. The speed

ratio increases linearly with the increase of the nodes’

number, the expansion ratio tends to 0.9 and basically

stable. That is, the larger size of the data, the higher

performance of the improved algorithm.

Ⅴ. CONCLUSION

Aiming at the problems that the fuzzy c-means

algorithm easy to fall into local optimum and difficult

to determine the clustering numbers, this article

proposed an improved fuzzy clustering algorithm

based on kmeans++. The improved algorithm used

Canopy algorithm to quickly determine the number of

clusters, used kmeans++ algorithm to enhance the

global search ability of the algorithm, introduced L2

norm instead of Euclidean distance to simplify

distance calculation, and was parallelized based on big

data platform Spark. The improved algorithm was

compared with FCM, IABC-KGFCM and kmeans++

algorithm through experiments. Experimental results

show that the improved algorithm performs better on

algorithm accuracy, computational performance and

big data adaptability.
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