
EasyChair Preprint
№ 5320

PI Controller for Solving Simple Equations

Pasi Airikka

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 13, 2021

 Automaatiopäivät24 2021

Pasi Airikka*

PI controller for solving simple equations
Abstract: PID control is a true workhorse for industrial
process control. Its widespread use in various control
applications is highly contributed by its astonishing
property of removing a control error between setpoint
and controlled variable. The very same feature,
however, can also be utilized for other purposes where
zero error is required. Solving an equation is good
example of such dilemma. In this paper, the PI
controller is presented as a solver e.g. for computing
square roots, solving quadratic equations with real-
valued solutions and linear equations of two variables.

Keywords: PID control, linear, equation, solution.

*Corresponding Author: Senior lecturer, Tampere
University of Applied Sciences, Tampere FINLAND, E-
mail: pasi.airikka@tuni.fi

1 Introduction

A PID controller (Proportional-Integral-Derivative) is a
backbone of industrial process control. Typically, it is
implemented using a ready-made PID controller
function block available on a process control system.
And once commissioned, it constantly regulates a
process variable as specified by removing the control
error between setpoint and controlled variable if an
integrating controller is used.

The PID controller has an integral controller for
guaranteeing a zero error between setpoint and
process output. The integral controller is based on
computing an integral of the control error with respect
to time. Receiving the control error as an input, it gives
the time-integrated control error as an output.
Combined with feedback, the simple mathematical
operation of integration has an astonishing capability of
driving its input inevitably to zero. The mathematical
proof can be found e.g. in [6].

The amazing property of the integral controller can be
used for driving any feedback signal to zero. As
reported in [1], a PI controller can be used for
identifying process model parameters or it might be
used for matching true process measurements with
simulated process model outputs as explained in [3]
and [4]. In all these applications, the integrating
controller plays a significant role in removing an error

between two signals by feedback. One of the latest
reported non-control related application of a PID
controller is given in [5] where an integrating controller
is used for searching prime number orders.

In this paper, the PI controller is first introduced as a
calculator for computing some scientific functions such
as square roots and logarithms. Then, the method of
zero removal by the PI controller is extended for solving
single variable quadratic equations with real roots. And,
finally, the application of solving linear equations of
two variables with real-valued solutions is explained. In
all above cases, examples are given to highlight the way
the PI controller acts as a numerical routine for solving
equations or computing scientific functions.

It is worth pinpointing, that the methods given in this
paper are far from being competitive alternatives for
numerical routines to the existing, well-known and
efficient methods for solving equations or computing
functions. Numerical operations and computing time
needed for computations is far too big for taking the
proposed method seriously. Instead, the purpose of the
paper is to show how the integral controller can be
used for solving many kinds of problems, not only
process control issues.

2 PI controller as a solver

A PI (Proportional-Integral) controller receives control
error 𝑒 as an input and returns control 𝑢 as an output.
The PI controller can be given as

 𝑢(𝑡) = 𝑘௣(𝑒(𝑡) +
ଵ

௧೔
∫ 𝑒(𝜏)𝑑𝜏)

௧

଴
 (1)

with proportional gain 𝑘௣ ≠ 0 and integral time 𝑡௜ > 0
for any time instant 𝑡 ≥ 0. The control error is a
deviation between setpoint 𝑟 and controlled variable 𝑦

 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) (2)

In process control, the controlled variable 𝑦 is typically
an on-line measured physical variable such as volume
flow, pressure, temperature, level or consistency. The
setpoint 𝑟 is the targeted value for the measurement.
The controller output 𝑢 is typically taken to a physical
control device such as control valve or pump. Often, the

 Automaatiopäivät24 2021

control is a percentage value in the range of 0–100 %.

In this paper, the PI controller does not act on a physical
control device nor receives its feedback signal from any
physical sensor or transmitter. Instead, the controlled
variable 𝑦 is a cost function value for given controller
input 𝑢. Thus, there is a true feedback closing the
control loop and allowing a PI controller to act. The
biggest difference to real PI controller applications is
that there are no signals to be transmitted between
sensors, computers and actuating devices. Instead, all
the computation takes place in a computer.

Another significant difference is that there is no time-
domain dynamics such as dead time or time constants
involved as in true process control applications for
regulating physical variables. The only relation between
process input 𝑢 and output 𝑦 is static by nature but it
can be linear or non-linear. When being the latter, it
may unfortunately pose some difficulties on tuning and
using PI controllers.

3 PI controller implementation

In distributed control systems, there is typically a
function block for implementing a PID controller. If,
however, some other platform is used, then some
programming might be required to implement a PID
controller for execution. In this paper, a simple discrete
variant of an analogue PI controller is applied.

The PI controller (1) can discretized using a forward
Euler approximation and given as

 𝑒௞ = 𝑟௞ − 𝑦௞ (3a)

 𝑢௞ = 𝑘௣ ቀ𝑒௞ +
ଵ

௧೔
𝐼௞ቁ (3b)

 𝐼௞ାଵ = 𝐼௞ + ℎ ∙ 𝑒௞ (3c)

where a sub-index 𝑘 is an integer counter (𝑘 =
1, 2, 3, . . .) and ℎ is a sampling period or, in this context,
a computation interval.

The PI controller can be initialized to 𝐼ଵ = 0 but it is
recommended to initialize it to a reasonable initial
value for a faster convergence to a numerical solution.
The reasonable initial value would be any non-zero
value which would be closer to a final solution than
pure zero.

In real applications, the discretized PI controller (3a-c)
should be equipped with many practical features such
as anti-windup but in this context those practicalities
are neglected on purpose without compromising
achievable results.

The PI controller always has a control direction which is
either direct (positive) for 𝑘௣ > 0 or reverse (negative)
for 𝑘௣ < 0 but cannot be both at the same time. This
limitation needs to be carefully considered in solving
numerical equations by a PI controller.

4 PI controller for computing simple
scientific functions

The PI controller can be used for calculating many of
the scientific functions such as square root, exponential
functions and logarithms.

Case 1. Square root.

Compute a square root 𝑢 = √𝑎 for a given real-valued
𝑎 > 0. Squaring both sides of the square root gives

𝑢 = √𝑎 ⇔ 𝑢ଶ = 𝑎 (4)

The process (function) to be controlled by a PI
controller is 𝑦 = 𝑢ଶ with controlled variable 𝑦,
controller output 𝑢 and setpoint 𝑟 = 𝑎.

Example. For computing a square root 𝑢 = √51, the
function 𝑦 = 𝑢ଶ is plotted for 𝑢 = 0 … 10 in figure 1.

Fig. 1. Function 𝑦 = 𝑢ଶ for computing a square root
𝑢 = √51.

The discrete PI controller (3a-c) with 𝑘௣ = 0.05, 𝑡௜ =

1, ℎ = 1 is implemented for controlling the process
𝑦 = 𝑢ଶ with a setpoint 𝑟 = 51. With 𝐼଴ = 0, the PI
controller output converges to a solution 𝑢 ≈ 7.1414
by making the control error 𝑒 = 𝑟 − 𝑦 = 51 − 𝑢ଶ to
zero in 21 iterations (solid in figure 2). For comparison,
the integral term is initially set to 𝐼଴ =

௧೔

௞೛
∙

௔

ଵ଴
=

ଵ

଴.଴ହ
∙

ହଵ

ଵ଴
= 102 providing with a faster convergence to a

solution (dashed in figure 2).

 Automaatiopäivät24 2021

Fig. 2. PI controller responses for solving 𝑢 = √51.
Upper: PI controller output converging to a solution
𝑢 = √51. Lower: control error 𝑒 = 51 − 𝑦 converging
to zero for 𝑦 = 𝑢ଶ.

Case 2. 10-base logarithm

Compute a 10-base logarithm 𝑢 = logଵ଴ 𝑎 for a given
real-valued 𝑎 > 0. By applying exponentiation on both
sides of the logarithm gives

 𝑢 = logଵ଴ 𝑎 ⇔ 10௨ = 𝑎 (5)

Now, the process (function) to be controlled by a PI
controller is 𝑦 = 10௨ with controlled variable 𝑦,
controller output 𝑢 and setpoint 𝑟 = 𝑎.

Example. For computing a 10-base logarithm 𝑢 =
logଵ଴ 51, the function 𝑦 = 10௨ is plotted in figure 3.

Fig. 3. Function 𝑦 = 10௨ for computing a 10-based
logarithm 𝑢 = logଵ଴ 51.

The discrete PI controller (3a-c) with 𝑘௣ = 0.01, 𝑡௜ =

1, ℎ = 1 is implemented for controlling the process
𝑦 = 10௨ with a setpoint 𝑟 = 51. Without any
initialization of 𝐼௞, the PI controller output converges to
a solution 𝑢 ≈ 1.7076 by making the control error 𝑒 =

𝑟 − 𝑦 = 51 − 10௨ to zero in 17 iterations (solid in
figure 4). For comparison, the integral term 𝐼௞ is initially
set to 𝐼଴ =

௧೔

௞೛
∙

௔

ଵ଴
=

ଵ

଴.଴ଵ
∙

ହଵ

ଵ଴
= 501 enabling a quicker

convergence to a solution (dashed in figure 4).

Fig. 4. PI controller responses for solving 𝑢 = logଵ଴ 51.
Upper: PI controller output converging to a solution
𝑢 = logଵ଴ 51. Lower: control error 𝑒 = 51 − 𝑦
converging to zero for 𝑦 = 10௨.

5 PI controller for solving quadratic
equations

The PI controller can be used for solving a quadratic
polynomial

 𝑎𝑢ଶ + 𝑏𝑢 + 𝑐 = 0 (6)

with 𝑎 ≠ 0 for real-valued solutions (roots) of 𝑢 only,
the condition of which limits the usage of a PI controller
only for cases when 𝑏ଶ > 4𝑎𝑐.

The process (function) to be controlled by a PI
controller is 𝑦 = 𝑎𝑢ଶ + 𝑏𝑢 + 𝑐 with controlled variable
𝑦, controller output 𝑢 and setpoint 𝑟 = 0.

Example. Solve (6) for 𝑎 = 1, 𝑏 = −6, 𝑐 = −16. The
condition of 𝑏ଶ = 36 > 4𝑎𝑐 = −64 is satisfied for
existence of a real-valued solution for 𝑢. The
polynomial is plotted for 𝑢 = −4 … 10 in figure 5. The
roots of the polynomial are 𝑢ଵ = −2 and 𝑢ଶ = 8 and
they are denoted by red circles whereas the turning
point − ௕

ଶ௔
 (minimum) of the polynomial is denoted by

a red cross.

2 4 6 8 10 12 14 16 18
2

4

6

8
u

Solution

2 4 6 8 10 12 14 16 18

Iterations

0

20

40

60

e

Control error

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

u

0

10

20

30

40

50

60

70

80

90

100
Process y = 10u

 Automaatiopäivät24 2021

Fig. 5. Polynomial 𝑦 = 𝑢ଶ − 6𝑢 − 16 for solving 𝑦 =
𝑢ଶ − 6𝑢 − 16 = 0.

Due to the turning point of a polynomial (figure 5), the
polynomial either decreases or increases for increasing
𝑢. However, the PI controller has a fixed,
predetermined control direction. Therefore, two PI
controllers are required, each assigned with one
solution of the polynomial.

Two discrete PI controllers (3a-c) with 𝑘௣ = ±0.1, 𝑡௜ =

1, ℎ = 1 are implemented for controlling the process
𝑦 = 𝑢ଶ − 6𝑢 − 16 with a setpoint 𝑟 = 0. The other PI
controller has a negative sign for the other solution.
Both controllers are initialized to a turning point 𝑢଴ =

−
௕

ଶ௔
= −

ି଺

ଶ∙ଵ
= 3 from where they start to operate to

opposite directions due to opposite proportional gain
signs.

PI controllers’ outputs converge to solutions 𝑢ଵ = −2
and 𝑢ଶ = 8 by making both control errors 𝑒௜ = 𝑟௜ −

𝑦௜ = 0 − (𝑢௜
ଶ − 6𝑢௜ − 16) for 𝑖 = 1, 2 to zero in 8

iterations (figure 6). The convergence is visualized with
the polynomial function in figure 6 (right) by red circles.

Fig. 6. PI controllers’ responses for solving 𝑢ଶ − 6𝑢 −
16 = 0. Upper left: PI controllers’ outputs converging

to solutions 𝑢ଵ = −2 and 𝑢ଶ = 8. Lower left: control
errors during computation. Right: Polynomial with
converging estimates (red circles).

The PI controllers could be used for solving polynomial
of higher degrees, as well. However, the number of PI
controllers required correspond the degree of
polynomial as each controller is assigned for solving
one root of the polynomial. In addition, turning points
of the polynomial are to be computed initially making
the method much too complicated for practical usage.

6 PI controller for solving a set of two
linear equations

The PI controller can be used for solving a simple set of
two equations with two unknown real variables 𝑢ଵ and
𝑢ଶ

 𝑎ଵଵ𝑢ଵ + 𝑎ଵଶ𝑢ଶ = 𝑏ଵ
 𝑎ଶଵ𝑢ଵ + 𝑎ଶଶ𝑢ଶ = 𝑏ଶ (7)

assuming the condition for the existence of the solution
is satisfied. In linear algebra, the set (7) can be
formulated using a matrix syntax

 𝐴𝒖 = 𝒃 (8)

where 𝐴 = ቂ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቃ, 𝒖 = ቂ

𝑢ଵ

𝑢ଶ
ቃ and 𝒃 = ൤

𝑏ଵ

𝑏ଶ
൨. The

condition for the existence of the solution can be
formulated as 𝑟𝑎𝑛𝑘([𝐴 | 𝒃]) = 2 saying that the matrix
has a full rank.

Now, there are two processes (functions) to be
controlled with two controlled variables 𝑦௜ = 𝑎௜ଵ𝑢ଵ +
𝑎௜ଶ𝑢ଶ − 𝑏௜ , two controller outputs 𝑢௜ and two setpoints
𝑟௜ = 0 for 𝑖 = 1, 2.

As with any multivariable control application, the input-
output pairing is a concern to tackle with for designing
controllers. A method often used is based on a simple
RGA analysis (Relative Gain Array) as given in [2]. The
same method is recommended here for selecting
appropriate input-output pairs for solving the linear
equations using PI controllers (7).

Example. Solve a linear set of equations

 𝑢ଵ + 9𝑢ଶ = 70
 2𝑢ଵ + 8𝑢ଶ = 8 (9)

The equation set (9) has a feasible solution as the

matrix 𝐴 = ቂ
1 9
2 8

ቃ has a full rank.

-5 0 5 10

u

-25

-20

-15

-10

-5

0

5

10

15
y = u2 - 6u - 16

2 4 6 8
-5

0

5

10
Solutions

2 4 6 8

Iterations

-10

0

10

20

30
Control errors

 Automaatiopäivät24 2021

The RGA method with a matrix 𝑅𝐺𝐴 = ቂ
−0.8 1.8
1.8 −0.8

ቃ

recommends pairing 𝑢ଶ with 𝑦ଵ and 𝑢ଵ with 𝑦ଶ for
process outputs 𝑦ଵ = 𝑢ଵ + 9𝑢ଶ − 70 and 𝑦ଶ = 2𝑢ଵ +
8𝑢ଶ − 8. Both processes (functions) have positive gains
(9 and 2) allowing to use the PI controllers with positive
(direct) control directions.

Two discrete PI controllers (3a-c) with 𝑘௣ = 0.1, 𝑡௜ =

1, ℎ = 1 are implemented for regulating the controlled
variables 𝑦௜ with setpoints 𝑟௜ = 0 for 𝑖 = 1, 2. The
controllers are initialized to zero 𝑢௜ = 0.

The PI controllers’ outputs converge to solutions 𝑢ଵ =
−48.8 and 𝑢ଶ = 13.2 by making both control errors
𝑒ଵ = 𝑟ଵ − 𝑦ଵ = 0 − (2𝑢ଵ + 8𝑢ଶ − 8) and 𝑒ଶ = 𝑟ଶ −
𝑦ଶ = 0 − (𝑢ଵ + 9𝑢ଶ − 70) to zero in 211 iterations For
visualization, only the first 50 iterations are plotted in
figure 7.

Fig. 7. PI controllers’ responses for solving a set of two
linear equations (9). Upper: PI controller outputs
converging to solutions 𝑢ଵ = −48.8 and 𝑢ଶ = 13.2.
Lower: control errors during computation.

7 Conclusion

The PI controller (Proportional-Integral) has an
astonishing capability of eliminating a feedback error
between targeted and measured variable. This amazing
feature contributes to numerical integration of the
control error in an integral part of the PI controller.

In process control, integral control is used for
eliminating permanent errors between setpoints and
measured, controlled variables. However, the method
can be extended for other purposes as well. Literature
shows that it has been used for model identification or
searching prime numbers even. In this paper, the
integral control has been used for solving simple
scientific functions and equations.

A PI controller can be used as a solver for equations.
However, computational effort and numerical
operations required to set up a PI controller is a bit too
much for practical use. In this paper, examples given
were such that they are traditionally solved using
algorithms and methods that do not require iterations.
For example, an equation of second order has a well-
known solution formula. Higher-order polynomial
equations are efficiently solved using e.g. eigenvalue
decomposition.

Most probably, to allow a fair comparison between
traditional solvers and a PI controller, more
complicated numerical problems requiring iterative
approach should be introduced. Yet, increasing
complexity in problems would necessarily demand
more of the PI control design, the operation direction
of a PI controller being just one of the issues to tackle
with.

An interesting topic to study would be stability of the PI
controller as a solver. During a vast number of
simulations carried out for the problems presented in
this paper alone, oscillations and even unstable
performance was detected. Tuning parameters of a PI
controller make a big difference even though there is
no time-domain dynamics such as dead time and time
constants involved.

An apparent reason for the stabilization issue of using a
PI controller for solving equations is due to a non-linear
nature of problems. Already a second-order polynomial
has a non-linear element due to squaring of a variable.
Nonlinearities might require nonlinear behavior or
adaptation at least from a PI controller to work more
reliably and without compromising stability.

References

[1] Airikka, P. Continuous-time parameter
identification using PI controllers. Nordic Process
Control Workshop, Oulu, Finland, 2013.

[2] Bristol, E. H. On a new measure of interaction for
multivariable process control. IEEE Transactions on
Automatic Control, 1: 133–134, 1966.

[3] Friman, M., Airikka, P. Tracking simulation based
on PI controllers and autotuning, 2nd IFAC
conference on advanced PID control, Brescia, Italy,
2012.

[4] Friman, M., Airikka, P. Tracking simulation method,
Patent US20130116802A1, 2010.

[5] Klán, P., Optimized integral controller for searching

 Automaatiopäivät24 2021

prime number orders.

[6] Åström, K.J. and Hägglund, T. PID controllers:
theory, design and tuning. page numbers.
Instrument Society of America, United States of
America, 1995.

