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PI controller for solving simple equations 
Abstract: PID control is a true workhorse for industrial 
process control. Its widespread use in various control 
applications is highly contributed by its astonishing 
property of removing a control error between setpoint 
and controlled variable. The very same feature, 
however, can also be utilized for other purposes where 
zero error is required. Solving an equation is good 
example of such dilemma. In this paper, the PI 
controller is presented as a solver e.g. for computing 
square roots, solving quadratic equations with real-
valued solutions and linear equations of two variables.  
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1 Introduction 

A PID controller (Proportional-Integral-Derivative) is a 
backbone of industrial process control. Typically, it is 
implemented using a ready-made PID controller 
function block available on a process control system. 
And once commissioned, it constantly regulates a 
process variable as specified by removing the control 
error between setpoint and controlled variable if an 
integrating controller is used. 

The PID controller has an integral controller for 
guaranteeing a zero error between setpoint and 
process output. The integral controller is based on 
computing an integral of the control error with respect 
to time. Receiving the control error as an input, it gives 
the time-integrated control error as an output. 
Combined with feedback, the simple mathematical 
operation of integration has an astonishing capability of 
driving its input inevitably to zero. The mathematical 
proof can be found e.g. in [6]. 

The amazing property of the integral controller can be 
used for driving any feedback signal to zero. As 
reported in [1], a PI controller can be used for 
identifying process model parameters or it might be 
used for matching true process measurements with 
simulated process model outputs as explained in [3] 
and [4]. In all these applications, the integrating 
controller plays a significant role in removing an error 

between two signals by feedback. One of the latest 
reported non-control related application of a PID 
controller is given in [5] where an integrating controller 
is used for searching prime number orders. 
 
In this paper, the PI controller is first introduced as a 
calculator for computing some scientific functions such 
as square roots and logarithms. Then, the method of 
zero removal by the PI controller is extended for solving 
single variable quadratic equations with real roots. And, 
finally, the application of solving linear equations of 
two variables with real-valued solutions is explained. In 
all above cases, examples are given to highlight the way 
the PI controller acts as a numerical routine for solving 
equations or computing scientific functions. 
 
It is worth pinpointing, that the methods given in this 
paper are far from being competitive alternatives for 
numerical routines to the existing, well-known and 
efficient methods for solving equations or computing 
functions. Numerical operations and computing time 
needed for computations is far too big for taking the 
proposed method seriously. Instead, the purpose of the 
paper is to show how the integral controller can be 
used for solving many kinds of problems, not only 
process control issues. 

2 PI controller as a solver 

A PI (Proportional-Integral) controller receives control 
error 𝑒 as an input and returns control 𝑢 as an output. 
The PI controller can be given as  
 

 𝑢(𝑡) = 𝑘௣(𝑒(𝑡) +
ଵ

௧೔
∫ 𝑒(𝜏)𝑑𝜏)

௧

଴
 (1) 

 
with proportional gain 𝑘௣ ≠ 0 and integral time 𝑡௜ > 0 
for any time instant 𝑡 ≥ 0. The control error is a 
deviation between setpoint 𝑟 and controlled variable 𝑦 
 
 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)  (2) 
 
In process control, the controlled variable 𝑦 is typically 
an on-line measured physical variable such as volume 
flow, pressure, temperature, level or consistency. The 
setpoint 𝑟 is the targeted value for the measurement. 
The controller output 𝑢 is typically taken to a physical 
control device such as control valve or pump. Often, the 
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control is a percentage value in the range of 0–100 %.  
 
In this paper, the PI controller does not act on a physical 
control device nor receives its feedback signal from any 
physical sensor or transmitter. Instead, the controlled 
variable 𝑦 is a cost function value for given controller 
input  𝑢. Thus, there is a true feedback closing the 
control loop and allowing a PI controller to act. The 
biggest difference to real PI controller applications is 
that there are no signals to be transmitted between 
sensors, computers and actuating devices. Instead, all 
the computation takes place in a computer. 
 
Another significant difference is that there is no time-
domain dynamics such as dead time or time constants 
involved as in true process control applications for 
regulating physical variables. The only relation between 
process input  𝑢 and output 𝑦 is static by nature but it 
can be linear or non-linear. When being the latter, it 
may unfortunately pose some difficulties on tuning and 
using PI controllers. 
 

3 PI controller implementation 

In distributed control systems, there is typically a 
function block for implementing a PID controller. If, 
however, some other platform is used, then some 
programming might be required to implement a PID 
controller for execution. In this paper, a simple discrete 
variant of an analogue PI controller is applied. 
 
The PI controller (1) can discretized using a forward 
Euler approximation and given as 
 
 𝑒௞ = 𝑟௞ − 𝑦௞   (3a) 

 𝑢௞ = 𝑘௣ ቀ𝑒௞ +
ଵ

௧೔
𝐼௞ቁ  (3b) 

 𝐼௞ାଵ = 𝐼௞ + ℎ ∙ 𝑒௞  (3c) 
 
where a sub-index 𝑘 is an integer counter (𝑘 =
1, 2, 3, . . . ) and ℎ is a sampling period or, in this context, 
a computation interval. 
 
The PI controller can be initialized to 𝐼ଵ = 0 but it is 
recommended to initialize it to a reasonable initial 
value for a faster convergence to a numerical solution. 
The reasonable initial value would be any non-zero 
value which would be closer to a final solution than 
pure zero.  
 
In real applications, the discretized PI controller (3a-c) 
should be equipped with many practical features such 
as anti-windup but in this context those practicalities 
are neglected on purpose without compromising 
achievable results. 
  

The PI controller always has a control direction which is 
either direct (positive) for 𝑘௣ > 0 or reverse (negative) 
for 𝑘௣ < 0 but cannot be both at the same time. This 
limitation needs to be carefully considered in solving 
numerical equations by a PI controller. 
 

4 PI controller for computing simple 
scientific functions 

The PI controller can be used for calculating many of 
the scientific functions such as square root, exponential 
functions and logarithms. 
 
Case 1. Square root. 
 
Compute a square root 𝑢 = √𝑎 for a given real-valued 
𝑎 > 0. Squaring both sides of the square root gives 
 

𝑢 = √𝑎  ⇔  𝑢ଶ = 𝑎  (4) 
 
The process (function) to be controlled by a PI 
controller is 𝑦 = 𝑢ଶ with controlled variable 𝑦, 
controller output 𝑢 and setpoint 𝑟 = 𝑎. 
 
Example. For computing a square root 𝑢 = √51, the 
function 𝑦 = 𝑢ଶ is plotted for 𝑢 = 0 … 10 in figure 1. 
 

 

Fig. 1. Function 𝑦 = 𝑢ଶ for computing a square root 
𝑢 = √51. 

The discrete PI controller (3a-c) with  𝑘௣ = 0.05, 𝑡௜ =

1, ℎ = 1 is implemented for controlling the process  
𝑦 = 𝑢ଶ with a setpoint 𝑟 = 51. With 𝐼଴ = 0, the PI 
controller output converges to a solution 𝑢 ≈ 7.1414 
by making the control error 𝑒 = 𝑟 − 𝑦 = 51 − 𝑢ଶ to 
zero in 21 iterations (solid in figure 2). For comparison, 
the integral term is initially set to 𝐼଴ =

௧೔

௞೛
∙

௔

ଵ଴
=

ଵ

଴.଴ହ
∙

ହଵ

ଵ଴
= 102 providing with a faster convergence to a 

solution (dashed in figure 2). 
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Fig. 2. PI controller responses for solving 𝑢 = √51. 
Upper: PI controller output converging to a solution 
𝑢 = √51. Lower: control error 𝑒 = 51 − 𝑦 converging 
to zero for 𝑦 = 𝑢ଶ. 
 
Case 2. 10-base logarithm 
 
Compute a 10-base logarithm 𝑢 = logଵ଴ 𝑎 for a given 
real-valued 𝑎 > 0. By applying exponentiation on both 
sides of the logarithm gives 
 
 𝑢 = logଵ଴ 𝑎  ⇔  10௨ = 𝑎   (5) 
 
Now, the process (function) to be controlled by a PI 
controller is 𝑦 = 10௨ with controlled variable 𝑦, 
controller output 𝑢 and setpoint 𝑟 = 𝑎. 
 
Example. For computing a 10-base logarithm 𝑢 =
logଵ଴ 51, the function 𝑦 = 10௨ is plotted in figure 3. 
 

 

Fig. 3. Function  𝑦 = 10௨ for computing a 10-based 
logarithm 𝑢 = logଵ଴ 51. 

The discrete PI controller (3a-c) with  𝑘௣ = 0.01, 𝑡௜ =

1, ℎ = 1 is implemented for controlling the process  
𝑦 = 10௨ with a setpoint 𝑟 = 51. Without any 
initialization of 𝐼௞, the PI controller output converges to 
a solution 𝑢 ≈ 1.7076 by making the control error 𝑒 =

𝑟 − 𝑦 = 51 − 10௨ to zero in 17 iterations (solid in 
figure 4). For comparison, the integral term 𝐼௞  is initially 
set to 𝐼଴ =

௧೔

௞೛
∙

௔

ଵ଴
=

ଵ

଴.଴ଵ
∙

ହଵ

ଵ଴
= 501 enabling a quicker 

convergence to a solution (dashed in figure 4). 
 

 

Fig. 4. PI controller responses for solving 𝑢 = logଵ଴ 51. 
Upper: PI controller output converging to a solution 
𝑢 = logଵ଴ 51. Lower: control error 𝑒 = 51 − 𝑦 
converging to zero for 𝑦 = 10௨. 
 

5 PI controller for solving quadratic 
equations 

The PI controller can be used for solving a quadratic 
polynomial 
 
 𝑎𝑢ଶ + 𝑏𝑢 + 𝑐 = 0  (6) 
 
with 𝑎 ≠ 0 for real-valued solutions (roots) of 𝑢 only, 
the condition of which limits the usage of a PI controller 
only for cases when 𝑏ଶ > 4𝑎𝑐. 
 
The process (function) to be controlled by a PI 
controller is 𝑦 = 𝑎𝑢ଶ + 𝑏𝑢 + 𝑐 with controlled variable 
𝑦, controller output 𝑢 and setpoint 𝑟 = 0. 
 
Example. Solve (6) for 𝑎 = 1, 𝑏 = −6, 𝑐 = −16. The 
condition of 𝑏ଶ = 36 > 4𝑎𝑐 = −64 is satisfied for 
existence of a real-valued solution for 𝑢. The 
polynomial is plotted for 𝑢 = −4 … 10 in figure 5. The 
roots of the polynomial are 𝑢ଵ = −2 and 𝑢ଶ = 8 and 
they are denoted by red circles whereas the turning 
point − ௕

ଶ௔
 (minimum) of the polynomial is denoted by 

a red cross. 
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Fig. 5. Polynomial 𝑦 = 𝑢ଶ − 6𝑢 − 16 for solving 𝑦 =
𝑢ଶ − 6𝑢 − 16 = 0. 

Due to the turning point of a polynomial (figure 5), the 
polynomial either decreases or increases for increasing  
𝑢. However, the PI controller has a fixed, 
predetermined control direction. Therefore, two PI 
controllers are required, each assigned with one 
solution of the polynomial. 

Two discrete PI controllers (3a-c) with  𝑘௣ = ±0.1, 𝑡௜ =

1, ℎ = 1 are implemented for controlling the process  
𝑦 = 𝑢ଶ − 6𝑢 − 16 with a setpoint 𝑟 = 0. The other PI 
controller has a negative sign for the other solution. 
Both controllers are initialized to a turning point 𝑢଴ =

−
௕

ଶ௔
= −

ି଺

ଶ∙ଵ
= 3 from where they start to operate to 

opposite directions due to opposite proportional gain 
signs. 

PI controllers’ outputs converge to solutions 𝑢ଵ = −2 
and 𝑢ଶ = 8 by making both control errors 𝑒௜ = 𝑟௜ −

𝑦௜ = 0 − (𝑢௜
ଶ − 6𝑢௜ − 16) for 𝑖 = 1, 2 to zero in 8 

iterations (figure 6). The convergence is visualized with 
the polynomial function in figure 6 (right) by red circles. 

 

Fig. 6. PI controllers’ responses for solving 𝑢ଶ − 6𝑢 −
16 = 0. Upper left: PI controllers’ outputs converging 

to solutions 𝑢ଵ = −2 and 𝑢ଶ = 8. Lower left: control 
errors during computation. Right: Polynomial with 
converging estimates (red circles). 

The PI controllers could be used for solving polynomial 
of higher degrees, as well. However, the number of PI 
controllers required correspond the degree of 
polynomial as each controller is assigned for solving 
one root of the polynomial. In addition, turning points 
of the polynomial are to be computed initially making 
the method much too complicated for practical usage. 

6 PI controller for solving a set of two 
linear equations 

The PI controller can be used for solving a simple set of 
two equations with two unknown real variables 𝑢ଵ and 
𝑢ଶ 
 
 𝑎ଵଵ𝑢ଵ + 𝑎ଵଶ𝑢ଶ = 𝑏ଵ 
 𝑎ଶଵ𝑢ଵ + 𝑎ଶଶ𝑢ଶ = 𝑏ଶ  (7) 
 
assuming the condition for the existence of the solution 
is satisfied. In linear algebra, the set (7) can be 
formulated using a matrix syntax 
 
 𝐴𝒖 = 𝒃   (8) 
 

where 𝐴 = ቂ
𝑎ଵଵ 𝑎ଵଶ

𝑎ଶଵ 𝑎ଶଶ
ቃ, 𝒖 = ቂ

𝑢ଵ

𝑢ଶ
ቃ and 𝒃 = ൤

𝑏ଵ

𝑏ଶ
൨. The 

condition for the existence of the solution can be 
formulated as 𝑟𝑎𝑛𝑘([𝐴 | 𝒃]) = 2 saying that the matrix 
has a full rank. 
 
Now, there are two processes (functions) to be 
controlled with two controlled variables 𝑦௜ = 𝑎௜ଵ𝑢ଵ +
𝑎௜ଶ𝑢ଶ − 𝑏௜ , two controller outputs 𝑢௜  and two setpoints 
𝑟௜ = 0 for 𝑖 = 1, 2. 

As with any multivariable control application, the input-
output pairing is a concern to tackle with for designing 
controllers. A method often used is based on a simple 
RGA analysis (Relative Gain Array) as given in [2]. The 
same method is recommended here for selecting 
appropriate input-output pairs for solving the linear 
equations using PI controllers (7).  

Example. Solve a linear set of equations 

 𝑢ଵ + 9𝑢ଶ = 70 
 2𝑢ଵ + 8𝑢ଶ = 8  (9) 

The equation set (9) has a feasible solution as the 

matrix 𝐴 = ቂ
1 9
2 8

ቃ has a full rank. 
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The RGA method with a matrix 𝑅𝐺𝐴 = ቂ
−0.8 1.8
1.8 −0.8

ቃ  

recommends pairing 𝑢ଶ with 𝑦ଵ and 𝑢ଵ with 𝑦ଶ for 
process outputs 𝑦ଵ = 𝑢ଵ + 9𝑢ଶ − 70 and 𝑦ଶ = 2𝑢ଵ +
8𝑢ଶ − 8. Both processes (functions) have positive gains 
(9 and 2) allowing to use the PI controllers with positive 
(direct) control directions. 

Two discrete PI controllers (3a-c) with  𝑘௣ = 0.1, 𝑡௜ =

1, ℎ = 1 are implemented for regulating the controlled 
variables 𝑦௜  with setpoints 𝑟௜ = 0 for 𝑖 = 1, 2. The 
controllers are initialized to zero 𝑢௜ = 0.  

The PI controllers’ outputs converge to solutions 𝑢ଵ =
−48.8 and 𝑢ଶ = 13.2 by making both control errors 
𝑒ଵ = 𝑟ଵ − 𝑦ଵ = 0 − (2𝑢ଵ + 8𝑢ଶ − 8) and 𝑒ଶ = 𝑟ଶ −
𝑦ଶ = 0 − (𝑢ଵ + 9𝑢ଶ − 70)  to zero in 211 iterations For 
visualization, only the first 50 iterations are plotted in 
figure 7. 

 

Fig. 7. PI controllers’ responses for solving a set of two 
linear equations (9). Upper: PI controller outputs 
converging to solutions 𝑢ଵ = −48.8 and 𝑢ଶ = 13.2. 
Lower: control errors during computation. 

7 Conclusion 

The PI controller (Proportional-Integral) has an 
astonishing capability of eliminating a feedback error 
between targeted and measured variable. This amazing 
feature contributes to numerical integration of the 
control error in an integral part of the PI controller. 

In process control, integral control is used for 
eliminating permanent errors between setpoints and 
measured, controlled variables. However, the method 
can be extended for other purposes as well. Literature 
shows that it has been used for model identification or 
searching prime numbers even. In this paper, the 
integral control has been used for solving simple 
scientific functions and equations. 

A PI controller can be used as a solver for equations. 
However, computational effort and numerical 
operations required to set up a PI controller is a bit too 
much for practical use. In this paper, examples given 
were such that they are traditionally solved using 
algorithms and methods that do not require iterations. 
For example, an equation of second order has a well-
known solution formula. Higher-order polynomial 
equations are efficiently solved using e.g. eigenvalue 
decomposition. 

Most probably, to allow a fair comparison between 
traditional solvers and a PI controller, more 
complicated numerical problems requiring iterative 
approach should be introduced. Yet, increasing 
complexity in problems would necessarily demand 
more of the PI control design, the operation direction 
of a PI controller being just one of the issues to tackle 
with. 

An interesting topic to study would be stability of the PI 
controller as a solver. During a vast number of 
simulations carried out for the problems presented in 
this paper alone, oscillations and even unstable 
performance was detected. Tuning parameters of a PI 
controller make a big difference even though there is 
no time-domain dynamics such as dead time and time 
constants involved. 

An apparent reason for the stabilization issue of using a 
PI controller for solving equations is due to a non-linear 
nature of problems. Already a second-order polynomial 
has a non-linear element due to squaring of a variable. 
Nonlinearities might require nonlinear behavior or 
adaptation at least from a PI controller to work more 
reliably and without compromising stability.  
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