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Abstract— This study provides a unique fuzzy -clustering
algorithm and an image fusion technique for an unsupervised
distribution-free change detection method for synthetic
aperture radar (SAR) images. Using complimentary data from a
mean-ratio picture and a log-ratio image, the image fusion
approach is introduced to create a difference image. Wavelet
fusion rules based on an average operator and minimum local
area energy are used to fuse the wavelet coefficients for a
low-frequency band and a high-frequency band, respectively,
to limit background information and increase the information
of altered regions in the fused difference image. For
categorizing modified and unaffected regions in the fused
difference image, a reformulated fuzzy local-in-formation C-
means clustering technique is suggested. Information regarding
is included in it, For the objective of boosting the altered
information and lessening the impact of speckle noise, spatial
context is presented in an unique fuzzy manner. The image
fusion technique blends the benefits of the log-ratio operator
and the mean-ratio operator and improves performance,
according to experiments on real SAR images. The findings of
the enhanced fuzzy clustering technique for change detection
showed less inaccuracy than its prior versions.

Index Terms—Clustering, fuzzy C-means (FCM) algorithm,
image change detection, image fusion, synthetic aperture radar
(SAR).

1. INTRODUCTION

In order to find changes that may have taken place between
the considered acquisition dates, image change detection is a
procedure that examines photographs of the same scene
obtained at several times . Due to its many uses in a variety of
fields, including remote sensing , medical diagnosis , and
video surveillance , it has garnered considerable interest in
recent decades. Change detection in remote sensing photos is
becoming increasingly and more crucial as remote sensing
technology advances. Due to the existence of the speckle in
synthetic aperture radar (SAR) images, change detection in
SAR images presents some more challenges than optical ones.
noise. SAR sensors, however, are not affected by atmospheric
or lighting circumstances, which keeps the change detection in
SAR images appealing .

Unsupervised change detection in SAR pictures can be

broken down into three parts, as indicated in the literature: 1)
image reprocessing; 2) creating a difference image between
the multi-temporal images; and 3) analyzing the difference
image. Noise reduction, geometric adjustments, and co
registration are the key tasks of the first step. The difference
image is created in the second step by pixel-by-pixel
comparison of two co-registered images. Differentiating
(subtraction operator) and rationing (ratio operator) are well-
known methods for creating a difference image for remote
sensing photos. By subtracting the intensity values between
the two target images under consideration, differences between
the two are measured in differentiating. In rationing,
adjustments are made by using a pixel-by-pixel ratio operator
on the couple under consideration. of temporal pictures.
However, as the image differentiating technique is not tailored
to the statistics of SAR images and is not robust to calibration
errors, the ratio operator is often employed in place of the
subtraction operator in the case of SAR images . Additionally,
the ratio image is typically expressed in a logarithmic or a
mean scale [4]-[8] due to the multiplicative nature of speckles.
The histogram of the difference image is typically subjected to
a judgement threshold in the third stage to identify changes.
Several threshold techniques, including Otsu, the Kittler and
Thrilling minimum-error threshold algorithm (K&I), and the
expectation maximization (EM) algorithm, have been
presented to estimate the threshold in an unsupervised way.

In general, it is evident from the literature that the
effectiveness of SAR-image change detection depends heavily
on the difference image's quality and the -classification
method's precision. In this research, we suggest an
unsupervised distribution-free SAR-image change detection
method to overcome the two problems. It is distinctive in the
following two ways: Producing difference images by
combining mean-ratio and log-ratio images, and upgrading the
noise-resistant fuzzy local-information c-means (FLICM)
clustering method to spot change areas without making any
distribution assumptions. There are five sections in this essay.
The key components of the suggested approach and our
motivation will be discussed in the section that follows. The
proposed method will be thoroughly explained in Section III,
and experimental findings on actual multi-temporal SAR
images will be discussed in Section IV to show how effective
the suggested strategy is. Our conclusions are presented in the
final part..
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Fig. 1. Flowchart of the proposed change detection approach.

Al. MOTIVATION
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Let us consider the two co-registered intensity SAR images of
size, i.e., ac-quired over the same geographical area at two
different times f1 and !2, respectively. Our goal is to create a
difference image that depicts the information about changes
between the two points in time. A binary classification is then
used to create a binary image that represents the two classes—
change and unchanged. The proposed unsupervised
distribution-free change detection method is divided into two
phases, as depicted in Fig. 1. The mean-ratio picture and the
log-ratio image are utilized to create the difference image
using wavelet fusion, and the fused image is automatically
analyzed using an improved fuzzy clustering technique.

Motivation of Generating Difference Images Using
Image Fusion

Due to the presence of speckle noise, as was indicated in
Section I, the ratio difference image is typically expressed in a
logarithmic or mean scale. Since the log-normal model was
regarded as a heuristic parametric probability distribution
function for SAR intensity and amplitude distributions, there
has been substantial worry about the ratio image's logarithm in
the last 10 years . The multiplicative speckle noise can be
converted into an additive noise component using the log-ratio
operator. Additionally, the ratio image's range of variation will
be reduced, enhancing the low-intensity pixels. In addition, the
authors of proposed the ratio mean detector (RMD), which is
also resistant to speckle noise. This detector anticipates that the
scene will change. as a modification of the image's local mean
value. Both approaches have successfully detected changes in
SAR imaging, although they still have major drawbacks: The
distribution of the two classes (modified and unaffected) might
be made more balanced because the logarithmic scale is
defined by strengthening the low-intensity pixels while
weakening the pixels in the areas of high intensity. However,
it's possible that the log-ratio image's information about altered
regions won't be able to accurately reflect the true changes.

trends in the broadest sense as a result of a weakening in the
high-intensity pixel areas Because the ratio technique may
highlight discrepancies in the low brightness of the tehfiporal
pictures; the background (unchanged regions) of the RMD is
rather rough. The fundamental concept behind the optimal
difference image is that altered areas show bigger values while
untouched pixels show smaller values. That is to say, the ideal
difference image should limit the information from the
background (unchanged parts) and should maximize the
information from the changed regions. An image fusion
technique is used to construct the difference image using
complimentary data from the mean-ratio image and the log-
ratio in order to solve this challenge image in this paper. The
information of changed regions represented by the mean-ratio
picture is somewhat consistent with the true altered trends in
multi-temporal SAR images, as described in the literature . On
the other hand, due to the logarithmic transformation, the
background information produced by the log-ratio image is
comparatively flat. Consequently, it can be inferred from the
research above that the new difference image created by fusing
the mean-ratio image and the log-ratio image could have better
information richness than the separate difference images (i.c.,
the mean-ratio image and the log-ratio image). Section III-A
will have a thorough explanation of this method.

A. Motivation of Analyzing Difference Image Using
Fuzzy Clustering

To distinguish between modified and unchanged regions,
the difference image is processed. As was noted in Section I,
the K&I algorithm and the EM algorithm, two common
techniques for identifying the changed regions, are often
carried out by applying a threshold approach to the histogram
of the difference image. It is obvious that the decision
threshold must be accurately estimated for this type of
procedure. Additionally, they must choose an appropriate
probability statistical model for the distribution of the change
and unaltered classes in the difference image, which severely
limits their options for use. This study proposes a novel fuzzy
c-means (FCM) clustering technique to assess the difference
picture, which is indifferent to the probability statistics model
of histogram. In order to lessen the impact of speckle noise,
this method specifically adds spatial context information into
the relevant objective function. Additional information about
this innovative fuzzy clustering approach is presented in
Section III-B.

1II. METHODS

We concentrate on describing the suggested change
detection approach in this part, which consists of the following
two steps:
1) Create a difference image using image fusion, and then use
an upgraded FCM to find areas that have changed in the fused
image.Create the Difference in A using image fusion to create

2) Image fusion describes methods that combine information
from different sources to produce higher-quality data.



a number of source images such that the newly fused images
are better suited to the tasks involved in computational
processing. The majority of image fusion algorithms used in
the last two decades operate at the pixel level of the source
pictures [20]. The pixel-level image fusion has made
substantial use of multi-scale transforms, particularly the
discrete wavelet transform (DWT), curve lets, and contour-lets.
The DWT isolates frequencies in time and space, making it
simple to extract detail information from images. It has been
demonstrated that transforms like curve-lets and contour lets

have higher directional selectivity and properties than the DWT.

However, it is clear that their computational complexity is
greater than the DWT. The DWT focuses on preserving the
time and frequency as well as point discontinuities.The image
fusion scheme based on the wavelet transform can be described
as follows: First, we compute the DWT of each of the two
source images and obtain the multi resolution commode
position of each source image. Then, we fuse corresponding
coefficients of the approximate and detail sub-bands of the de
composed source images using the developed fusion rule in the
wavelet-transform domain. In particular, the wavelet
coefficients are fused using different fusion rules for a low-
frequency band and a high-frequency band, respectively.
Finally, the in

verse DWT is applied to the fused multi
representation to obtain the fused result image.

The following is a description of the wavelet-based
picture fusion method: To begin, we determine the DWT of
each of obtain the multi-resolution decomposition of each of
the two source images. Then, using the created fusion rule in
the wavelet-transform domain, we combine the appropriate
coefficients of the approximate and detail sub-bands of the
decomposed source images. In particular, for a low-frequency
band and a high-frequency band, respectively, the wavelet
coefficients are fused using various fusion algorithms. The
fused result image is then created by applying the-inverse
DWT to the multi resolution representation that has been
combined.

The mean-ratio picture and the log-ratio image,
respectively, are represented here as and. H and L stand for
high-pass respectively, high-pass and low-pass filters.
Additionally, LH, HL, and HH stand for the portions of the
image that are in the horizontal, vertical, and diagonal
directions, respectively. LL stands for the approximate portion
of the image. represents the merged image.Each source image
is decomposed into four identical images after one degree of
decomposition, as seen in Fig. 2. The approximation section of
the low-frequency sub-band, which is what it is termed,
represents the source image's profile traits. Three high-
frequency sub-bands, and, which represent the parts in the
horizontal, vertical, and diagonal directions, respectively,
display the details of the key edges and lines in the original
image.

From the approximate (low-frequency sub-band) and
detail, it can be concluded that the approximate coefficients of
the decomposition level can be determined (high-
frequency sub-bands)factors at the level. Additionally, because
the low-frequency sub-band and the high-frequency sub-band
reflect various feature information of the source

resolution

images, it is important to fuse the wavelet coefficients using
various fusion algorithms.

The selection of fusion rules, which should limit
background (unchanged areas) information and should
increase the information of changed regions, is the main
challenge of the suggested approach to generate difference
image. In the last two decades, a wide variety of fusion rules
have been put forth in the literature to obtain the fused
coefficient, including the rule of selecting the coefficients from
local features like maximum variance or contrast, or the rule of
selecting the coefficients with the highest absolute value of the
corresponding wavelet coefficients.However, the changed and
unchanged classes should be fused in different schemes,
meaning that the background should be inhibited from the
viewpoint of the ideal difference image.

By simply enhancing the gradient or edge features of
the fused image, the background information in the difference
image may become rough. Therefore, it is essential to create
an adaptive strategy for the fusing of source images that may
limit background information and maximize the enhancement
of information for altered regions.

Here, the minimum local area energy coefficient and
the rule of choosing the average value of the corresponding
coefficients for the low-frequency band are both used.For the
low-frequency sub band, the wavelet coefficients are fused
using the rule of the average operator. On the other hand, the
rule of lowest local area energy of wavelet coefficients is
chosen to suppress the background clutter for high-frequency
sub bands that reveal information about the important elements
of the source image, such as edges and lines. This rule aims to
merge the homogeneous portions of the mean-ratio picture and
the log-ratio image's high-frequency portion. The adoption of
high frequency from the log-ratio picture will somewhat
suppress the background in the new fused difference image
since the background of the log-ratio image is relatively flat
(see Section II).It should be mentioned that the multi-
resolution decomposition process is used to carry out the
suggested strategy to generate the difference image.

Since the histogram of the fused difference picture
comprises both the log-ratio image information and the mean-
ratio image information at various resolution levels, the
probability statistics model for the histogram may be
challenging. Because both K&I and EM presume that the
histogram of the difference picture corresponds to a specific
probability statistics model, they may not be suitable for use in
analyzing the fused difference image. As can be observed from
the analysis above, in order to analyse the fused data, a
classification approach that is insensitive to the probability
statistics model of histogram is necessary.To assess the
difference image produced by the wavelet fusion, we therefore
suggested an unique FCM clustering approach in the next
section.The goal of processing the difference image is to
distinguish between changed and unaltered areas. Additionally,
clustering is a classification method that groups items or
patterns so that samples from the same cluster have a higher
degree of similarity than samples from other clusters. As a
result, it is possible to think of the challenge of change
detection as a clustering problem where the key is to
categorize the different image data into two groups.



Additionally, the statistical model for change and unaltered
class distributions has no bearing on the clustering technique,
opening up a wide range of possibilities for SAR-image
change detection. The FCM algorithm is one of the most well-
liked clustering techniques since it can preserve.

Provides additional details from the source image and
has strong ambiguity qualities.The conventional FCM
algorithm, however, is extremely susceptible to noise because
it ignores any spatial context information.

To address this shortcoming of FCM, numerous
researchers have recently added local spatial and local gray-
level information to the original FCM algorithm .The FCM S
that Ahmed suggested modifies the classical FCM's objective
function to account for intensity in homogeneity and to permit
the labeling of a pixel to be influenced by labels dis its
immediate vicinity. However, because it computes the
neighbourhood term at each iteration step, FCM S has a much
higher computational complexity than the original FCM.The
fast generalized FCM (FGFCM) algorithm was developed by
Caietal to speed up the processing of the FCM S algorithm. By
clustering on the gray-level histogram rather than on pixels, it
can significantly reduce execution time while also being
somewhat less sensitive to noise due to the addition of local
spatial information. However, both of them have the following
shortcomings when it comes to the unsupervised SAR-image
change detection task: In order to strike a compromise between
resilience to noise and efficacy of preserving the features of
the image, an artificial parameter is employed in their
objective functions.Since there is no prior knowledge of the
speckle noise level, the parameter selection is not simple to
implement.The choice of the parameter must typically be made
by trial and error or through experience. A robust FLICM
clustering technique has recently been presented by Krindis
and Chatzisto address the aforementioned flaw. Let's now
concentrate on this algorithm's analysis and present our
improvement.

First, the FLICM Clustering Algorithm The use of a
fuzzy local similarity measure, which aims to ensure noise
insensitivity and image detail retention, is a distinguishing
feature of FLICM. To improve the clustering efficiency, a
novel fuzzy factor is added to the FLICM's object function.
The spatial Euclidean distance between pixels and is where the
pixel indicates the nearby pixels falling into the window
around the pixel and the th pixel represents the centre of the
local window. reflects the fuzzy membership of the grey value
with respect to the cluster as well as the prototype of the
cluster's centre.

As can be observed, the trade off between picture
noise and image features is controlled by the factor without
any artificial parameters being set. Additionally, the spatial
Euclidean distance of pixels within the local window from the
centre pixel is used to control the influence of those pixels in a
flexible manner. Therefore, the spatial distances from the core
pixel can reflect the damping extent of the neighbour with
various spatial positions or separations from the primary pixel.
The corresponding membership values of the no-noisy pixels
as well as the noisy pixels that are falling into the local
window will typically change with the application of the fuzzy
factor.converge to a comparable value, balancing the

membership values of the window's pixel locations. FLICM
becomes more resistant to outliers as a result. In addition,
Flick's attributes include immunity to noise, preservation of
image details without the use of artificial parameters, and
direct application to the original image.

The objective function of the FLICM can be
described in terms of by utilizing the definition of where is the
number of data items, is the number of clusters, represents the
prototype value of the cluster, and represents the fuzzy
membership of the pixel with respect to the cluster. is an
object's distance in Euclidean space from the cluster's centre.

Additionally, the following procedure is used to
calculate the cluster centers and the membership partition
matrix:- FLICM modification: It can be deduced from the
study of the fuzzy factor that the local gray-level information
and spatial information are represented, respectively, by the
gray-level difference and the spatial distance. Additionally,
depending on spatial distances from the central pixel, the local
spatial connection adapts. The spatial distances from the
central pixel are used by the authors of FLICM to calculate the
damping extent of the neighbour. The damping extent
decreases with increasing spatial distance for neighbouring
pixels with the same gray-level value, and vice versa. However,
in some circumstances, the spatial distance utilize to calculate
the neighbour damping extent may be arbitrary. Here are two
instances in two different scenarios.

A120| 22 13 87 99 116 0.414] 05 | 0.414
32 20 35 90 20 67 0.5 05
28 B9O 27 110 88 75 0.414] 0.5 | 0.414

(a) (b) (c)

Case 1) The central pixel is not noise, and some pixels within
its local window may be corrupted by noise. A 3

3 window. That is extracted from the noise image depicts this
situation, and

picts its damping extent of the neighbors with the spatial
distances . In this case, the gray values of the noisy pixels are
far different from the other pixels within the window. For the
noisy pixels of A and B, the gray-level difference between
pixel A and the central pixel is greater than pixel B. In order to
suppress the influence of the noisy pixels as far as possible, the
weightings added of pixel A in should be able to reflect a
stronger trend in contrast with the noisy pixel B. However, the
damping extent of the neighbors with the spatial distances
shows the opposite trend.

Case 2) The central pixel is corrupted by noise, whereas the
other pixels within its local window are homage

nous and not corrupted by noise. An example that illustrates
this situation is demonstrated.In this case, the gray-level
differences between the neighboring pixels and the central
pixel are some

what different. To estimate the fuzzy factor rigorously, the
damping extent of the neighboring pixels is supposed to be
treated separately. However,the damping extent of the
neighbors that is reflected by the spatial distances is simply



divided into two categories (0.414 and 0.5). It fails to analyze
exhaustively the



impact of each neighboring pixel onto the fuzzy factor .The
foregoing analysis highlights the importance of the ac

curate estimation of the fuzzy factor to suppress effectively the
influence of the noisy pixels. In order to overcome the short
coming mentioned above, in this paper, the local coefficient of
variation is adopted to replace the spatial distance.The analysis
presented above emphasizes how crucial it is to estimate the
fuzzy factor accurately in order to successfully reduce the
influence of noisy pixels. The local coefficient of variation is
used in place of the spatial distance in this work to address the
aforementioned flaw. Additionally, the intensity variance and
mean in a local window of the image, respectively, are and the
local coefficient of variation is defined by var.

The value of represents the local window's degree of gray-
value homogeneity. It displays high values at the margins or in
the noise-damaged area and generates low values in
homogeneous areas. The area-type of analysis is used to
determine the damping extent of the neighbors with local
coefficient of variation.They will have extremely similar local
coefficient of variation results, and vice versa. In general, the
difference in the local coefficient of variation between
adjacent pixels and the centre pixel is rather consistent with
the spatial distance.Since each pixel's local coefficient of
variation is calculated in a local window, additional local
context information can be utilize.

Since each pixel's local coefficient of variation is calculated in
a local window, additional local context information can be
utilize.

The modified fuzzy factor in this case can be described as
follows: If the local coefficient of variation of the central pixel,
denotes the local coefficient of variation of surrounding pixels,
and is the mean value that is situated in a local window. The
reformulated factor, as seen in (11), balances the membership
value of the central pixel while taking into account the local
coefficient of variation and the Grey level of the surrounding
pixels. If there is a clear distinction between the local
coefficient of variation results acquired by the central and
nearby pixels.

IV. EXPERIMENTAL STUDY

In this section, we will demonstrate the performance of the
suggested approaches by showing numerical results on three
data sets in order to validate the efficacy of the proposed SAR-
image change detection method. The first data set is a segment
(301 301 pixels) of two SAR images taken in April and May
1999 over a region close to Bern, Switzerland, using the
European Remote Sensing 2 satellite's SAR sensor. Parts of
the cities of Thun and Bern, as well as the airport in Bern,
were completely inundated by the River are between the two
dates. Therefore, a test site for identifying floodplains was
chosen in the are Valley between Bern and Thun. The
reference image, which represented the available ground
truth,\The second data set consists of a portion (290 350 pixels)
of two SAR images taken by the Radarsat above the city of
Ottawa.

SAR detector. They came from Ottawa, Canada's Defense
Research and Development Canada. The automatic registration
algorithm from A.U.G. Signals Ltd., which is accessible
through distributed computing at www.signalfusion.com, was
used to register these photos.

(b)

(a)

Multi-temporal images relating to the city of Bern used in the
experiments. (a) Image acquired in April 1999 before the
flooding. (b) Image acquired in May 1999 after the flooding.

(©) Ground truth.

(a) (b) (c)
Multi temporal images relating to Ottawa used in the
experiments. (a) Image acquired in July 1997 during the
summer flooding. (b) Image acquired in August 1997 after the
summer flooding. (c) Ground truth.

(a)

Multi temporal images relating to the Yellow River Estuary
used in the experiments. (a) Image acquired in June 2008. (b)
Image acquired in June 2009 (c) Ground truth.these pictures—
water and land. The reference image (ground truth) depicted in
(c) was produced by combining prior knowledge with photo
interpretation based on the input photos in Fig (b).Two SAR
photos taken by Radarsat-2 in June 2008 and June 2009 at the
Yellow River Estuary in China made up the third data set used
in the trials. These two SAR photos were captured by
Radarsat-2, and their original size is 7666 7692. To display the
detail information in such little pages, they are excessively
large. We choose a restricted area with a size of 257 289 pixels
to compare the results of the change detection techniques. The
truth as it currently stands (reference image).Based on the
input photos in Fig.(a) and other sources, information with



photo interpretation (b). It should be highlighted that the two
photos under consideration are, respectively, single-look and
four-look images.
This indicates that the impact of speckle noise on the 2009
image is significantly bigger than the 2008 image. The
processing of change detection may become more challenging
due to the significant variance in speckle noise levels between
the two images used.There have been two experiments run,
each with a distinct goal. The first experiment is to evaluate
the wavelet fusion strategy's efficacy in producing the
difference image. Additionally, we contrasted our algorithm's
ability to detect changes with that of the mean-ratio operator
and the log-ratio operator. To calculate the local area energy of
the wavelet coefficient, a 3 3 sliding window is chosen. In
particular, the outcomes of the change detection achieved by
the aforementioned difference images are assessed using two
straightforward classification algorithms, namely K-means and
Otsu. In the second experiment, we examined how the
RFLICM method affected the outcomes of the fused difference
image's change detection.The results of the quantitative
analysis of change detection are as follows. First, we
determine the negative errors (FN, changed pixels that
undetected). Second, we determine the false positives (FPs), or
unmodified pixels that were incorrectly classified as changed.
Third, we estimate the fraction of correctly classified
data (PCC). Given by PCC, TP, TN, TP, FP, and FN (12)
TP stands for true positives in this context, which is the
quantity of pixels that are identified as the altered region in
both the reference image and the outcome. The term "true
negatives" refers to the number of pixels that are identified as
the same area in both the reference image and the final
image.In the first experiment, we evaluated the wavelet image
fusion technique's efficacy in producing the difference image.
The distinct images produced by the three various

(b)

In next figure, various techniques (mean-ratio, log-

ratio, and wavelet fusion) are displayed. The merged
difference image [see Fig.(c)] gives off an evocative gut
reaction. The step variations [6] are in accordance. Change
detection results of the Bern data set based on the three

difference images obtained by Otsu. (a) Based on the mean-

ratio
operator.

(a)
Change detection results of the Bern data set based on the
three difference images obtained by K-means. (a) Based on the
mean-ratio operator. (b)

Based on the log-ratio operator. (c) Based on wavelet

fusion to a strong modification of the land cover that occurred
be

(b)

tween two images is well reflected, and then the
background(unchanged regions) in fused image is inhibited to
a certain degree with the use of wavelet coefficients of log-
ratio image.As shown in Tables I and II, the change detection
results of the fused difference image were compared with the
ones generate from mean-ratio operator and log-ratio operator
by Otsu and K-means, respectively. It can be seen from the
analysis of the PCC that, the change detection results of mean-
ratio difference image that achieved by both methods was
disastrous. For the log-ratio operator, the PCC yielded was
equal to 99.27% for Otsu, and 99.24% for K-means. And the
proposed approach resulted in the highest PCC (99.35% for
Otsu and 99.36% for K-means) and kappa (0.781 for Otsu and
0.784 for K-means).
By a visual analysis of Figs. 8 and 9, we can have a
understanding of the behavior of the three
methods.

better
different

(a)

Change detection results of the Bern data set achieved by (a)
FCM,(b) FLICM, and (c) proposed RFLICM.(a) and 9(a)
depict the change detection results obtained
from the mean-ratio image, which reveal that it has more spots
than the other two methods because of the effect of the speckle
phenomenon. As can be seen from Figs. 8(b) and 9(b), the
change detection maps obtained from the log-ratio image have
lesser spots because of the logarithmic transformation.
However, it also caused the loss of information in changed
areas since the operation of log-ratio may abate the labour-
intensive. The change detection maps yield from the wavelet
fusion image are shown in the above both figure.As can be
concluded from above analysis, the method that we proposed
can effectively reduce the errors in the change
detection results.SAR-image change detection which based on
the wavelet fusion difference image, in the second experiment,
a comparison was carried out among traditional FCM, FLICM
and RFLICM.

According to Fig.shown(a), the change detection map
achieved by



traditional FCM contains lots of spots. This is explained by the
fact that it fail to consider any information about spatial
context. By contrast, by incorporating the local information,
the change detection maps generated by FLICM [Fig. 10(b)]
and RFLICM [Fig. shown(c)] were robust to the outliers. As
shown in Table III, it depicts the behavior of kappa, PCC, FP
and FN among these three methods. The PCC yielded by
RFLICM, FLICM and FCM were equal to 99.68%, 99.66%
and 99.37%, respectively. RFLICM outperforms FLICM and
FCM obviously.B. Results on the Ottawa Data Set The first
experiment is aimed at analyzing the effectiveness.of the
proposed approach that is based on the wavelet fusion.

Fig. Shown represents the difference images generated by the
mean ratio, the log ratio, and the wavelet fusion. The change
detection results generated from the three difference images
have been shown in Figs. 12 and 13. In particular, as shown in
Figs.(a), due to the reason of image speckle noise, the change
detection maps generated from the mean-ratio difference
image swarmed with isolated spots, whether using Otsu or K-
means.

As for

the
maps.

the difference

log-ratio
detection

image,

change

(b) ©

Fig. 12. Change detection results of the Ottawa data
set based on the three
difference images obtained by Otsu. (a) Based on the mean-

ratio operator.(b) Based on the log-ratio operator. (c) Based on
wavelet fusion.Fig. 13. Change detection results of the Ottawa
data set based on the three difference images obtained by K-
means. (a) Based on the mean-ratio operator.(b) Based on the
log-ratio operator. (c) Based on wavelet fusion.

are illustrated in Figs. 12(b) and 13(b). The problem of losing
information in change regions persists, with the fact that the
missed alarms caused by Otsu and K-means were up to 1942
pixels and 1926 pixels, respectively. Conversely, the change
detection maps achieved from wavelet fusion [see Figs. 12(c)

and 13(c)] are very close to the ground-truth map illustrated

in Fig. 5(c). As reported in Tables IV and V, the maximum

PCC and kappa are achieved by the fused difference image.

In the second experiment, to assess the suitability of the

presented RFLICM algorithm for the wavelet fusion difference
image, a comparison analysis was carried out on two other
methods (FCM and FLICM). Change detection maps obtained

by FCM, which is sensitive to noise [illustrated in Fig. 14(a)],

confirm the necessity of incorporating the information about
spatial context. As reported in Table VI, the proposed
RFLICM

resulted in the highest PCC and kappa. The quantitative anal
sis confirm the suitability of the RFLICM algorithm on the
fused difference image.

C. Results on the Yellow River Estuary Data Set

Unlike the Bern or Ottawa data sets, the influence of speckle
noise on the image acquired in 2009 is much greater than the
one acquired in 2008 since the two images considered are a
single-look image and a four-look image, respectively. It rep
resents a more complicated situation to assess the
effectiveness of the proposed approach. Fig. 15 represents the
difference images generated by the mean ratio, the log ratio,
and the wavelet

fusion. The change detection maps achieved by FLICM and
RFLICM are illustrated in Figs. 16 and 17, respectively.

As shown in Figs. 16 and 17, lots of spots are contained in
the changed detection map that is generated from the mean-
ratio operator [see Figs. 16(a) and 17(a)]. On the other hand,
for the change detection maps generated from the log ratio
[see Figs. 16(b) and 17(b)], too much information has been
lost, although it exhibits less spots. By comparison, the
difference image generated by wavelet fusion can reflect the
real change trend as well as mitigate the impact of speckle
noise [see Figs. 16(c) and 17(c)]. Moreover, as reported in
Tables VII and

VIII, the fused difference image resulted in the highest

PCC and kappa.

The visual and quantitative results on the Yellow River es
teary data set confirm the suitability of the RFLICM
algorithm on the fused difference image. As a matter of fact,
RFLICM and

FLICM incorporate both local spatial and gray information to
find a trade-off between detail preservation and noise removal.
The proposed RFLICM attends to evaluate the local
information more precisely than FLICM.

V. CONCLUDING REMARKS

In this paper, we have presented a novel SAR-image change
detection approach based on image fusion and an improved
fuzzy clustering algorithm, which is quite different from the
existing methods. First, for the wavelet fusion approach that
we proposed, the key idea is to restrain the background
(unchanged areas) information and to enhance the information
of changed regions in the greatest extent. As mentioned in the
literature, the information of changed regions reflected by the
mean-ratio image is relative in accordance with the real
changed trends in multi temporal SAR images. On the other
hand, the information of background obtained by the log-ratio
image is relatively flat on account of the logarithmic
transformation. Hence, complementary information from the
mean-ratio image and the

log-ratio image is utilized to fuse a new difference image.
Com

pared with other existing methods (mean ratio and log ratio),



the proposed approach can reflect the real change trend as well
as restrain the background (unchanged areas). Second, in
contrast with the log-ratio image and the mean-ratio image, the
estimation of the probability statistics model for the histogram
of the fused difference image may be complicated since it
incorporates both the log-ratio and mean-ratio image
information at different resolution levels. Hence, the threshold
technique, such as K&I and EM, may be un-adapted to analyze
the fused difference image since both of them assume the
histogram of the difference image corresponding to the certain
probability statistics model. Here, the RFLICM algorithm that
incorporates both local spatial and gray information is
proposed, which is relatively insensitive to probability
statistics model. The RFLICM algorithm introduces the
reformulated factor as a local similarity measure to make a
trade-off between image detail and noise. Compared with the
original algorithms, RFLICM is able to incorporate the local
information more exactly. The experiment results show that
the proposed wavelet fusion strategy can integrate the
advantages of the log-ratio operator and the mean-ratio
operator and gain a better performance.

The change detection results obtained by the RFLICM
exhibited less spots than its preexistence (i.e., FLICM) since it
is able to incorporate the local information more exactly
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