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Abstract

Evolutionary Biologists have long struggled with the challenge of developing analysis workflows in a flex-
ible manner, thus facilitating the reuse of phylogenetic knowledge. An evolutionary biology workflow can
be viewed as a plan which composes web services that can retrieve, manipulate, and produce phylogenetic
trees. The Phylotastic project was launched two years ago as a collaboration between evolutionary biolo-
gists and computer scientists, with the goal of developing an open architecture to facilitate the creation of
such analysis workflows. While composition of web services is a problem that has been extensively ex-
plored in the literature, including within the logic programming domain, the incarnation of the problem
in Phylotastic provides a number of additional challenges. Along with the need to integrate preferences
and formal ontologies in the description of the desired workflow, evolutionary biologists tend to construct
workflows in an incremental manner, by successively refining the workflow, by indicating desired changes
(e.g., exclusion of certain services, modifications of the desired output). This leads to the need of successive
iterations of incremental replanning, to develop a new workflow that integrates the requested changes while
minimizing the changes to the original workflow. This paper illustrates how Phylotastic has addressed the
challenges of creating and refining phylogenetic analysis workflows using logic programming technology
and how such solutions have been used within the general framework of the Phylotastic project.

KEYWORDS: Bioinformatics, workflows, web services, planning, composition, re-composition, similarity,
quality of service

1 Introduction

A phylogeny (phylogenetic tree) is a representation of the evolutionary history of a set of
entities—in the context of this work, we focus on phylogenies describing biological entities
(e.g., organisms). Typically, a phylogeny is a branching diagram showing relationships between
species, but phylogenies can be drawn for individual genes, for populations, or for other entities
(e.g., non-biological applications of phylogenies include the study of evolution of languages).
Phylogenies are built by analyzing specific properties of the species (i.e., characters), such as
morphological traits (e.g., body shape, placement of bristles or shapes of cell walls), biochem-
ical, behavioral or molecular features of species or other groups. In building a tree, species are
organized into nested groups based on shared derived traits (traits different from those of the
group’s ancestor). Closely related species typically have fewer differences among the value of
their characters, while less related species tend to have more. Currently, phylogenetic trees can be
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either explicitly constructed (e.g., from a collection of descriptions of species), or extracted from
repositories phylogenies, such as OpenTree 1 and TreeBASE 2. In a phylogeny, the topology is
the branching structure of the tree. It is of biological significance, because it indicates patterns of
relatedness among taxa, meaning that trees with the same topology provide the same biological
interpretation. Branches show the path of transmission from one generation to the next. Branch
lengths indicate genetic change, i.e., the longer the branch, the more genetic change (or diver-
gence) has occurred. A variety of methods have been devised to estimate a phylogeny from the
traits of the taxa (e.g., (Penny 2004)).

Phylogenies are useful in all areas of biology, to provide a hierarchical framework for classifi-
cation and for process-based models that allow scientists to make robust inferences from compar-
isons of evolved things. A standing dream in the field of evolutionary biology is the assembling
a Tree of Life (ToL), a phylogeny broadly covering some 107 species (Mora et al. 2011; Cracraft
et al. 2002). The first draft of a grand phylogenetic synthesis—a single tree with perhaps 2.5×106

species—is emerging from the Open Tree of Life (OpenTree) project. Yet, the current state of the
ToL is a collection of trees, and there are various reasons to expect that this situation will persist.
When we refer to “the ToL” here, we mean the dispersed set of available species trees, with a
strong focus on larger trees from reputable published sources (e.g., (Bininda-Emonds et al. 2007;
Jetz et al. 2012; Smith et al. 2011)).

While experts continue expanding, consolidating, and improving the ToL, our motivation is
to put this expert knowledge into the hands of everyone: ordinary researchers, educators, stu-
dents, and the public. To achieve this, we launched the Phylotastic project, aimed at building a
community-sustainable architecture to support flexible on-the-fly delivery of expert phylogenetic
knowledge. The premise of disseminating knowledge is that it will be re-used. How do trees get
re-used? On a per-tree basis, re-use is rare—most trees are inferred de novo for a specific study,
rendered as images in a published report, stored on someone’s hard drive, and (apparently) not
used again (Stoltzfus et al. 2012). Yet, large species trees are re-used in ways that small species
trees (and sequence-family trees) are not. In a sample of 40 phylogeny articles, Stoltzfus et al.
(2012) found 6 cases in which scientists obtained a custom tree by extraction from a larger species
tree. These studies implicate diverse uses: functional analyses of leaf traits or lactation traits; phy-
logenetic diversity of forest patches; analyzing niche-diversity correlations, spatial distribution of
wood traits, and spatial patterns of diversity. The implicated trees include those covering 4,510
extant mammals, 55,473 angiosperm species, and 1,566 angiosperm taxa.

The Phylotastic project offers a solution to the reuse of phylogenetic knowledge problem, by
adopting a web services composition approach. The phyloinformatic community has been very
active in the development of a diversity of data repositories and software tools, to collect and
analyze artifacts relevant to evolutionary analysis. These tools are sufficient to realize all of the
studies in the previously mentioned papers, when properly integrated in a coherent workflow.
Furthermore, the analysis protocols adopted in such studies are often the result of an iterative
process, where the protocol is successively refined to better suit the available data and produce
results of adequate quality (Stoltzfus et al. 2012).

In this paper, we describe the infrastructure used by Phylotastic to achieve the following goals:
(1) Allow a user to provide the available knowledge about the desired protocol (e.g., input, type of
output, selected classes of operations that should be used); (2) Derive a collection of workflows

1 http://tree.opentreeoflife.org
2 https://treebase.org

http://tree.opentreeoflife.org
https://treebase.org
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that satisfy the desired conditions, through a web service discovery and composition process;
(3) Allow the user to suggest manipulations of a chosen workflow (e.g., exclusion of a service,
addition of another output); (4) Determine new workflows that satisfy the requested manipula-
tions while maintaining maximum similarity with the chosen workflow. All the manipulations
of the workflows—i.e., composition of web services, modification of workflows, computation of
similarity between workflows—are realized in Answer Set Programming (ASP). ASP provides a
clear advantage, allowing the simple integration of different forms of knowledge (e.g., ontologies
describing services and artifacts, user preferences) and facilitating the encoding of the compo-
sition and re-composition problems as ASP planning problems. We present the overall structure
of the Phylotastic architecture, describe how web service composition is encoded in ASP, and
analyze how workflow refinements are achieved. We also demonstrate various aforementioned
features through a use-case.

2 Background: The Phylotastic Project and Its Implementation

2.1 Architecture

The Phylotastic project proposes a flexible system for on-the-fly delivery of custom phylogenetic
trees that would support many kinds of tree re-use, and be open for both users and data providers.
Phylotastic proposes an open architecture, composed of a collection of web services relevant to
creation, storage, and reuse of phylogenetic knowledge, that can be assembled in user-defined
workflows through a Web portal and mobile applications (Fig. 1).

Phylotastic Architecture
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Tree 

Repositories
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Fig. 1: Overall Phylotastic Structure
Figure 2 shows an overview of our web service composition framework for Phylotastic. It

consists of a web service registry, an ontology, a planning engine, a web service execution mon-
itoring system, and a workflow description tool. The flow of execution of the architecture starts
with the workflow description tool—a graphical user interface that allows the user to provide
information about the desired requirements of the phylogenetic trees generation or extraction
process. The information collected from the user interface are mapped to the components of a
planning problem instance, that will drive the web service composition process. The planning
problem instance representing the web service composition problem is obtained by integrating
the user goals with the description of web services, obtained from the service registry and the
ontology. The planning engine is responsible for deriving an executable workflow, which will
be enacted and monitored by a web service execution system. The final outcome of the service
composition and execution is presented to the user using the same workflow description tool.

Thus, the components of the Phylotastic web service composition framework are:
• The Phylotastic Ontology: this ontology is composed of two parts: an ontology that describes

the artifacts manipulated by the services (e.g., alignment matrices, phylogenetic trees, species
names) (the CDAO ontology (Prosdocimi et al. 2009)) and an ontology that describes the
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Fig. 2: The Phylotastic Web Service Composition Framework

actual operations and transformations performed by the services. Each class of services is as-
sociated with a name, inputs, parameters, and outputs. Instances of the services will also be
associated with the data formats of their inputs, outputs, and parameters. For example, a ser-
vice in the class taxon based ext takes bio taxa as an input and produces outputs species tree
and http code. An instance of this class is get PhyloTree OT V1 whose input (bio taxa) has
the list of strings format and its outputs (species tree, http code) have the newickTree and in-
teger format, respectively. This information can be encoded in ASP as follows:

op cl(tree ext). op cl(taxon based ext). op(get PhyloTree OT V1).

subcl(taxon based ext,tree ext). cl(bio taxa). cl(species tree).

t of(get PhyloTree OT V1,taxon based ext).

has input(taxon based ext,set of names 1,bio taxa).

has output(taxon based ext,phylo tree 1,species tree).

has output(taxon based ext,http code 1,http code).

has inp df(get PhyloTree OT V1,bio taxa,list of strings).

has out df(get PhyloTree OT V1,species tree,newickTree).

has out df(get PhyloTree OT V1,http code,integer).

• Web Service Composition as Planning: In Phylotastic, we adopt the view, advocated by several
researchers, of mapping the web service composition problem to a planning problem (Carman
et al. 2004; McIlraith et al. 2001; Peer 2005). In this perspective, available web services are
viewed as actions (or operations) that can be performed by an agent, and the problem of
determining the overall workflow can be reduced to a planning problem. In general, a planning
problem can be described as a five-tuple (S,S0,G,A, I′), where S is set of all possible states
of the world, S0 ⊆ S denotes the initial state(s) of the world, G⊆ S denotes the goal states the
planning system attempts to reach, A is the set of actions to change one state of the world to
another state, and the transition relation I′ ⊆ S×A×S defines the precondition and effects for
the execution of each action. In term of web services, S0 and G are the initial state and the goal
state specified in the requirement of web service requesters (e.g., the available input and the
desired output of the workflow). The set A is a set of available services; I′ describes the effect
of the execution of each service (e.g., data produced).

• Web Service Engine: The planning engine implemented in the Phylotastic project employs
Answer Set Planning (ASP) (Lifschitz 2002) and is responsible for creating an executable
workflow from the incomplete workflow and/or from the user specifications. The basic plan-
ning algorithm has been discussed by Nguyen et al. (2018). This engine differs from the usual
ASP-planning system in that it uses a two-stage process in computing solutions. In the first
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stage, planning is done at the abstract-level and the engine considers only service classes,
matching their inputs and outputs. The result is a workflow whose elements are web services
described at the abstract level. The second stage instantiates the abstract web services from
the first stage with concrete services. In the process, it might need to solve another planning
problem, to address the issues of mismatches between formats of different services; for ex-
ample, there are several concrete services to recognize gene names and their outputs are sets
of scientific names of the genes; however, they are saved in different formats. This program
consists of following ASP-rules encoding the operations and the initial state. The key rules are
◦ ext(I,0) :- initially(I,DFI). This rule states that the resource I with data

format DFI exists at the time moment 0.
◦ The rule encoding the operations and their executability are as follows:

{executable(A,T)} :- op cl(A).

:- executable(A,T), has input(A,N,I), not match(A, I, T).

p m(A,I,T,O,T1) :- op cl(A), has input(A,N,I), T1≤T,
ext(O,T1),subcl(O,I).

1 {map(A,I,T,O,T1) : p m(A,I,T,O,T1)}1.
match(A,I,T) :- map(A,I,T, , ).

◦ The next rules are used to generation operation occurrences:
1 { occ(A,T): op cl(A) } 1.

:- occ(A,T), not executable(A,T).

ext(O,T+1) :- occ(A,T), has output(A,N,O).

In all the rules, T or T1 denotes a time step. From now on, we will denote with ΠL the ASP-
program for web service composition in the Phylotastic project.

3 Selecting The Most Preferred Workflow: A Qualitative Approach

Currently, ΠL receives from the Workflow Configuration Tool a description of the desired work-
flow, e.g., desired input, desired output, specific classes of operations that should occur in the
workflow. Using this information, it generates a concrete workflow meeting the desired require-
ments, sends it to the execution monitoring component which will execute the workflow and
output the desired phylogenetic tree. Frequently, there are several ways to construct a tree given
the input, i.e., there are several solutions that ΠL could return. Due to the differences in web
services, not all solutions will produce the same result at execution (e.g., produce the same phy-
logeny), e.g., because of lack of agreement on the evolutionary relationships between certain
species or the ambiguity of certain species names. In this paper, we present two enhancements of
the system. In both enhancements, the notion of a most preferred workflow is defined and users
can interact with the system to select their most preferred workflow(s).

One way to compare the workflows is to rely on the notion of quality of service (QoS) of
web services. QoS of a web service can be used as a discriminating factor that differentiates
functionally similar web services. In general, QoS of a web service is characterized by several
attributes, such as performance, reliability, scalability, accuracy, integrity, availability, and ac-
cessibility (Rajendran and Balasubramanie 2009). For the web services used in the Phylotastic
project, we collect the following attributes that influence the performance of a web service: (1)
response time, (2) throughput, (3) availability, (4) reliability. Specifically,
• Response time: Given a service s, the response time qrt(s) measures the delay in seconds

between the moment when a request is sent and the moment when the results are received.
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• Throughput: qt p(s) is the average number of successful responses for a give period of time.
• Availability: The availability qav(s) of a service s is the probability that the service is accessible

for a given period of time. The value of the availability of a service s is computed using the
following expression qav(s) = Ta(s)/θ , where Ta is the total amount of time (in seconds) in
which service s is available during the last θ seconds (θ is a constant set by an administrator
of the service community).

• Reliability: The reliability qre(s) is the average operation time of service s in which service s
is accessible and processes clients requests successfully. It is measured by total operation time
of service s divided by the number of failures.

The quality vector of a service s is denoted by the tuple q(s) = (qrt(s),qt p(s),qav(s),qre(s)).
For the web services in the Phylotastic project, this information is maintained in the Service
Registry (along with the ontology-based description of each service). We next define the QoS of
a workflow based on the QoS of the web services.

3.1 QoS of Workflows

Let p = (s1,s2, ...,sn) be a workflow of web services. The quality of services of p, denoted by
q(p), is defined by q(p) = (qrt(p),qt p(p),qav(p),qre(p)) where
• Response time: The response time qrt(p) is defined as total response time of all services in the

workflow p: qrt(p) = ∑
n
i=1 qrt(si).

• Throughput: The throughput qt p(p) of plan p is the average of the throughputs of the services

that participate in p: qt p(p) = ∑
n
i=1 qt p(si)

n .
• Availability: In general, the availability of the services for p should be defined as qav(p) =

∏
n
i=1 Pr(si | s1, . . . ,si−1) where Pr(si | s1, . . . ,si−1) is the conditional probability of si is avail-

able given that s1, . . . ,si−1 have been successfully executed. For simplicity of representation,
we assume that the services are mutually independent, then qav(p) = ∏

n
i=1 qav(si). In our cur-

rent implementation, we use qav(p) = min{qav(si) | i = 1, . . . ,n}, as an approximation which
avoids extensive floating point operations.

• Reliability: The reliability qre(p) is calculated as the average of reliability values of element
services in p: qre(p) = ∑

n
i=1 qre(si)

n .

3.2 ASP Encoding of QoS

The QoS of a workflow can be computed using ASP as follows. As with the actions used in the
web composition process, we extract the QoS information of services and represent it as ASP-
facts of the forms: has qos rt(s,v),has qos av(s,v),has qos t p(s,v),has qos re(s,v) where s is
the service identifier, and v is the QoS value of the corresponding attribute. The computations of
QoS attributes for a workflow are encoded as following:

qos rt w f (RTW ) :− RTW = #sum{RT,T,X : occ concrete(X ,T ),has qos rt(X ,RT )}.
qos t p w f (T PS/nsteps) :− T PS = #sum{T P,T,X : occ concrete(X ,T ),has qos t p(X ,T P)}.
qos re w f (RES/nsteps) :− RES = #sum{RE,T,X : occ concrete(X ,T ),has qos re(X ,RE)}.
qos av w f (AVW ) :− AVW = #min{AV,T,X : occ concrete(X ,T ),has qos av(X ,AV )}.

In the above rules, nsteps is the number of services in the plan that is computed by the planning
module. Since the QoS of a service (or a workflow) is a tuple of values representing different
attributes, there are different ways for comparing services (or workflows). Different users might
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have different preferences over these attributes (e.g., response time is the most important factor,
or reliability is the most important factor, etc.). We discuss two possibilities:
• Weighted QoS: A user specifies the weights Wrt , Wt p, Wav, and Wre that he/she would like

to assign for the response time, the throughput, the availability, and the reliability, respec-
tively. The weighted QoS of a plan p is then computed by w(p) = qrt(p) ∗Wrt + qt p(p) ∗
Wt p + qav(p) ∗Wav + qre(p) ∗Wre. Under this view, w(p) can be computed as follows:

score qos w f (Sc) :− qos rt w f (RTW ),wei rt(Wrt),qos t p w f (T PW ),wei t p(Wt p),

qos re w f (REW ),wei re(Wre),qos av w f (AVW ),wei av(Wav),

Sc = RTW ∗Wrt +T PW ∗Wt p +REW ∗Wre +AVW ∗Wav.

To select workflows with the best QoS, we will only need to add the statement

#maximize{ScoreQoS : score qos wf (ScoreQoS)}.

• Specified Preferences QoS: An alternative to the weighted QoS is to allow users to specify
a partial ordering over the set of attributes that will be used in identifying most preferred
workflows by a lexical ordering in accordance to the preferences. For example, assume that
the preference ordering is x1 > x2 > x3 > x4 where xi > x j means that attribute xi is preferred
to the attribute xi 6= x j and xi ∈ {rt,av, t p,re}. As the values in the QoS of a service behave
differently, we write qx(s) ≺ qx(s′) to denote that s is better than s′ w.r.t. the attribute x. The
most preferred workflow is defined via a lexicographic ordering: p ≺ p′ if there is 1 ≤ i ≤ 4
such that qx j(p) = qx j(p′) for j < i and qxi(p)≺ qxi(p′). This can easily be implemented using
the priority level in clingo.
#maximize {qx1 @4}. #maximize {qx2 @3}. #maximize {qx3 @2}. #maximize {qx4 @1}.

For a concrete example, assume that the preference ordering is rt > re > t p > av, the corre-
sponding ASP encoding is as follow:

#maximize{RTW @4 : qos rt w f (RTW )}. #maximize{REW @3 : qos re w f (REW )}.
#maximize{T PW @2 : qos t p w f (T PW )}. #maximize{AVW @1 : qos av w f (AVW )}.

The above feature is implemented in the Phylotastic system. In either case, we can display a set
of workflows for the users to decide which workflow should be executed.

4 Refining a Workflow

Evidence that emerged in the Phylotastic project as described by A. Stoltzfus et al. (2013) shows
that evolutionary biologists tend to develop their analysis protocols in an incremental manner,
through successive refinements, often driven by the specific properties of the dataset being pro-
cessed and the opportunities revealed by intermediate results. Users of the Phylotastic system also
often have strong preferences about certain type of services that they want (or do not want) to use.
For this reason, the Workflow Configuration Tool allows a user to update a given workflow and
resubmit it to the ASP-planner. Presently, the ASP-planner considers this as a new request and
restarts the computation. This approach is simple but also has some drawbacks. First, the new
workflow and the original workflow can be very different in the services that they use, which
is often unexpected to the user (and undesired, since changing services might lead to a different
phylogeny). Second, this approach can be computational expensive as it cannot reuse the original
workflow. We propose an approach to address the changes requested by a user that can preserve
as much as possible the original workflow. We focus on the following four categories of changes:
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• IO request: Request to change input and/or output.
• Avoidance request: Avoid using one class of services.
• Inclusion request: Request that a particular service to be used in the workflow.
• Insertion request: Request that a service is inserted at a particular position.

4.1 Similarity Between Workflows: Formalization

Given two workflow p and p′, we define the concept of similarity between p to p′. In the follow-
ing, we view a workflow as a directed acyclic graph G = (V,E), where V is the set of nodes and
each node is a service; E is the set of edges and each edge is an exchange of resources between
two services in the workflow. Observe that each service v will have a set of inputs, a set of out-
puts, and some description. For each service v, input(v) and out put(v) denote the set of inputs
and outputs of v, respectively. The similarity between two workflows is defined as a combination
of nodes similarity, edges similarity, and contextual and topology similarity (Becker and Laue
2012; Antunes et al. 2015). Let G1 = (V1,E1) and G2 = (V2,E2) be two graphs. The similarity
between G1 and G2, denoted by sim workflows(G1,G2), is defined next.
• Node Similarity. Let v1 ∈V1 and v2 ∈V2. We fist define the similarity between two nodes and

then use this measure to define the similarity between nodes of workflows. As a node represent
a web service, the similarity of two nodes can be determined based on their mutual position
in the ontology (note that the Phylotastic ontology classifies services based on a taxonomy
of classes of services). Thus, two nodes can be considered to be similar if they are close in
the ontology, share the same inputs, outputs, or have similar descriptions. These features are
considered in the following definitions.
◦ sim nodes onto(v1,v2): measures the similarity between v1 and v2 by considering them

as nodes in the ontology:
sim nodes onto(v1,v2) =

1
1+d nodes onto(v1,v2)

, where
d nodes onto(v1,v2) = path len(lca(v1,v2),v1) + path len(lca(v1,v2),v2). Intuitively, the
similarity between two nodes in an ontology is disproportional to the distance (path len(.))
between their lowest common ancestors (lca(.)) of them.

◦ sim nodes inp(v1,v2): measures the similarity the nodes by considering their inputs,
the more inputs they share the more similiar they are. Thus,

sim nodes inp(v1,v2) = 2∗ |input(v1)∩ input(v2)|
|input(v1)|+ |input(v2)|

.

◦ sim nodes oup(v1,v2): measures the similarity between two nodes by considering their
outputs, computed similarly to sim nodes oup(v1,v2). So,

sim nodes oup(v1,v2) = 2∗ |ouput(v1)∩out put(v2)|
|out put(v1)|+ |out put(v2)|

.

◦ sim nodes des(v1,v2): measures the similarity between the English descriptions
of the two nodes. We use off-the-shelf libraries Stanford CoreNLP 3, NLTK4, and
Scikit-Learn5 to process the descriptions and transform these text descriptions to a ma-

3 https://stanfordnlp.github.io/CoreNLP
4 http://www.nltk.org/
5 http://scikit-learn.org/

https://stanfordnlp.github.io/CoreNLP
http://www.nltk.org/
http://scikit-learn.org/
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trix of TF-IDF (term frequency-inverse document frequency) of the two documents. From
each document we derive a real-value TF-IDF vector; the similarity index between two text
descriptions is computed based on cosine similarity between their TF-IDF vectors.

The similarity between two nodes, denoted by sim nodes(v1,v2), is then defined as the
weighted sum between their four similarity measures

sim nodes(v1,v2) = wonto ∗ sim nodes onto(v1,v2)+winp ∗ sim nodes inp(v1,v2)+

woup ∗ sim nodes oup(v1,v2)+wdes ∗ sim nodes des(v1,v2)

where wonto,winp,woup,wdes are weight values assigned to each attribute, wx ∈ [0,1] (x ∈
{onto, inp,oup,des}) and wonto+winp+woup+wdes = 1. In our implementation, the values of
wonto,winp,woup,wdes are 0.6,0.15,0.15 and 0.1 respectively. The intuition behind these values
lies in the fact that within an ontology, the similarity between objects depends heavily on their
relative position to their lowest common ancestor; thus wonto should play the deciding factor.
winp = woup because of the symmetry between inputs and outputs. wdes is smaller than winp or
woup because our current ontology has different levels of detail in the English description of
services.
Finally, sim nodes workflows(G1,G2) is defined as follows:

sim nodes work f lows(G1,G2) = 2∗ ∑v1∈V1 ∑v2∈V2
sim nodes(v1,v2)

|V1|+ |V2|
(1)

• Edge Similarity. Let e1 ∈ E1 and e2 ∈ E2. As an edge connected two services (nodes) in a
workflow and denotes an exchange between two nodes (output of one is input of the other).
For this reason, the similarity between two edges can be defined via the similarity between
the nodes relating to them and the descriptions of their inputs and outputs. For an edge e, let
s(e) and d(e) denote the source and destination of e, respectively; Furthermore, let lab(e) =
(os(e), id(e)), where os(e) is the output of s(e) that is used as the input id(e) of d(e). We define:
◦ sim ed nod(e1,e2): measures the similarity of two edges by considering the similarity

of the nodes related to the edges and is defined by
sim ed nod(e1,e2) =

1
2 ∗ (sim nodes(s(e1),s(e2))+ sim nodes(d(e1),d(e2))).

◦ sim ed re(e1,e2): measures the similarity of two edges by considering distance between
their labels and is defined by
sim ed re(e1,e2) = 1

1+d ed ont(lab(e1),lab(e2))
, where d ed ont(lab(e1), lab(e2)) = 1

2 ∗
(d nodes onto(os(e1),os(e2))+d nodes onto(id(e1), id(e2))).

The similarity between two edges, denoted by sim edges(e1,e2), is then defined as
the weighted sum between their two similarity measures. sim edges(e1,e2) = wnode ∗
sim ed nod(e1,e2)+wlabel ∗ sim ed re(e1,e2). where 0 ≤ wnode,wlabel ≤ 1 are weight values
of corresponding attributes contributions such that wnode +wlabel = 1. In our implementation,
we assign the values of wnode,wlabel are 0.5 and 0.5 respectively. We define

sim edges work f lows(G1,G2) = 2∗ ∑e1∈E1 ∑e2∈E2
sim edges(e1,e2)

|E1|+ |E2|
.

• Topological Similarity. By considering workflows as graphs, we can also consider their sim-
ilarity based on the amount of changes needed to convert one to the other. The notion of
an Edit-Distance, denoted by dist topo(G1,G2), between two graphs—the smallest num-
ber of changes (insertions, deletions, substitutions, etc.) required to transform one struc-
ture to another—has been introduced and algorithms for computing it have been developed
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by Zhang and Shasha (1989). The topological similarity between two graphs is defined by
sim topo(G1,G2) =

1
1+dist topo(G1,G2)

.
Having defined various types of similarities between elements of the workflows, we can now

define the similarity between two workflows as a weighted sum of these similarities:

sim work f lows(G1,G2) = wno ∗ sim nodes work f lows(G1,G2)+

wed ∗ sim edges w f (G1,G2)+wto ∗ sim topo(G1,G2)

where wno,wed ,wto ∈ [0,1] and wno + wed + wto = 1. In our implementation, we use wno =

0.45,wed = 0.35 and wto = 0.2. Here, the emphasis is still the similarity between nodes. This
is because the nodes are the main components of a workflow. For this reason, we place greater
emphasis on the edges than the topology of a workflow, because the labels of the edges are also
critical to the workflow. Due to the fact that the computation of the similarity between two work-
flows is deterministic, deals mostly with real numbers, and the fact that new answer set solvers
allow for the integration of external atoms as described by (Kaminski et al. 2017), we imple-
mented a package for computing the similarity between two workflows as a Python library and
used this as external predicates in ASP.

4.2 ASP-Code for Replanning

Given a workflow and some modifications requested by a user, the similarity measure introduced
in the previous subsection can be used to select the workflow that satisfies the user’s requests and
is most similar to the original one. We next present the ASP implementation addressing each of
the change categories discussed at the beginning of this section and then selecting the most simi-
lar workflow. We will use a simple original workflow for generating a gene-species reconciliation
tree from a set of gene names (Figure 3) as a running example. In this workflow, each node (cir-
cle) represents a service (e.g., a is a service) and each connection between two nodes represent
an edge with its label (e.g., the edge from a to b has oa as an output of a which is used as input
ib of b). Here, a, b, c, d, e and f are the short name for the services Get GeneTree from Genes,
Ext Species from GeneTree, Resolved Names OT, Get PhyloTree OT V1, GeneTree Scaling V1
and Get ReconciliationTree respectively.

a b c d

e

f goalinit

init_res ia oa ib ob ic oc id

ie

od if1

if2

oe

goal_res

oa

Fig. 3: Original workflow
Intuitively, the workflow in Figure 3 represents a workflow generated by the planning engine,

encoded by the set of atoms:

{initially(init res,d f i),occ(a,1),occ(b,2),occ(c,3),occ(d,4),occ(e,5),occ( f ,6),

f inally(goal res,d f g),map(a, ia,1, init res,0),map(b, ib,2,oa,2),map(c, ic,3,ob,3),

map(d, id,4,oc,4),map(e, ie,5,oa,2),map( f , i f 1,6,od,5),map( f , i f 2,6,oe,6).}

In this encoding, initially/2 ( f inally/2) states that the input (goal) with its data type; occ(x, i)
states that the service x must occur at the step i; map(s, i, t1,o, t2) says that an output o of step t2
is an input i of service s at step t1.
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(1) Replace d by d1 where d1 represents Get_PhyloTree_OT_V2 (2) Replace d by n1 and d2 ; n1 is Names_Convert_1
and d2 is Get_PhyloTree_Phylomatic

(3) Replace d by adding n2, d3, t1 and use c1 instead of c. In which, c1, n2, d3 and t1
 illustrate Resolved_Names_GNR, Names_Convert_2, Get_PhyloTree_TreeBase and Tree_Convert_1

a b c d1

e

f goalinit a b c d2

e

f goalinit n1

a b c1 d3

e

f goalinit n2 t1

Fig. 4: Some updated workflows with avoidance the service d

4.2.1 IO Request

For an IO request, all that needs to be changed is the ASP encoding sent to the ASP-planner,
specifically atoms of the form initially and/or finally will be updated to reflect the request.
The planning engine will be executed and returned the most similar workflow to the current one.

4.2.2 Avoidance Request

A request to avoid using a service s (or a class of services c) will be translated to the atom
do not use(s) (do not use(c)) and supplied to the planning engine. We use the following ASP-
rules to enforce this request:

is used(C) :− member(X ,C), occ(X , ). (2)

is used(X) :− occ(X , ). (3)

:− is used(X), do not use(X). (4)

The first two rules determine the class of service C or the service X is used in the workflow. The
third enforces the request of the user to avoid the use of the service or a class of services. Some
possible resulting workflows satisfying the request do not use(d) are shown in Figure 4.

4.2.3 Inclusion Request

A request to include a service s (or a class of services c) will be translated to the atom
must used(s) (used(c)) and supplied to the planning engine. The rules (2)-(4) are used with
the rule:

:− must used(X), not is used(X). (5)

to make sure that the request to include some service is satisfied. Figure 5 displays some possible
updated workflows with the request of using (1) e2 (GeneTree Scaling V2) or (2) e3 (Gene-
Tree Scaling V3)

(1) Include e2 (GeneTree_Scalling_V2) 
and use t1 (Tree_Convert_1)

a b c d

e2

f goalinit

t1

(2) Include e3 (GeneTree_Scalling_V3) 
and use t1, t2 that are Tree_Convert_1 and Tree_Convert_2

a b c d

e3

f goalinit

t1t2

Fig. 5: Updated workflows with inclusion request of e2 or e3
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4.2.4 Insertion Request

This is a special case of an inclusion request. Specifically, it specifies where the service should
be included. This request is translated into the ASP atoms of the form be f ore(x,y) (service x
must be executed before service y) and must used(x). To implement this, we add to the before
but also some after statements

is be f ore(C,D) :− occ(C,T ), occ(D,T1), T < T1. (6)

:− be f ore(C,D), not is be f ore(C,D). (7)

Figure 6 shows some workflows accommodating the request “use service e after a and before b”,
encoded by {must used(e), be f ore(a,e), be f ore(e,c).}.

a b c de f goalinit a b c de f goalinit

Fig. 6: Service e is executed after a and before c

4.2.5 Selecting a Most Similar Workflow

Let ΠR be the set of rules (2)-(7) for enforcing the requests of the users and C denote the set
of atoms encoding the requests of an user. Our goal is to compute a new workflow that satisfies
C and is as similar as possible to the original workflow. It is easy to see that ΠL ∪ΠR ∪C will
return workflows satisfying C. As such, we only need to identify, among all solutions provided
by ΠL∪ΠR∪C, the workflow that is most similar to the original workflow. This can be achieved
by encoding the original workflow, providing it as input, and exploiting the Python package for
computing the similarity of two workflows (subsection 4.1). To do so, let us assume that the orig-
inal workflow is encoded as a set of atoms O of the form old occ(s, t) and old map(s, i, t1,o, t2).
There are different possibilities here:
• Computing exact value of similarity using ASP: theoretically, the exact value of similarity

between the constructed workflow and the original one can be computed in the ASP using
an external call to sim work f lows and the most similar workflow can be computed using the
maximize statement by

sim(V ) :− V = @sim work f lows(w f1,w f2). (8)

#maximize{V : sim(V )}. (9)

where w f1 and w f2 are two sets of atoms encoding the two workflows (the original and the
computed one), this is essentially the sets of atoms of the forms old occ(.), old map(.), occ(),
and map() that is generated by the planning engine and supplied in O. This means that we need
a set data structure to implement this approach. We did not implement this due to the fact that
clingo does not yet provide a construct for set. We hope to work with the clingo group to
introduce set as a basic data type for use besides the aggregate functions.

• Approximating the value of similarity using ASP: Since the set of facts of the form occ(s, t)
correspond to the nodes in the workflow, we can approximate the similarity of two workflows
by considering only the similarity between nodes of the two workflows (old and new). This
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can be realized by the following rules:

single sim nodes(X ,Y,Z) :− old occ(X , I1),occ(Y, I2),Z = @sim nodes(X , I1,Y, I2).

sum sim nodes(S) :− S = #sum{Z,X ,Y : single sim nodes(X ,Y,Z)}.
sim nodes work f lows(R) :− sum sim nodes(S),NO = #count{X , I1 : old occ(X , I1)},

NN = #count{Y, I2 : occ(Y, I2)},R = 2∗S/(NO+NN).

#maximize{R : sim nodes work f lows(R)}.

It is easy to see that the above rules implement formula (1).
• Computing exact value of similarity using multi-shot ASP: This approach has been im-

plemented using the multi-shot ASP (Kaminski et al. 2017). Basically, a Python wrapper is
used to control the search for the most similar workflow to the original one. It implements the
following loop:

for each answer set of ΠL ∪ΠR ∪C

compute the similarity v of the solution and the original workflow

if it is greater than the current value (initiated with -1)

then keep the solution

4.3 Refining a Workflow: Case-Studies

We illustrate the new features of our system using three use cases developed in the Phylotastic
project.

4.3.1 From a Set of Gene Names to a Reconciliation Tree in newick Format

In this use case, the user wants to generate a phylogenetic reconciliation tree in the newick

format from a set of gene names, whose format is set of strings. The user can use the
Workflow Configuration Module to design an initial workflow with two nodes (initial node and
goal node) with this information as described by Nguyen et al. (2018). The module will then
convert this information into ASP-atoms initially(setOfGeneNames,set of strings)

and finally(reconciliationTree,newickTree), which will be sent the planning en-
gine. The result is the workflow shown in Figure 7, where the triangles identify the
input and output and the name of the service that should be executed at each step.
For example, a gene based extraction service should be executed at step 1 and a
names extraction tree service needs to be executed at step 2. The workflow shown in the
figure is also the one with highest QoS (1.4224).

Workflow 0 :  Original Workflow

Initial 
State

gene_based
_extraction

names_extraction
_tree

GeneTreeSetOfGeneNames

names_resolution
_op

SetOfSpeciesNames

Goal 
State

SetOfTaxon

taxonomy_based
_extraction tree_reconciliation

SpeciesTree ReconciliationTree (Newick)

GeneTree

Fig. 7: Original Workflow
The user, after examining the workflow, determines that the input GeneTree

of tree reconciliation service needs to be scaled before being processed by
tree reconciliation; and, this requires that the service gene tree scaling should
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Workflow 1 : Add gene_tree_scaling at step 4, replace taxonomy_based_extraction by phylogeny_based_extraction                                                               Similarity (Exact - Multi-shot) : 0.3791                                               
                                                                                                                                                                                                                                                         Similarity (App. - ASP) : 0.4130 

Initial 
State

gene_based_
extraction

names_extraction
_tree

GeneTreeSetOfGeneNames

names_resolution
_op

SetOfSpeciesNames

Goal 
State

SetOfTaxon

phylogeny_based
_extraction tree_reconciliation

SpeciesTree ReconciliationTree (Newick)

GeneTree

gene_tree_scaling

GeneTree

Workflow 2 : Add gene_tree_scaling at step 4                                                                                                                                                                                Similarity (Exact - Multi-shot) : 0.5045
Similarity (App. - ASP) : 0.5779

Initial 
State

gene_based_
extraction

names_extraction
_tree

GeneTreeSetOfGeneNames

names_resolution
_op

SetOfSpeciesNames

Goal 
State

SetOfTaxon

taxonomy_based
_extraction tree_reconciliation

SpeciesTree ReconciliationTree (Newick)

GeneTree

gene_tree_scaling

GeneTree

Workflow 3 : Add gene_tree_scaling at step 2                                                                                                                                                                          Similarity (Exact - Multi-shot) : 0.4878
Similarity (App. - ASP) : 0.5779                                                                                                                                                                            

Initial 
State

gene_based
_extraction

names_extraction
_tree

GeneTreeSetOfGeneNames

names_resolution
_op

SetOfSpeciesNames

Goal 
State

SetOfTaxon

taxonomy_based
_extraction tree_reconciliation

SpeciesTree ReconciliationTree (Newick)

GeneTree

gene_tree_scaling

GeneTree

Workflow 4 : Add gene_tree_scaling at step 4, change services names_resolution_op,  taxonomy_based_extraction, tree_reconciliation                                 Similarity (Exact - Multi-shot) : 0.3033                                                                                                                                                                                                                                                                                                                                                                                               
Similarity (App. - ASP) : 0.3211

Initial 
State

gene_based_
extraction

names_extraction
_tree

GeneTreeSetOfGeneNames

names_resolution
_op_2

SetOfSpeciesNames

Goal 
State

SetOfTaxon

phylogeny_based
_extraction

tree_reconciliation
_2

SpeciesTree ReconciliationTree (Newick)

GeneTree

gene_tree_scaling

GeneTree

Fig. 8: Possible updated workflows by 2 approaches

be inserted after gene based extraction and before tree reconciliation service. The
experimentation has been performed on a machine running MacOS 10.13.3 with 8GB DDRam
3 and a 2.5GHZ Intel-Core i5 (3rd Generation) with 54 classes of services and 125 concrete
specific services in Ontology domain.

• Approximating the value of similarity using ASP: Using this approach, there are different
updates to the original workflow. Four of them with the highest similarity values are displayed
in Figure 8. The highest similarity value of 0.5779 comes from WF2 and WF3. Observe that
these workflows have only one modification (gene tree scaling occurs at step 4 in WF2

and step 1 in WF3). Furthermore, WF1 has two changes (adding gene tree scaling and re-
placing taxonomy based extraction by phylogeny based extraction); and WF4 has
three changes. The total processing time of this approach is 35.183 seconds.

• Computing exact value of similarity using multi-shot ASP: The previous approach only
approximates the similarity values of the new solutions and the original workflow. Using the
multi-shot ASP, we can calculate the exact value of the similarity. Figure 8 shows the same 4
workflows considered in the previous approach with their exact value of similarity. The clear
winner is WF2. The system takes 37.937 seconds to compute these updates.

4.3.2 Generating a Species Tree in newick Format from Free Plain-Text

The second use case is concerned with the generation of a species tree in newick format from
a text document (plain text format). Figure 9 (Workflow 0) displays the workflow with the
highest QoS value. The first revision that an user asked is the system is to avoid using the
Get PhyloTree Phylomatic V2 service. The resulting most similar workflow is displayed in
Figure 9 (Workflow 1) in which the service is replaced by the service Get PhyloTree OT V2.
However, for this service to be used, the service convert taxa GNR to Phylomatic must be
replaced with convert taxa GNR to OT format. The second revision was to force the use of



Creating Phylotastic 15

Workflow 0 : Generating a Species Tree from Free Text

Initial 
State

Find_SciNames_f
_FreeText_GNRD

convert_SciNames
_to_GNR_format

SciNames (set_of_strings)FreeText (plain_text)

Resolved_Names
_GNR_V1

SciNames(GNR format)

Goal 
State

SetOfTaxon (GNR format)

convert_taxa_GN
R_to_Phylomatic

convert_tree_to
_Newick

SpeciesTree (Phylomatic) SpeciesTree (Newick)

Get_PhyloTree_
Phylomatic_V2

SetOfTaxon (Phylomatic format)

Workflow 1 : Removing Get_PhyloTree_Phylomatic_V2

Initial 
State

Find_SciNames_f
_FreeText_GNRD

convert_SciNames
_to_GNR_format

SciNames (set_of_strings)FreeText (plain_text)

Resolved_Names
_GNR_V1

SciNames(GNR format)

Goal 
State

SetOfTaxon (GNR format)

convert_taxa_GN
R_to_OT_format

convert_tree_to
_Newick

SpeciesTree (OT format) SpeciesTree (Newick)

Get_PhyloTree
_OT_V2

SetOfTaxon (OT format)

Workflow 2 : Using Resolved_Names_GNR_V2 and Get_PhyloTree_OT_V2

Initial 
State

Find_SciNames_f
_FreeText_GNRD

convert_SciNames
_to_GNR_format

SciNames (set_of_strings)FreeText (plain_text)

Resolved_Names
_GNR_V2

SciNames(GNR format)

Goal 
State

SetOfTaxon (GNR format)

convert_taxa_GN
R_to_OT_format

convert_tree_to
_Newick

SpeciesTree (OT format) SpeciesTree (Newick)

Get_PhyloTree
_OT_V2

SetOfTaxon (OT format)

Fig. 9: Generating a Species Tree from Free Text

the service Resolved Names GNR V2, the third workflow Figure 9 (Workflow 2) satisfies this
request.

4.3.3 Generating a Chronogram from a Web-site Content

A chronogram is a scaled species tree with branch lengths. In this use case,
• An user has an initial request to create a chronogram in the newick format and meta-

data of this tree in the set of strings format from a web-site content, which is speci-
fied by a URL (http url format), and a name of scaling method (string format). The
workflow generated by the planning engine is shown in Figure 10 (Workflow 0). In this
workflow, the output components chronogram and meta-data are produced by services
Get Chronogram ScaledTree DL V2 and Get MetaData Chronogram DL V2 respec-
tively. Both of them use species tree as an input and this resource is generated by
service Get PhyloTree PhyloT V2 in previous step.

• The user then requests that the services Get PhyloTree OT V2 and
Resolved Names OT V2 have to be used. The resulting most similar workflow is
presented in Figure 10 (Workflow 1) in which services Resolved Names GNR V1,
convert taxa GNR to phyloT and Get PhyloTree PhyloT V2 are replaced by
Resolved Names OT V2, Get PhyloTree OT V2 and convert Tree to Newick

respectively.
• Instead of the above request, the user requests that Get MetaData Chronogram DL V2

is executed after Get Chronogram ScaledTree DL V2. Figure 10 (Workflow
2) shows the most similar workflow to Workflow 0 that satisfies this request.
In this workflow, Get MetaData Chronogram DL V2 will use the output of
Get Chronogram ScaledTree DL V2 as its input instead of the output from
Get PhyloTree PhyloT V2.

5 Conclusion and Future Works

In this paper, we described two enhancements to the Phylotastic project that allow users to select
their most preferred workflow and modify a workflow and obtain the most similar workflow to
the original one. In the process, we defined the notion of quality of service of a workflow and
the notion of similarity between two workflows. We discuss their implementation and their use
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Workflow 0 : Generating a Scaled Species Tree and its Metadata from Content of a Web-site

Initial 
State

Find_SciNames_f_
WebPage_GNRD

convert_SciNames
_to_GNR_format

SciNames (set_of_strings)WebPage(http_url)

Resolved_Names
_GNR_V1

SciNames(GNR format)

Goal 
State

SetOfTaxon (GNR format)

convert_taxa_GNR
_to_phyloT

Get_MetaData_
Chronogram_DL

_V2

SpeciesTree (Newick) MetaData_ScaledTree (set_of_strings)

Get_PhyloTree
_PhyloT_V2

SetOfTaxon (PhyloT format)

Get_Chronogram_
ScaledTree_DL_V2

SpeciesTree (Newick) SpeciesTree_BranchLength (Newick)

phylo_method (string)

Workflow 1 : Using Get_PhyloTree_OT_V2 and Resolved_Names_OT_V2

Initial 
State

Find_SciNames_f
_WebPage_GNRD

convert_SciNames
_to_GNR_format

SciNames (set_of_strings)WebPage(http_url)

Resolved_Names
_OT_V2

SciNames(GNR format)

Goal 
State

SetOfTaxon (OT format)

Get_PhyloTree_
OT_V2

Get_MetaData_
Chronogram_DL

_V2

SpeciesTree (Newick) MetaData_ScaledTree (set_of_strings)

convert_Tree_to
_Newick

SetOfTaxon (PhyloT format)

Get_Chronogram_
ScaledTree_DL_V2

SpeciesTree (Newick) SpeciesTree_BranchLength (Newick)

phylo_method (string)

Workflow 2 : Using Get_Chronogram_ScaledTree_DL_V2 before Get_MetataData_Chronogram_DL_V2 

Initial 
State

Find_SciNames_f
_WebPage_GNRD

convert_SciNames
_to_GNR_format

SciNames (set_of_strings)WebPage(http_url)

Resolved_Names
_GNR_V1

SciNames(GNR format)

Goal 
State

SetOfTaxon (GNR format)

convert_taxa_GNR
_to_phyloT

Get_MetaData_
Chronogram_DL

_V2

MetaData_ScaledTree (set_of_strings)

Get_PhyloTree
_PhyloT_V2

SetOfTaxon (PhyloT format)

Get_Chronogram_
ScaledTree_DL_V2

SpeciesTree (Newick) SpeciesTree_BranchLength (Newick)

phylo_method (string)

SpeciesTree_BranchLength (Newick)

Fig. 10: Generating a Scaled Species Tree and its Metadata from Content of a Web-site

in enhancing the capabilities of the Phylotastic system. The proposed system is currently begin
evaluated by biology researchers participating to the Phylotastic project. Our immediate future
considerations are: (i) investigate the use of node QoS or similarity in the ASP-planning engine
to assist the computation of most preferred (or similar) workflow; (ii) study other extensions
of clingo (e.g., clingcon) that allow a tighter integration of CSP and ASP in computing most
preferred (or similar) workflows; (iii) evaluate the scalability and efficiency of the system when
more web services are registered to Phylotastic.
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