
EasyChair Preprint
№ 2337

Traffic Information Detection

Donghao Qiao, Jiayuan Zhou and Farhana Zulkernine

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 8, 2020

Traffic Information Detection

Donghao Qiao1, Jiayuan Zhou1, and Farhana Zulkernine1

1 Queen’s University, Kingston ON K7L3N6, Canada
{d.qiao, jiayuan,zhou, farhana.zulkernine}@queensu.ca

Abstract. In this paper we built a model which contains two submodules: lane
detection and vehicle detection. Our lane detection model is based on a heuristic
approach to detect lanes. It can be broken down into three steps: Image prepro-
cess, Lane edge points identification, and lane cure generation. As for the vehicle
detection, we applied YOLO series algorithms which are fast, accurate and can
be used in real-time detection.

Keywords: Deep Learning, Computer Vision, Lane Detection, Vehicle Detec-
tion, YOLO.

1 Introduction

In recent years, with a number of technology breakthroughs in the world, one of the
Artificial Intelligence (AI) branches self-driving vehicle is becoming closer to our lives.
In this paper, we implement the lane detection and vehicle detection with Python3,
which are the first and a very important step for auto-driving and road-safety alert.

2 Dataset

We recorded a real road video to test our model. The resolution of the video is 1280x70
and the duration is 16 seconds with 30 frames per second.
We used the pre-trained YOLO model and YOLOv3 model to detect vehicles. The pre-
trained YOLO model was trained on two datasets, PASCAL VOC 2007 and 2012. The
pre-trained YOLOv3 model was trained on COCO 2014 dataset. Table 1 shows the
details of the datasets. The COCO 2014 dataset YOLOv3 used has 117,263 images for
training and 5,000 for testing.

Table 1.

 #Classes Size
PASCAL VOC 2007 20 9,963
PASCAL VOC 2012 20 11,530
COCO 2014 80 122,263

2

3 Implementation

Our model consists of two submodules 1) lane detection, 2) vehicle detection. For
every captured image, the model will detect lane and vehicles at the same time using
two submodules, respectively, and then integrate the detected lanes and vehicles
together as an output. In this section, we introduce the two submodules, lane detection
model and vehicle detection, respectively.

3.1 Lane Detection

Our lane detection model is based on a heuristic approach which is the Advanced Lane
Finding project from Udacity[5] to detect lanes. In general, our approach can be broken
down into three steps:

1) Image preprocess: We first preprocess captured images to remove redundant
background information and reserve lane information.

2) Lane edge points identification: Then applied a sliding window approach to
identify lane edge points.

3) Lane cure generation: Finally, we use polynomial regression to generate lane
curve based on identified lane edge points.

Following we introduce the details of each step.

Image Preprocess. Only two levels of headings should be numbered. Lower level
headings remain unnumbered; they are formatted as run-in headings.

Fig. 1. The flow of the image preprocessing process.

Fig. 1. shows the flow of the image preprocessing process. Due to the optical design of
lenses, the original camera captured images will be shown in a distorted way. For ex-
ample, the left image of Fig. 2. shows a chessboard which is shown in a distorted way.
In order to calibrate the image, we use the calibration function provided by Python
OpenCV library to calculate distortion coefficients and transform the original distortion

3

image into an undistorted image. The right image of Fig. 2. shows the undistorted/cor-
rected chessboard.

Fig. 2.

Then we remove the redundant background information using a threshold-based bina-
rization method. We first greyscale the undistorted image and calculate the gradient of
RGB value along the x-axis of the image and set 25 as the threshold value to binarize
the image. Fig. 3. shows the image before and after the gradient-based binarization.

Fig. 3.

In order to further capture lane information which is removed by the above gradient-
based binarization. We first convert the undistorted image into HLS (i.e., hue, satura-
tion, lightness) image and only keep the saturation information of the image. After that,
we set 50 as the threshold value to binarize the image. Fig. 4. shows the image before
and after the color-based binarization.

4

Fig. 4.

We can find that the gradient-based binarization keeps more lane information in terms
of the shapes of lanes and the color-based binarization keeps more lane information in
terms of the points inside lanes.
To reserve the most lane information, we merge two binarized images (see the left im-
age of Fig. 5.). Since we are only interested in detecting the lanes in front of the camera,
we mask the other area of the image (see the right image of Fig. 5.).

Fig. 5.

In order to better identify lane curve points and regress lane curves, we finally covert
the masked image into a bird-eye view (see Fig. 6.).

5

Fig. 6.

Lane edge points identification. In order to detect the lane curve points from the bird-
eye view image, we apply a sliding window approach. For example, the marked green
box on the left side of Fig. 7. is one sliding window. For each sliding window, we
analyze the vertical density of white pixels basing on the bottom pixel row. For exam-
ple, the histogram (i.e., the right image of Fig. 7.) shows the density of white pixels
based on the bottom row of the green box. Since the density (i.e., the value of y-axis)
on the location (290, 0) start spiking until (330,0), we consider the points between
(290,0) and (330,0) is lane edge points.

Fig. 7.

Lane curve generation. Finally, we apply polynomial regression on the identified lane
edge points to generate lane curves (see the left image of Fig. 8.). Since the car always
drives in the middle of the closest two-lane curves under the safe circumstances, we
mask the area between two fitted lane curves with green color (see the right image of
Fig. 8.).

Fig. 8.

6

3.2 Vehicle Detection

We used YOLO series algorithms which are fast and accurate for vehicle detection.
Different from regional proposal algorithms like R-CNN, YOLO does not require
plenty of time to generate region proposals. Considering we want to use our model in
real-time detection, it is essential to detect the objects fast and accurate, so that the car
can run on the streets safely. In the following, we are going to introduce how we used
YOLO and YOLOv3.

YOLO: Unified, Real-Time Object Detection. The procedure of how YOLO detects
objects is shown in Fig. 9. Different from the regional proposal methods, YOLO divides
the input image into S*S grids, if the center of an object is in a grid, then that grid is
responsible for predicting that object. For example, the center of the dog is located in
the second column and the fifth row, so that grid is responsible for detecting the dog.
Each grid will predict number of B bounding boxes and 1 confidence. The confidence
is equal to Pr(Object)*𝐼𝑂𝑈$%&'(%)(*the first part reflects how likely the box contains an
object and the second part intersection over union (IOU) reflects how accurate is the
bounding box. In this model, the image was divided into 7*7 grids, and each grid pre-
dicted 2 bounding boxes. We used the bounding boxes with high confidence scores
(greater than 0.3) to predict vehicles.

Fig. 9. YOLO Model [1].

The YOLO detection network is shown in Fig. 10. and we applied Tensorflow to build
the vehicle detection network. The network of YOLO has 24 convolutional layers and
2 fully connected layers. The learning rate is 0.1 and the threshold of the confidence is
0.1 as well. The output shape of the network is 7*7*30, because the images are split
into 7*7 grids, each grid predicts the position(x, y, w, h) and confidence of two bound-
ing boxes and the probabilities of the twenty classes, so 30 outputs: 5 outputs per box
[4 box coordinates + 1 object confidence], times 2 boxes, and pluses 20 classes’ prob-
abilities.

7

Fig. 10. YOLO Network [1].

YOLOv3: An Incremental Improvement. Although YOLO is very fast and can ob-
tain satisfactory results, it still has many disadvantages. Each grid can only predict one
object, and YOLO struggle with small objects. Therefore, we decided to switch to an-
other algorithm. From Table 2 and Table 3 below we can see that YOLOv3 is much
faster and has higher mAP and AP than YOLO and YOLOv2, so we tried YOLOv3 to
detect vehicles.

Table 2. Comparing the accuracy and speed among YOLO, YOLOv2 and YOLOv3.

Table 3. Comparing the accuracy and speed between YOLOv2 and YOLOv3.

Fig. 11. shows how the authors of YOLOv2 enhance the performance of YOLOv2 step
by step, and the mAP on dataset VOC2007 was increased from 63.4 to 78.6. Comparing
to YOLOv2, YOLOv3 used a different network which called Darknet-53 as shown in
Fig. 12. The network is mainly composed of 3*3 and 1*1 filters with skip connections
like the residual network in ResNet, so the network can have 53 layers. The learning
rate is 0.001, and the threshold is 0.7. The output layer of the network has 255 nodes:
85 outputs per anchor [4 box coordinates + 1 object confidence + 80 class confidences],
times 3 anchors. The model was trained on COCO 2014 which has 80 classes, 117,263
images from the train and validate COCO sets, tests on 5000 images, and can get higher
AP than YOLOv2, and SSD.

 Train Dataset mAP Testing Dataset mAP FPS

YOLO
VOC

2007&2012 63.4
VOC

2007&2012
57.9 45

YOLOv2
VOC

2007&2012 77.8
VOC

2007&2012
73.4 59

YOLOv3 COCO 2014 NA VOC 2007 78.6 78

 Train Dataset Testing Dataset AP FPS

YOLOv2 COCO 2014 VOC
2007&2012

21.6 59

YOLOv3 COCO 2014 VOC 2007 33.0 78

8

Fig. 11. The path from YOLO to YOLOv2[2]

The weights and configure file can be downloaded from DarkNet website https://pjred-
die.com/darknet/yolo/, then we applied OpenCV to build the network for vehicle de-
tection. We tried the pretrained Tiny YOLOv3 with Darknet-19 first, because it is much
faster than YOLOv3, but comparing to YOLO, the performance of Darknet-19 did not
improve too much. Finally, we used YOLOv3 with Darknet-53, YOLOv3 could detect
more vehicles and smaller cars.

Fig. 12. YOLOv3 Network [2]

4 Results

We finally test the model on a video that has 485 frames, the detection speed is around
2.5 FPS on our own PC. One frame of the results is shown in Fig. 13. From the output
videos of both models, we can see that the lane detection can detect the lane in front of

9

the car, and it can also detect the curve lane. The model is robust, although there is a
line in the middle of the lane, the model did not influence by that noise.

Compared the results of YOLO and YOLOv3, we found that YOLOv3 performs much
better than YOLO which is the same as we expected. They have the same speed in
detection, whereas YOLOv3 can predict a higher number of cars, and can also predict
the very small car at the end of the road.

Fig. 13. One frame of the results.

To evaluate the recall of the results, we saved the images for both models every second,
and we got 16 images from each model. We counted the cars which have the same
direction as ours (on the right lanes in the images), and the correct detections. Then, we
got the recalls for each model as shown in Fig. 14. We can see that the recall of
YOLOv3 is much higher than YOLO.

Fig. 14. Recall of the models.

5 Problems and Discussions

The first problem is the detection process consumes a very long time and cannot use in
real-time detection. This is because we tested the model on our own PC instead of using
the GPU, and detected the lane and vehicles sequentially, it costs twice the time to do
the detection.

10

Secondly, we do not evaluate the result of lane detection. We are still working on cal-
culating the IOU of the lane. We also want to detect multiple lanes with CNN so that
can accelerate the model with GPU.

Finally, we used YOLOv3 to detect vehicles, whereas we did not train the model with
our dataset. The model was trained on COCO 2014 which has 117,263 training images,
and around half of the data is vehicles such as cars, buses, and trucks [4]. The median
of the recall of our model is 0.5, and the detection results are not as good as we expected.
It cannot detect the vehicles in the left lanes.

References

1. Redmon, J., Divvala, S., Girshick, R. and Farhadi, A., 2016. You only look once: Unified,
real-time object detection.

2. Redmon, J., and Farhadi, A., 2016. YOLO9000: Better, Faster, Stronger.
3. Redmon, J., and Farhadi, A., 2018. YOLOv3: An Incremental Improvement.
4. Lin, T., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan,

D., Zitnick, C., and Dollar, P., 2015. Microsoft COCO: Common Objects in Context.
5. https://github.com/udacity/CarND-Advanced-Lane-Lines

