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Abstract. File format identification is a necessary step for effective digital preser-
vation of records. It allows appropriate actions for curation and access of file
types. While binary files contain header information (metadata) about the file
type which can aid identification, text files have none. Methods applied for bi-
nary file format identification are ineffective for text files. Most text formats can
be opened as plain text files, however file type information is often needed to
understand the files full use and context. When huge volumes of files need to be
checked, automated methods are necessary for text file format identification. A
project was initiated at The National Archives to identify file types from the con-
tents of text files using computational intelligence methods. A machine learning
based methodology was tested and implemented using test data. The prototype
developed as a proof-of-concept has achieved reasonably good accuracy in suc-
cessfully detecting five file formats.
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1 Motivation

As the official archive and publisher for the UK Government and England and Wales,
The National Archives (TNA) is responsible for collecting and securing the future of
the government record. TNA is already receiving born-digital material from govern-
ment departments and will need to process larger numbers of digital files every year.
One of the key steps of processing a new collection of digital records is ‘knowing what
you have got’1. An important factor of this is understanding the file format of each dig-
ital record. This allows appropriate preservation actions (e.g. migration, emulation) to
be taken in order to ensure that the record is accessible for future researchers. Identify-
ing specific formats of text files present a problem for current processes at TNA. This
project was undertaken in order to research sophisticated methods which would allow
the identification of formats for text files in an automated fashion.

1 https://nationalarchives.gov.uk/document/information-management/parsimonious-
preservation.pdf
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1.1 Why do text files present a problem?

The National Archives develops and maintains the file format registry PRONOM2. It
contains information for over 1800 different formats. PRONOM information is used
to identify formats of digital files in every major digital preservation system via the
use of tools such as DROID3 which utilise the PRONOM information. PRONOM’s
primary form of identification is by signature patterns based on the structure of the
format, determined by observing sample files, magic byte4 information stored at the
header of the format or by observing file format technical specifications. The aim is
to provide ‘unambiguous’ identification of formats through unique pattern sequences.

Fig. 1. A sample text file with no file extension

For binary formats this has proved to
be very effective, for text formats how-
ever there is often no consistent pattern
to observe so an ‘unambiguous’ identifi-
cation is not possible. Identification via
DROID and PRONOM for text files is
often achieved by the extension of the
format only e.g ‘txt’, ’csv’ or ‘py’. The
extension of the format is generally an
unreliable form of identification, prone
to corruption or loss. The same exten-
sion can often be used for multiple for-
mats e.g. ‘dat’. Contents of text formats
are often human-readable. i.e they can be
opened as plain text file using a simple text editor. However, if the file extension is
missing, incorrect or unambiguous and the format is not known, it is hard to know how
the file should be used and accessed. TNA receives such files in the form of supporting
files (usually generated by integrated development environments).

A sample file with a missing extension is shown in Fig. 1. The file shown here is
human readable and contains some characters written in a column. At a first glance,
one would think that this could be a simple exercise in typewriting characters in order.
Someone familiar with Unix environments would not rule out the possibility that the
file was part of a set of bash script/commands. Opening each file and assessing potential
uses is not feasible when we have a large number of such files. More effective automated
processes are needed for text file format identification. The file format would provide
additional context to use the document appropriately.

1.2 The importance of text formats to the public record

Text formats are becoming increasingly important to the government record. Plain text
files ‘.txt’ and CSV files ‘.csv’ can contain important information and datasets. TNA’s

2 https://www.nationalarchives.gov.uk/PRONOM/Default.aspx
3 https://www.nationalarchives.gov.uk/information-management/manage-information/policy-

process/digital-continuity/file-profiling-tool-droid/
4 Signature bytes at the beginning of binary file types, used by applications to detect how to

appropriately parse the file
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digital strategy states that records can be held in all sorts of formats including ‘struc-
tured datasets and computer code’5. Programming code is held in text formats. DROID
reports of material already held within TNA’s digital archive show, based on extensions
of the files, programming code and plain text files make up the majority of text based
formats that TNA receives regularly.

As an archive of UK Government, TNA is aware that software is created and used in
a number of contexts across government, including policy creation, implementation and
analysis. It follows that collecting its underlying source code, as well as preserving, and
providing future access to that source code is important. Being able to reliably deter-
mine the nature of that source code, for example what language it’s written in, provides
an important piece of context for future researchers. The 2018 UNESCO ‘Paris Call’
highlights the importance of ‘Software Source Code as Heritage for Sustainable De-
velopment’. This recognises that preserving software source code and making it widely
available is vital to human cultural heritage. It calls on member states to ‘recognise soft-
ware source code as a fundamental research document on a par with scholarly articles
and research data’6.

Aside from digital archiving, file type identification is a serious problem in the ar-
eas of digital forensics and cyber security. The research in digital forensics is mainly
focused on the identification of image file types and their metadata. While most of the
research is targeted for binary file formats, very little work is done in the plain text file
category. Being flat files (without header information), text files are difficult to recon-
struct if they are corrupted fully or partially. This leads to our research question

How can we correctly identify the file type of a plain text file from its contents?

To answer this, a literature survey to review existing methodologies, approaches
formulated, and their adaptability from other fields is explained in section 2. Relevant
algorithms reconstructed are explained in section 4. Given the nature of the problem,
we narrowed our investigation to the classification category of supervised learning. A
Python-based machine learning prototype was developed to understand the intricacies
of different classification models during the ‘proof of concept’ development phase. The
model construction, testing and evaluation are in section 5.

2 Literature Review

The Automated file type identification (AFTI) is a highly researched problem in digital
preservation, digital forensics and related fields. Binary files are computer-readable but
not human-readable. All executable programs are stored in binary files similar numeric
data files. In contrast, text files are stored in a form (usually ASCII - the numeric format
of alphabets) that is human-readable. AFTI techniques use metadata of a binary file
for the identification of it’s type. Metadata includes information about file extensions,
header/footer signatures [6, 23, 21] and binary information such as magic bytes etc.

5 https://www.nationalarchives.gov.uk/documents/the-national-archives-digital-strategy-2017-
19.pdf

6 https://unesdoc.unesco.org/ark:/48223/pf0000366715.locale=gb
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All these methods work well when the metadata is available and unaltered. How-
ever, traditional approaches are not reliable when the integrity of the metadata is not
guaranteed. An alternative paradigm is to generate ‘fingerprints’ of file types based on
the set of known input files and use them to classify the type of the unknown file. An-
other prominent approach is to calculate the centroid7 for a given file type from its
salient features. Each unknown file is examined for the distance from the known set
of centroids to predict the file type. The centroid paradigm uses supervised and unsu-
pervised learning techniques to infer a file (object) type classifier by exploiting unique
inherent patterns that describe a file type’s common file structure. Alamri et al. [3] have
published a taxonomy of file type identification ranging over 30 algorithms and ap-
proaches. In this section, we review the literature related to predicting file type from
fragments and content-based methods using finger print and centroid paradigms.

2.1 File Type Identification from File Fragments

Researchers have concentrated on the identification of image file types with corrupted
metadata and missing chunks from the contents. Methods were developed to reconstruct
damaged files from their fragments. Identification of file type from fragments is mainly
used as a recovery technique. It allows file recovery or rebuilding of the file without
contextual information or metadata. This process is also referred to as ‘file carving’ in
some of the literature. Image type files are mainly targeted by this technique.

Calhoun et al. [5] investigated two algorithms for predicting the type from frag-
ments in computer forensics. They have performed experiments on the fragments that
do not contain header information. The first algorithm was based on the linear discrim-
inant and the second was based on the longest common sub-sequences of fragments.
Their work provided various relevant statistics such as byte frequency, entropy, etc. as
features to predict the file type. Ahmed et al. [1, 2] also published two techniques to
identify the file types from file fragments. These techniques aim to reduce the time
consumed to process the contents. Their first technique selects a subset of features de-
scribing the frequency of occurrence of certain fragments. The second technique speeds
up classification by randomly sampling file blocks. They have performed experiments
on .png, .jpg and .tiff file types. Poisel et al. [19, 18] published a comprehensive survey
of file carving research to detect the file types from their fragments. They have also
provided a file carving ontology useful for researchers. In a similar work, Evensen et
al. [8] explored the use of the naive Bayes classifier combined with n-gram analysis
of byte sequences in files to correctly identify the file type. Gopal et al. [10] presented
the evaluation and analysis of the robustness of Support Vector Machine (SVM) and
k-Nearest Neighbours (kNN) in handling damaged files and file segments. They have
restricted their study to the file type identification from metadata. Their evaluation re-
veals that SVM and kNN methods learn better than any commercial off-the-shelf tools
that have been developed based on file extensions. In his thesis, Wilgenbus [24] pre-
sented a combined multi-layer perceptron neural network and linear programming dis-
criminant classifiers for the multiple class file fragment type identification problems.

7 A centroid is the mean position of all the points in all of the coordinate directions in a multi-
dimensional space.
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This solution could help our text file format identification problem, as neural networks
learn from features of the contents and help in classification of discrete file types. In
their work, Karampidis et al. [11, 12] examine a three-stage methodology for AFTI, us-
ing feature selection (Byte Frequency Distribution) and genetic algorithm. They have
tested with classification models including decision tree, SVM, neural networks, lo-
gistic regression and kNN. Their methodology showed that artificial neural networks
performed with exceptional accuracy in most cases.

2.2 Content-based File Type Identification

Content-based file type detection methods have proved to be more robust and accurate
so far. They are built on the principle of extracting features from the files. Initial work
on content-based file type identification [16, 15] was based on three algorithms: byte
frequency analysis, byte frequency cross-correlation and File header/trailer analysis.
Li et al.[14] have provided improvements to these algorithms by generating file prints
(file signatures) using the K-means algorithm with Manhattan distance metric. They
produced file prints with the help of the statistical features extracted and selected. The
file prints are also called as ‘centroid’ in literature. An unknown file is tested against
a set of known centroids. The distance between the centroids is compared to predict
the possible file type. The Mahalanobis distance metric is deployed for the comparison.
The file prints (centroids) are developed using Natural Language Processing (NLP)
techniques such as pattern matching of n-gram contiguous sequence models. While
their work is pioneering for its kind, their approach restricts the input file to follow a
specific style only. They also fail to differentiate files when the target file types have
almost similar structures, for example, Java and C programming source codes. We need
to generate file features and classification models in such a way that they describe file
types distinctly.

Other improvements in this area include neural networks [7] and Byte Frequency
Distribution (BFD) to classify file types [13, 25]. Amirani et al. [4] proposed a content-
based file type detection method for files normalised using BFD. Their model uses
principal component analysis for feature selection. The model is then fed into an auto-
associative unsupervised neural network. Mitlohner et al. [17] published a comprehen-
sive study of characteristics of open data CSV files. Their work analyzes an open data
corpus containing resources from a data consumer perspective. This study provided a
deep insight to feature engineering CSV file type.

Predicting the file type from the contents of text files complicates the problem of
AFTI. Though several approaches are available, they are highly domain-specific. Hence
we could not use them for the identification of all file types from their contents. We need
to research generic methods to fill this gap based on existing approaches.

3 Methodology

From the existing literature, there are mainly two approaches to work with file type
identification that can be adopted to text files. The first approach is to treat the text
file as a plain text file (no prior knowledge about the file type) and search for specific
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characteristics for possible file types. The signature of the file type is a combination of
characteristics of that type. This is a generic method and can be extended to any number
of file types. However, this approach needs a thorough knowledge of each file type to
generate its characteristic features. The second approach is based on prior knowledge
about a file. For example, if we predict a file belongs to a programming language, we
could validate the file type by running its compiler(s), or searching for specific text
patterns corresponding to the programming language. Though the second approach is
implementable, it is not scalable with the increase in the number of file types. TNA
deals with a huge variety of file types for digital preservation. A flexible methodology
reflecting the first approach suits well for this situation. The methodology should imple-
ment an iterative process model to include file features gradually as more file types are
included. As and when a new file type is to be included, its features (specific character-
istics) should be compared against the existing features of other existing file types and
engineered to add to the list. The flow graph in Fig. 2 depicts the pipeline of activities.

File corpus
Feature extraction Feature engineering Develop a classifierExternal resources

Test Hyper parameter modification
Fig. 2. Methodology to include file types progressively

a) The File Corpus is the set of files that serve as the dataset to the identification task.
b) External resources comprise of various external tools used for data cleaning and

pre-processing. For example, our internal tool ‘DROID’ is used to eliminate known
file types as a first step in case, the file types are specified.

c) Feature Extraction is the process of extracting Characteristic features that deter-
mine the style and nature of the file type.

d) Feature Engineering is the process of using domain knowledge of the data to cre-
ate features that make machine learning algorithms work. It helps to fine tune the
machine learning models by reducing the computational processing overhead.

e) Classifier Development and Test Machine learning (ML) is chosen to develop a
classifier. ML algorithms are used to understand and extract the patterns from the
data and help to predict the outcome.

4 Data Pre-processing

As a representative collection of the type of text format material that TNA would re-
ceive, this study cloned files from publicly available Github repositories of the Govern-
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ment Digital Service8 (GDS) and TNA9. In all, we cloned 1457 public repositories from
these two sources. They contain over 410,000 files representing 928 file types that can
be opened with a simple text editor program as a testbed. However, it is an extensive
task to develop a single classifier model that classifies all 928 file types. So we have
grouped files into 14 categories to understand the priority file types to start our exper-
imentation. With the help of DROID reports, five file types are shortlisted including
programming source files such as Python, Java and data files types: .txt, .tsv and .csv.

4.1 Feature Extraction

The data consists of unstructured text files. So the first phase was to recognise features
that describe Python and Java source codes and .txt, .csv and .tsv files correctly. We
have identified a total of 45 features that are suitable across five file types. Automated
scripts are developed to make the feature extraction uniform across files.

4.2 Feature Engineering

Unlike the common machine learning problems, the text file format identification presents
a non-linear learning problem. By non-linear learning we mean, the file features do not
represent a direct correlation between different file types. For example, a very high cor-
relation between the Java and Python programming file structures make it difficult for
file type classification task. An approach using regression analysis might not find a dif-
ference between these two types. Similarly, .csv and .tsv files share some of their file
features. Many times a comma separated file (.csv) may contain unformatted textual
lines, leaving very little to differentiate between .txt and .csv file formats. Hence fea-
ture engineering should be a combined effort for a domain expert and machine learning
researcher. For example,

– a Python source code file differs from a Java file by its commenting style, strict
indentation requirement at the beginning of each line of the code, the use of specific
keywords etc. Whereas, the Java source code needs to follow a pre-defined structure
to be able to compile successfully (such as, every line in the Java needs to end with
a ’;’ (semi-colon), Python does not need any specific line encoding).

– even though .csv and .tsv files are largely categorised as text-based, they can be
recognised by their use of the number of commas (or other delimiters). A compar-
ison of the delimiters could become a deciding factor in file identification.

– in general, a .txt file has no rules for its layout compared to .csv or .py. It is difficult
to extract a pattern from a normal .txt file. Hence the count of common words in
normal English can be a good characteristic of text files10.

– another significant characteristic is the ‘word-combination’ proximity. For exam-
ple, the combinations of words such as < def-return >, < if-then-else > etc. are
likely to appear in closer proximity in the programming codes than in a .txt file. So,
we derived a threshold for the word-combination word sets.

8 https://github.com/alphagov
9 https://github.com/nationalarchives

10 We assume the usage of common words is more in normal text files than in programming or
data files
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After feature engineering, 33 features were selected for classification. Features ex-
tracted and used for classification are listed in the Appendix.

5 Classification Models & Evaluation

There are four prominent types of classification algorithms. They are (i) Linear models,
(ii) Tree-based algorithms, (iii) k-nearest algorithms and (iv) Neural network based.
Since our problem has discrete outputs and non-linear inputs, the linear models are
omitted. All models were trained and hyperparameters were tuned to improve the accu-
racy over many iterations11.

A Decision tree [22] is a flowchart-like tree structure where an internal node repre-
sents a feature. The branch represents a decision rule, and each leaf node represents the
outcome. Each parent node learns to partition the data based on the attribute value. It
partitions the tree recursively until all the data in the partition belongs to a single class.

The k-Nearest Neighbour classifier [22] (kNN) is based on feature similarity that
determines how we classify a given data point. The output is a class membership (pre-
dicts a class — a discrete value). An object is classified by a majority vote of its neigh-
bours, with the object being assigned to the class most common among its k-nearest
neighbours.

A Multilayer perceptron (MLP) is a deep, artificial neural network, composed of
more than one perceptron [20, 9]. MLPs train on a set of input-output pairs and learn to
model the correlation between those inputs and outputs. Training involves adjusting the
parameters, or the weights and biases, of the model, in order to minimize error.

The MLP model designed for our classification is a 3-layer fully connected neural
network shown in Fig. 3 with 33 nodes in the input layer, 12 nodes each in the hidden
layers and 5 nodes (one for each of the output classes) in the output layer. The number
of nodes in each of the layers was decided on a trial and error basis. The parameters set
for the MLP is given in Table 1.

The evaluation of above models is in Table 2. The train-to-test ratio is set ideally as
80:20 to achieve better accuracy. Though the accuracy of classification is very high, we
consider the precision metric more significant, given the non-uniform distribution of file
types in the file corpus. For the kNN classification, the ‘minkowski’ distance metric12

is used to establish the distance between classes. The value for ‘K’ is set to 3.

6 Conclusion & Scope

TNA initiated the project, ‘Text File Format Identification’ to identify file formats of
text files. The prototype developed has achieved good accuracy and precision, proving
that this approach can be successful for identifying text file formats. Python and Java
programming code file types were classified with higher accuracy compared to .tsv and
.csv files. This is probably due to the inherent structure of programming files, which

11 The Jupyter notebooks developed as a proof of concept are available here-
https://github.com/nationalarchives/Text-File-Format-Identification

12 https://www.sciencedirect.com/topics/computer-science/minkowski-distance
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Fig. 3. Multilayer perceptron neural network used for classification

Table 1. MLP parameters

Parameter Value
Activation relu
(input to hidden layer)
Activation relu
(hidden-hidden layers)
Activation softmax
(hidden to output)
optimizer adam
loss type categorical

crossentropy
metrics accuracy
# epochs 30
batch size 20

Table 2. Performance of classification models

Classification model Accuracy Precision
Decision tree 92.58% 86%

kNN 83.4% 80%
MLP 90.28% 88%

is able to be captured better than .csv/.tsv. The decision tree classifier performed better
than the other two models. In future we would like to focus on revising the dominant
feature identification for .csv and .tsv file types. Also, it was assumed that each .csv
file contained only one table. However, it is possible that multiple tables exist within
a single .csv file. This issue could be investigated. Even though the current prototype
works well for the five file types, a revision of feature engineering will be necessary
whenever a new file type is included.
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A Features generated from files

Table 3: Features extracted and Used

Feature Description
file name Name of the file along with its complete path
file extension File extension if available
num lines Number of lines in the file separated by newline character
header info File header information if available
trailer info Trailer information, if available
indentation Number of spaces used for indentation (specific to Python)
eol marker End-of-line markers, if any (specific to Java)
sol marker Start-of-line markers, if any
isLowercaseMethods Whether methods/functions start with lower case alphabets
num stopwords Number of stop words used (specific to text files)
num Python keywords Number of Python key words within the file
num Java keywords Number of Java key words used in the file
Python comments Number of Python style of comments
Java comments Number of Java style of comments
angular brackets Number of angular brackets used
curly brackets Number of curly brackets used
round brackets Number of round brackets used
square brackets Number of square brackets used
num def Number of ’def’ used (specific to Python
num returns Number of times the key word ’return’ used
if else proximity Number of words between if and else (specific to programming codes)
num carat Number of times the carat symbol used (specific to csv and tsv)
num comma Number of times the comma symbol used (specific to csv and tsv)
num fullstop Number of times the fullstop symbol used (specific to csv and tsv)
num tab Number of times the tab used (specific to csv and tsv)
num semicolon Number of times the semi colon symbol used (specific to csv and tsv)
num colon Number of times the colon symbol used (specific to csv and tsv)
num pipe Number of times the pipe symbol used (specific to csv and tsv)
num hash Number of times the hash symbol used (specific to csv and tsv)
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Table 3: Features extracted and Used

Feature Description
average line length Average length of a line (in characters)
description File description in short, if available
programming Whether the file is a programming code, if known
stopwords normalised Normalised stop words across Java and Python
file type File Type information


