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Abstract: Orthogonal moments play an important role in image
analysis due to their ability to represent images with minimum
amount of information redundancy and high level of noise
robustness. Recently, several fractional-order orthogonal
moments have been proposed. But functions used for the
construction of these moments are restricted to fractional-
order polynomials. In this paper, orthogonal moments are
further generalized to generalized orthogonal moments (GOMs).
A general framework is proposed for the construction of
functions used in GOMs. Orthogonal polynomials used in
traditional orthogonal moments and fractional-order
polynomials used in fractional-order orthogonal moments are
all special cases of the proposed framework. Properties of the
proposed GOMs have been proven. New set of orthogonal
moments have also been constructed by choosing several
particular functions. Experimental results show the superiority
of these moments.

Keywords ： fractional-order orthogonal moment; generalized
orthogonal moment (GOM); image reconstruction; rotation
invariance; robustness to noise.

I. INTRODUCTION
As the global invariant descriptors, moment have been

widely studied[1,2,3,4] and effectively applied in various
fields, such as pattern recognition[5], image
reconstruction[6], edge detection[7] and water marking[8],
etc. They can be roughly divided into non-orthogonal
moments and orthogonal moments. Non-orthogonal
moments are usually invariant to scaling, rotation and
translation, but they are highly sensitive to noise and with
information redundancy. Furthermore, the image can hardly
be reconstructed from non-orthogonal moments. In contrast,
orthogonal moments have been shown to be more robust to
noise and are of little information redundancy.
Consequently, image can be easily reconstructed by
orthogonal moments.
During the latest years, the study of orthogonal moments

with fractional-order have received much attention. In terms
of fractional-order shifted Legendre polynomials and
fractional-order radial shifted Legendre polynomials, Xiao
et.al [9] define two types of fractional-order orthogonal
moments in Cartesian coordinate and polar coordinate
respectively. Using the so-called fractional-order Fourier-
Mellin polynomials, Zhang et.al[10] propose fractional-
order orthogonal Fourier-Mellin moments. Benouini et.al

[11] introduce a new type of fractional-order orthogonal
moments, called Fractional-order Chebyshev moments.
Recently, Chen et.al [12] extend the Zernike moments to the
quaternion and fractional-order framework for the features
extraction of color image. However, all of these
constructions are based on the generalization of integer-
order polynomials to real-order polynomials. In fact, these
constructions can be further generalized.
In this paper, generalized orthogonal moments (GOMs)

are proposed. It sets up a general framework for the
construction of orthogonal moments. Radial basis functions
other than integer-order polynomials and fractional-order
polynomials can be employed to construct orthogonal
moments. We take the construction of the generalized
Legendre moments (GLMs) as an example. Orthogonality
and rotation invariance of these moments have been proven.
Several functions are employed to construct new set of
orthogonal moments. Several experiments have been
conducted to show the performance of these constructed
moments.
Section 2 provides the framework of GOMs and some

properties of GOMs are also presented. Section 3 describes
some details for the generalized Legendre moments.
Experimental results are given in Section 4. Finally,
concluding remarks are listed in Section 5.

II. GENERALIZED ORTHOGONAL MOMENT

A. Orthogonal moment
Orthogonal polynomials can be expressed as follows:
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where n is a non-negative integer, inc , denotes the
coefficient of each monomial.
Let ),( yxf and ),( rf denote the image in Cartesian

coordinate and polar coordinate respectively. The )mn （ -
order orthogonal moment are defined as follows:
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Here, )(),( rPxP nn both satisfy the following conditions:
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B. Generalized orthogonal moment
Choose function )(xh such that its domain and range are

both in  10， . Then, the traditional polynomial nP can be
generalized to the following generalized polynomials:
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Here, )(' xh is the derivative function of )(xh .

Definition 1
As for non-negative integers mn, ,
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P
nm

C
nm GZGZ , are called the )( mn -order generalized

orthogonal moments (GOMs) of the image in Cartesian and
polar coordinates, respectively.
Remark:
1) Fractional-order orthogonal moments are only special
cases of GOMs.
If we choose )0(,)(  xxh , it follows that:

)2/)2((

0
,

^

)2/)1((

0
,

_

)(

,)(

























i
n

i
inn

i
n

i
inn

rcrPG

xcxPG
(6)

Fractional-order orthogonal polynomials in Eq.(6) are
employed to define the fractional-order orthogonal moment
defined in [9].
2) GOMs defined by Eq.(5) are generalized orthogonal
moments.
In fact, we can take )(xh as more general functions, such

as 2)]
2

[sin()(),
2

sin()(   xxhxxh  , etc.

Above all, GOMs defined in this paper is a further
generalization of the fractional-order orthogonal moment
defined in [9].

C. Properties of GOMs
1) Orthogonality
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Similarly, it can be shown that nmmn krdrrPGrPG 2
1

0
)(ˆ)(ˆ 

holds.
Therefore, the image can be reconstructed by using

)(),(
^_

rPGxPG mn defined above:
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2) Rotation invariance
Module of P

nmGZ is rotation invariant.
Proof:
Suppose that ),(~ rf is the image rotated by ),( rf with
an angle  : ),(),(~   rfrf . Let  

~ , it follows

that  dd 
~,~ . Then GOMs of ),(~ rf satisfy the

following relation:
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Hence, P
nm

P
nm GZZG 

~
. In other words, GOMs P

nmGZ are
rotation invariants.

III. GENERALIZED LEGENDRE MOMENT

A. GLM
)(xPn defined in Eq.(1) can be any polynomial that

satisfies the orthogonal condition. We take the classical
Legendre moment [13] as an example:
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According to Eq.(4), we can define GLM as follows:
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It follows from Eq.(8) that )(ˆ),( rLGxLG nn satisfy the
following condition:
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Definition 2
For )(xLG n and )(ˆ rLG n , C

nmGLM and P
nmGLM are defined

as follows:
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P
nm

C
nm GLMGLM ， are called the )( mn  -order generalized

Legendre moments (GLMs) of the image in Cartesian and
polar coordinates, respectively.
It is obvious that P

nmGLM is rotation invariant. In
addition, the images ),(),( rfyxf ， can be reconstructed
based on GLMs:
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B. Recursive scheme for fast computation

According to Eq. (12), )(xLG n and )(ˆ rLG n satisfy the
following recurrence relation [14]:
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For 1,0n , it follows from Eq.(16) that:
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The above relation helps us reduce the computation of GLM.

C. Zeros of the generalized Legendre polynomials
It is shown in [15] that the effect of image reconstruction

is determined by the number of zeros associated with the

polynomials. We take )(xLG n as an example, the
reconstruction performance of the image becomes better as
the number of zeros of )(xLG n is greater.
Fig.1 shows images of )(xLG n when 10,,2,1 n with
different )(xh . For )0(,)(  xxh , we get the fractional-
order orthogonal moment. It is obvious that )(xLG n has n
zeros.

As for GOMs, if we choose )
2

sin()( 2xxh 
 or

2)]
2

[sin()( xxh 
 , )(xLG n has 2n zeros.

Fig.1 )(xLG n with different )(xh

IV. EXPERIMENTS RESULTS

The purpose of the following experiments is to test the
reconstitution performance, rotation invariance and
robustness to noise of GOMs. Take GLM as an example.
The test objectives are 30 Chinese character in Fig.2(a) and
Coil-20 images in Fig.2(b). These images are of size

128128 .
The following functions are employed in the construction

of GOMs

)5.115.0()( ，， xxh ， )
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If 1 , GLMs constructed by xxh )( is the
traditional orthogonal moment. As for 5.15.0 ， , GLMs
is the fractional-order orthogonal moment. The latter three
cases are the GOMs used in this paper.



(a) 30 Chinese characters

(b) Coil-20 image database

Fig.2 Test objectives

A. Image reconstruction
The following mean square error (MSE) is employed to

measure the effect of the reconstruction with the GLMs in
Cartesian coordinate system.

 







x y
yxf

yxfyxf

MSE 2),(

x y

2),(-),(
(18)

Here, ),( yxf denotes the original image, ),( yxf denotes
the reconstructed image. Fig.3 shows the test result of the
first image in Coil-20 database by using C

nmGLM to
reconstruct image and taking values of

20,15,10,5maxmax  mn , respectively.

According to Fig.3, it is observed that the reconstruction
error of GLMs is lower than those of the traditional and
fractional-order orthogonal moment when

22 )]
2

[sin()
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、、 . In particular, the

reconstruction performance of 2)]
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[sin()( xxh 
 is the best.

Further, we use C
nmGLM to reconstruct image by adopting

images in Fig.2(a), Fig.2(b) as test objectives and taking
20,,11,10maxmax  mn . The test results of average MSE

for Fig.2(a) and Fig.2(b) are presented in Fig.4 respectively.
According to Fig.4, it can be observed that the average

reconstruction error is the lowest for 2)]
2

[sin()( xxh 
 while

it is the biggest for 5.0)( xxh  .
We conclude that the reconstruction performance of

GOM is better than that of the traditional and fractional-
order orthogonal moment by choosing appropriate )(xh .

Fig.3 Image reconstruction using GLMs

(a) (b)
Fig.4 Average reconstruction errors of 30 Chinese
characters in Fig.2(a) and Coil-20 images in Fig.2(b) with
different )(xh : (a)Results for Fig.2(a) , (b)Results for
Fig.2(b).

B. Rotation invariance
Recognition rate is defined as follows :

t

r

N
n

 (19)

where rn is the number of correctly classified images and

tN is the total number of test images. It is employed to test
the rotation invariance in polar coordinate system.
Each image in Fig.2(a) and Fig.2(b) is rotated by angles

of  35515  with 20 increments. Consequently, 18 test
images are obtained for every image in Fig.2(a) and Fig.2(b).
Set 2maxmax  mn , consequently, nine P

nmGLM are used
as invariant features. The test results show that the
recognition rates are all 100% when taking different )(xh
above by using minimum distance method for classification
with regard to 30 binary images. Results for grayscale
images in Fig.2(b) are similar in Fig.2(a). Thus, GLMs in
polar coordinate system are rotation invariant.



C. Robustness to noise
In practice, images are usually degraded by noise. We

rotate images in Fig.2(a), Fig.2(b) and further add different
density Salt & Pepper noise and Gaussian noise to the
rotated images.
1) Robustness to Salt & Pepper noise
The images in Fig.2(a) are rotated as aforementioned, and

then the rotated images are added by Salt & Pepper noise
with density of 0.015， 0.030， 0.045， 0.060 and 0.075
respectively. The recognition rates for these tested images
are shown in Fig.5(a). It is observed that the robustness to

noise of GLMs is the best for 2)]
2

[sin()( xxh 
 .

Further, the images in Fig.2(b) are rotated, and then the
rotated images are also added by Salt & Pepper noise with
density of 0.05 ， 0.10 ， 0.15 ， 0.20 and 0.25
respectively.The recognition rates for these tested images
are presented in Fig.5(b). Similarly, the robustness to noise

is also the best for 2)]
2

[sin()( xxh 
 .

(a) (b)
Fig.5 Recognition rates of different )(xh for images in
Fig.2(a) and Fig.2(b) under Salt & Pepper noise: (a) Fig.2(a)
(b) Fig.2(b)
Hence, the robustness to Salt & Pepper noise of GLMs is

better than that of the traditional and fractional-order
orthogonal moment when we choose appropriate )(xh .
2) Robustness to Gaussian noise
Images in Fig.2(b) are rotated as aforementioned, and

then the rotated images are added by Gaussian noise with
density of 0.02, 0.04, 0.06, 0.08 and 0.10 respectively. The
recognition rates for these tested images are shown in Fig.6.
It is observed that the robustness of GLMs to Gaussian

noise is outstanding when we choose 2)]
2

[sin()( xxh 
 .

In conclusion, the robustness to Salt & Pepper noise and
to Gaussian noise for GLMs defined in this paper are better
than those for the traditional moments and fractional-order
orthogonal moments.

V. CONCLUSION
Orthogonal moments offer the ability to recover the

image due to their orthogonality, and are of high level noise
robustness. Consequently, various orthogonal moments
have been introduced. In recent years, considerable attention

has been given to fractional-order orthogonal moments.
However, the theoretical framework to the construction of
fractional-order orthogonal moments can be further
generalized.

Fig.6 Recognition rate of different )(xh for images in
Fig.2(b) under Gaussian noise
In this paper, a general framework is set up to construct

orthogonal moments, and GOMs are proposed. As an
example, the GLMs are constructed with the proposed
method. Orthogonality and rotation invariance of these
moments are proven. Several functions have been employed
to construct new set of orthogonal moments. Results show
that these moments have potential for image reconstruction
and are more robust to noise.
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