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ABSTRACT 

The case of certain pensions funds that are not auto financed, and are systematically 

maintained with an outside financing effort, is considered in this work. As a representation 

of the unrestricted reserves value process of this kind of funds, a time homogeneous diffusion 

process with finite expected time to ruin is proposed. Then it is admitted a financial tool that 

regenerates the diffusion at some level with positive value, every time the diffusion hits a 

barrier at the origin. So, the financing effort can be modeled as a renewal-reward process if 

the regeneration level is kept constant. The evaluation of the perpetual maintenance cost 

expected values and of the finite time maintenance cost are studied. Also, we present an 

application of this approach when the unrestricted reserves value process behaves as a 

generalized Brownian motion process. 

 

Keywords: Pensions fund, diffusion process, first passage times, perpetuity, renewal 

equation.    

 

1. INTRODUCTION 

  Along this paper, we intend to deal with the protection cost present value 

expectation for a non-autonomous pensions fund. Two problems are considered in this 

context:  

-One concerning the case of the above-mentioned expectation when the protection 

effort is perpetual, 

-Other concerning the case of the protection effort for a finite time. 

It is admitted that the unrestricted fund reserves behavior may be modeled as a time 

homogeneous diffusion process and use then a regeneration scheme of the diffusion to 

include the effect of an external financing effort. 

A similar work is (1), where is considered a Brownian motion process conditioned 

by a particular reflection scheme. Less constrained, but in different conditions, exact 

solutions were then obtained for both problems. 
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 The work presented in (2), on asset-liability management aspects, motivated the use 

of an application of the Brownian motion example in that domain. 

Part of this work was presented at the Fifth International Congress on Insurance: 

Mathematics & Economics, (3). Other works on this subject are (4, 5).  

2. PENSIONS FUND RESERVES BEHAVIOUR REPRESENTATION 

  Be 𝑋(𝑡), 𝑡 ≥ 0 the reserves value process of a pensions fund given by an initial 

reserve amount 𝑎, 𝑎 > 0, added to the difference between the total amount of contributions 

received up to time t and the total amount of pensions paid up to time t. It is assumed 

that 𝑋(𝑡)  is a time homogeneous diffusion process, with 𝑋(0) = 𝑎, defined by drift and 

diffusion coefficients: 

lim
ℎ→0

1

ℎ
𝐸[𝑋(𝑡 + ℎ) − 𝑋(𝑡)|𝑋(𝑡) = 𝑥] = 𝜇(𝑥).

lim
ℎ→0

1

ℎ
𝐸 [(𝑋(𝑡 + ℎ) − 𝑋(𝑡))

2
|𝑋(𝑡) = 𝑥] = 𝜎2(𝑥).

 

   Call 𝑆𝑎 the first passage time of 𝑋(𝑡) by 0, coming from a. The funds to be 

considered in this work are non-autonomous funds. So 

𝐸[𝑆𝑎] < ∞, for any 𝑎 > 0       (2.1), 

that is: funds where the pensions paid consume in finite expected time any initial positive 

reserve and the contributions received, so that other financing resources are needed in order 

that the fund survives. 

                 The condition (2.1) may be fulfilled for a specific diffusion process using criteria 

based on the drift and diffusion coefficients. Here the work presented in (6), pg. 418-422, is 

followed in this context. Begin accepting that 𝑃(𝑆𝑎 < ∞) = 1 if the diffusion scale 

function 

𝑞(𝑥) = ∫ 𝑒
− ∫

2𝜇(𝑦)

𝜎2(𝑦)
𝑑𝑦

𝑧
𝑥0 𝑑𝑧,

𝑥

𝑥0

 

where 𝑥0 is a diffusion state space fixed arbitrary point, fulfilling 𝑞(∞) = ∞. Then the 

condition (2.1) is equivalent to 𝑝(∞) < ∞, where 

𝑝(𝑥) = ∫
2

𝜎2(𝑧)
𝑒

∫
2𝜇(𝑦)

𝜎2(𝑦)
𝑑𝑦

𝑧
𝑥0 𝑑𝑧,

𝑥

𝑥0

 

is the diffusion speed function. 



                 It is admitted, whenever the exhaustion of the reserves happens, that an external 

source places instantaneously an amount 𝜃, 𝜃 > 0 of money in the fund, so that it may go 

on effective. 

                 The reserves value process conditioned by this financing scheme is represented 

by the modification �̌�(𝑡) of  𝑋(𝑡) that restarts at the level 𝜃 whenever it hits 0. Note that 

since 𝑋(𝑡) was defined as a time homogeneous diffusion, �̌�(𝑡) is a regenerative process. 

Call 𝑇1, 𝑇2, 𝑇3, … the sequence of random variables where 𝑇𝑛 denotes the 𝑛𝑡ℎ  �̌�(𝑡) passage 

time by 0. It is obvious that the sequence of time intervals between these hitting times 𝐷1 =

𝑇1, 𝐷2 = 𝑇2 − 𝑇1, 𝐷3 = 𝑇3 − 𝑇2, … is a sequence of independent random variables where 𝐷1 

has the same probability distribution as 𝑆𝑎 and 𝐷2, 𝐷3, … the same probability distribution 

as 𝑆𝜃. 

 

3. FIRST PASSAGE TIMES LAPLACE TRANSFORMS 

  Call 𝑓𝑎(𝑠) the probability density function of 𝑆𝑎(𝐷1). The corresponding 

probability distribution function is denoted by 𝐹𝑎(𝑠). The Laplace transform of 𝑆𝑎 is 

𝜑𝑎(𝜆) = 𝐸[𝑒−𝜆𝑆𝑎] = ∫ 𝑒−𝜆𝑠
∞

0

𝑓𝑎(𝑠)𝑑𝑠, 𝜆 > 0. 

Consequently, the density, distribution and transform of 𝑆𝜃 (𝐷2, 𝐷3, … ) will be denoted by 

𝑓𝜃(𝑠), 𝐹𝜃(𝑠) and 𝜑𝜃(𝜆), respectively. 

                The transform 𝜑𝑎(𝜆) satisfies the second order differential equation 

1

2
𝜎2(𝑎)𝑢𝜆

´´(𝑎) + 𝜇(𝑎)𝑢𝜆
´ (𝑎) = 𝜆𝑢𝜆(a), 𝑢𝜆(𝑎) = 𝜑𝑎(𝜆), 𝑢𝜆(0)=1, 𝑢𝜆(∞) = 0      (3.1), 

see (7), pg. 478, (8) pg. 243 and (9), pg. 89. 

4. PERPETUAL MAINTENANCE COST PRESENT VALUE 

  Consider the perpetual maintenance cost present value of the pensions fund that is 

given by the random variable 

                           𝑉(𝑟, 𝑎, 𝜃) = ∑ 𝜃𝑒−𝑟𝑇𝑛∞
𝑛=1 , r>0, 

where r represents the appropriate discount rate. Note that 𝑉(𝑟, 𝑎, 𝜃) is a random 

perpetuity. What matters is its expected value which is easy to get using Laplace 

transforms. Since the 𝑇𝑛 Laplace transform is 𝐸[𝑒−𝜆𝑇𝑛] = 𝜑𝑎(𝜆)𝜑𝜃
𝑛−1(𝜆), 

                               𝑣𝑟(𝑎, 𝜃) = 𝐸[𝑉(𝑟, 𝑎, 𝜃)] =
𝜃𝜑𝑎(𝑟)

1−𝜑𝜃(𝑟)
        (4.1).  



                 It is relevant to note that 

lim
𝜃⟶0

𝑣𝑟(𝑎, 𝜃) =
𝑢𝑟(𝑎)

−𝑢𝑟
´ (0)

           (4.2). 

 

5. FINITE TIME PERIOD MAINTENANCE COST PRESENT VALUE 

  Define the renewal process 𝑁(𝑡) , generated by the extended sequence 𝑇0 =

0, 𝑇1, 𝑇2, …,  by 𝑁(𝑡) = sup{𝑛: 𝑇𝑛 ≤ 𝑡}. The present value of the pensions fund 

maintenance cost up to time t is represented by the stochastic process 

𝑊(𝑡; 𝑟, 𝑎, 𝜃) = ∑ 𝜃𝑒−𝑟𝑇𝑛 , 𝑊(𝑡; 𝑟, 𝑎, 𝜃) = 0 𝑖𝑓 
𝑁(𝑡)
𝑛=1  𝑁(𝑡) = 0. 

The important now is the expected value function of the process evaluation: 

𝑤𝑟(𝑡; 𝑎, 𝜃) = 𝐸[𝑊(𝑡; 𝑟, 𝑎, 𝜃)]. Begin noting that it may be expressed as a numerical series. 

In fact, evaluating the expected value function conditioned by 𝑁(𝑡) = 𝑛, it is obtained 

 

𝐸[𝑊(𝑡; 𝑟, 𝑎, 𝜃)|𝑁(𝑡) = 𝑛] = 𝜃𝜑𝑎(𝑟)
1 − 𝜑𝜃

𝑛(𝑟)

1 − 𝜑𝜃(𝑟)
. 

Repeating the expectation: 

𝑤𝑟(𝑡; 𝑎, 𝜃) = 𝐸[𝐸[𝑊(𝑡; 𝑟, 𝑎, 𝜃)]|𝑁(𝑡)] = 𝜃𝜑𝑎(𝑟)
1−𝛾(𝑡,𝜑𝜃(𝑟))

1−𝜑𝜃(𝑟)
     (5.1), 

where 𝛾(𝑡, 𝜉) is the probability generating function of 𝑁(𝑡). 

             Denote now the 𝑇𝑛 probability distribution function by 𝐺𝑛(𝑠) and assume 𝐺0(𝑠) =

1, for 𝑠 ≥ 0. Recalling that 𝑃(𝑁(𝑡) = 𝑛) = 𝐺𝑛(𝑡) − 𝐺𝑛+1(𝑡), the above-mentioned 

probability generating function is 

        𝛾(𝑡, 𝜉) = ∑ 𝜉𝑛∞
𝑛=0  𝑃(𝑁(𝑡) = 𝑛) = 1 − (1 − 𝜉) ∑ 𝜉𝑛−1∞

𝑛=1 𝐺𝑛(𝑡)      (5.2). 

Substituting (5.2) in (5.1), 𝑤𝑟(𝑡; 𝑎, 𝜃) is expressed in the form of the series 

𝑤𝑟(𝑡; 𝑎, 𝜃) = 𝜃𝜑𝑎(𝑟) ∑ 𝜑𝜃
𝑛−1(𝑟)

∞

𝑛=1

𝐺𝑛(𝑡)                  (5.3). 

               Then, using (5.3), we will show that 𝑤𝑟(𝑡; 𝑎, 𝜃) satisfies a renewal type integral 

equation. 



                 Write for the 𝑤𝑟(𝑡; 𝑎, 𝜃) ordinary Laplace transform 𝜓(𝜆) =

∫ 𝑒−𝜆𝑠𝑤𝑟(𝑠; 𝑎, 𝜃)𝑑𝑠
∞

0
. Recalling that the probability distribution function 

𝐺𝑛(𝑠) of 𝑇𝑛 ordinary Laplace transform is given by ∫ 𝑒−𝜆𝑠𝐺𝑛(𝑠)𝑑𝑠 =
∞

0
𝜑𝑎(𝜆)

𝜑𝜃
𝑛−1(𝜆)

𝜆
 , and 

performing the Laplace transforms in both sides of (5.3), it is achieved 

𝜓(𝜆) =
𝜃𝜑𝑎(𝑟)𝜑𝑎(𝜆)

𝜆(1 − 𝜑𝜃(𝑟)𝜑𝜃(𝜆))
 

or 

𝜓(𝜆) = 𝜃𝜑𝑎(𝑟)
𝜑𝑎(𝜆)

𝜆
+ 𝜓(𝜆)𝜑𝜃(𝑟)𝜑𝜃(𝜆)         (5.4). 

Inverting the transforms in both sides of (5.4) the following defective renewal equation 

𝑤𝑟(𝑡; 𝑎, 𝜃) =  𝜃𝜑𝑎(𝑟)𝐹𝑎(𝑡) + ∫ 𝑤𝑟(𝑡 − 𝑠; 𝑎, 𝜃)𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠       (5.5)
𝑡

0

 

results. 

                Now an asymptotic approximation of 𝑤𝑟(𝑡; 𝑎, 𝜃) will be obtained through the key 

renewal theorem, following (7), pg. 376. 

                If in (5.5) 𝑡 → ∞ 

𝑤𝑟(∞; 𝑎, 𝜃) =  𝜃𝜑𝑎(𝑟) + 𝑤𝑟(∞; 𝑎, 𝜃)𝜑𝜃(𝑟)               (5.6) 

or 

                                   𝑤𝑟(∞; 𝑎, 𝜃) =
𝜃𝜑𝑎(𝑟)

1−𝜑𝜃(𝑟)
= 𝑣𝑟(𝑎, 𝜃). 

That is: the expression (4.1) for 𝑣𝑟(𝑎, 𝜃)is obtained again. Subtracting each side of (5.6) 

from each side of (5.5), and performing some elementary calculations the following, still 

defective, renewal equation 

𝐽(𝑡) = 𝑗(𝑡) + ∫ 𝐽(𝑡 − 𝑠)𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠       (5.7)
𝑡

0

 

where 𝐽(𝑡) = 𝑤𝑟(∞; 𝑎, 𝜃) −  𝑤𝑟(𝑡; 𝑎, 𝜃) and 𝑗(𝑡) =  𝜃𝜑𝑎(𝑟)(1 − 𝐹𝑎(𝑡)) +
𝜃𝜑𝑎(𝑟)𝜑𝜃(𝑟)

1−𝜑𝜃(𝑟)
(1 − 𝐹𝜃(𝑡)). 

                Now, to obtain a common renewal equation from (5.7), it must be admitted the 

existence of a value 𝑘 > 0 such that 



∫ 𝑒𝑘𝑠𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠 =
∞

0

𝜑𝜃(𝑟)𝜑𝜃(−𝑘) = 1. 

This imposes that the transform 𝜑𝜃(𝜆) is defined in a domain different from the one 

initially considered, that is a domain that includes a convenient subset of the negative real 

numbers. 

              Multiplying both sides of (5.7) by 𝑒𝑘𝑡 the common renewal equation desired is 

finally obtained:   

𝑒𝑘𝑡𝐽(𝑡) = 𝑒𝑘𝑡𝑗(𝑡) + ∫ 𝑒𝑘(𝑡−𝑠)𝐽(𝑡 − 𝑠)𝑒𝑘𝑠
𝑡

0

𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠 

 

from which, through the application of the key renewal theorem, it results 

lim
𝑡→∞

𝑒𝑘𝑡𝐽(𝑡) =
1

𝑘0
∫ 𝑒𝑘𝑠𝑗(𝑠)

∞

0

𝑑𝑠     (5.8) 

with 𝑘0 = ∫ 𝑠𝑒𝑘𝑠∞

0
𝜑𝜃(𝑟)𝑓𝜃(𝑠)𝑑𝑠 = 𝜑𝜃(𝑟)𝜑𝜃

´ (−𝑘), provided that 𝑒𝑘𝑡𝑗(𝑡) is directly 

Riemann integrable. The integral in (5.8) may expressed in terms of transforms as 

 

                             ∫ 𝑒𝑘𝑠𝑗(𝑠)
∞

0
𝑑𝑠 =

𝜃𝜑𝑎(𝑟)𝜑𝑎(−𝑘)

𝑘
  . 

 

Resuming this section: 

-An asymptotic approximation, in the sense of (5.8) was obtained: 

 

𝑤𝑟(𝑡; 𝑎, 𝜃) ≈ 𝑣𝑟(𝑎, 𝜃) − 𝑐𝑟(𝑎, 𝜃)𝑒−𝑘𝑟(𝜃)𝑡  (5.9) 

           

             where 𝑘𝑟(𝜃) is the positive value of k that satisfies 

𝜑𝜃(𝑟)𝜑𝜃(−𝑘) = 1               (5.10) 

              and 

                                     



 𝑐𝑟(𝑎, 𝜃) =
𝜃𝜑𝑎(𝑟)𝜑𝑎(−𝑘𝑟(𝜃))

−𝑘𝑟(𝜃)𝜑𝜃(𝑟)𝜑𝜃
´ (−𝑘𝑟(𝜃))

             (5.11). 

 

 

6. BROWNIAN MOTION EXAMPLE 

              Consider that the diffusion process 𝑋(𝑡) , underlying the reserves value behavior 

of the pensions fund, is a generalized Brownian motion process, with drift 𝜇(𝑥) = 𝜇, 𝜇 < 0 

and diffusion coefficient  𝜎2(𝑥) = 𝜎2, 𝜎 > 0. Observe that the setting satisfies the 

conditions that were assumed before to the former work, namely  𝜇 < 0  implies condition 

(2.1). Everything else remaining as previously stated, it will be proceeded to present the 

consequences of this particularization. In general, it will be added a  (∗)  to the notation 

used before because it is intended to use these specific results later.  

                To get the first passage time 𝑆𝑎 Laplace transform it must be solved, remember 

(3.1), 

       
1

2
𝜎2(𝑎)𝑢𝜆

∗´´(𝑎) + 𝜇(𝑎)𝑢𝜆
∗´(𝑎) = 𝜆𝑢𝜆

∗(𝑎), 𝑢𝜆
∗(𝑎) = 𝜑𝑎(𝜆), 𝑢𝜆

∗(0)=1, 𝑢𝜆
∗(∞) = 0 .      

This is a homogeneous second order differential equation with constant coefficients, which 

general solution is  

𝑢𝜆
∗(𝑎) = 𝛽1𝑒𝛼1𝑎 + 𝛽2𝑒𝛼2𝑎, 𝑤𝑖𝑡ℎ 𝛼1, 𝛼2 =

−𝜇 ± √𝜇2 + 2𝜆𝜎2

𝜎2
. 

Condition 𝑢𝜆
∗(∞) = 0 implies 𝛽1 = 0 and  𝑢𝜆

∗(0)=1 implies 𝛽2=1 so that the solution is 

achieved: 

𝑢𝜆
∗(𝑎) = 𝑒−𝐾𝜆𝑎 (= 𝜑𝑎

∗(𝜆)), 𝐾𝜆 =
𝜇 + √𝜇2 + 2𝜆𝜎2

𝜎2
       (6.1). 

                    In this case, the perpetual maintenance cost present value of the pensions fund 

is given by, following (4.1) and using (6.1),  

𝑣𝑟
∗(𝑎, 𝜃) =

𝜃𝑒−𝐾𝑟𝑎

1 − 𝑒−𝐾𝑟𝜃
        (6.2). 

Note that 𝑣𝑟
∗(𝑎, 𝜃) is a decreasing function of a and an increasing function of  𝜃. 

Proceeding as before, in particular 

                                               lim
𝜃⟶0

𝑣𝑟
∗(𝑎, 𝜃) =

𝑒−𝐾𝑟𝑎

𝐾𝑟
           (6.3). 



This expression has been obtained in (1), expression number (7), in a different context and 

using different methods but, obviously, with identical meaning. In (1) the authors worked 

then with a generalized Brownian motion, with no constraints in what concerns the drift 

coefficient, conditioned by a reflection scheme at the origin. 

                 To reach an expression for the finite time maintenance cost present value, start 

by the computation of 𝑘𝑟
∗(𝜃), solving (5.10). This means finding a positive k satisfying 

  𝑒−𝐾𝑟𝜃𝑒−𝐾−𝜆𝜃 = 1 or  𝐾𝑟 + 𝐾−𝜆 = 0.    This identity is verified for the value of k               

                      𝑘𝑟
∗(𝜃) =

𝜇2−(−2𝜇−√𝜇2+2𝑟𝜎2)
2

2𝜎2 , if 𝜇 < −√
2𝑟𝜎2

3
      (6.4). 

Note that the solution is independent of 𝜃 in these circumstances. A simplified solution, 

independent of a and  𝜃 , for 𝑐𝑟
∗(𝑎, 𝜃) was also obtained. Using (5.11) the result is  

𝑐𝑟
∗(𝑎, 𝜃) =

2𝜎2(−2𝜇 − √𝜇2 + 2𝑟𝜎2)

𝜇2 − (−2𝜇 − √𝜇2 + 2𝑟𝜎2)
2           (6.5). 

Combining these results as in (5.9) it is observable that the asymptotic approximation for 

this particularization reduces to 𝑤𝑟
∗(𝑡; 𝑎, 𝜃) ≈ 𝑣𝑟

∗(𝑎, 𝜃) − 𝜋𝑟(𝑡), where the function 𝜋𝑟(𝑡) 

is, considering (6.4) and (6.5), 

𝜋𝑟(𝑡) =
2𝜎2(−2𝜇 − √𝜇2 + 2𝑟𝜎2)

𝜇2 − (−2𝜇 − √𝜇2 + 2𝑟𝜎2)
2  𝑒

−
𝜇2−(−2𝜇−√𝜇2+2𝑟𝜎2)

2

2𝜎2 𝑡
, if 𝜇 < −√

2𝑟𝜎2

3
        (6.6). 

 

7. REPRESENTATION OF THE ASSETS AND LIABILITY BEHAVIOUR 

              It is proposed to consider now an application of the results obtained earlier to an 

asset-liability management scheme of a pensions fund. Assume that the assets value process 

of a pensions fund may be represented by the geometric Brownian motion process 

                       𝐴(𝑡) = 𝑏𝑒𝑎+(𝜌+𝜇)𝑡+𝜎𝐵(𝑡) with 𝜇 < 0 and 𝑎𝑏𝜌 + 𝜇𝜎 > 0, 

where 𝐵(𝑡) is a standard Brownian motion process. Suppose also that the liabilities value 

process of the fund performs as the deterministic process 𝐿(𝑡) = 𝑏𝑒𝜌𝑡. 

               Under these assumptions, consider now the stochastic process 𝑌(𝑡) obtained 

through the elementary transformation of  𝐴(𝑡)  



𝑌(𝑡) = 𝑙𝑛
𝐴(𝑡)

𝐿(𝑡)
= 𝑎 + 𝜇𝑡 + 𝜎𝐵(𝑡). 

This is a generalized Brownian motion process exactly as the one studied before, starting at 

a and with drift 𝜇 and diffusion coefficient 𝜎2. Note also that the firs passage time of the 

assets process 𝐴(𝑡)  by the mobile barrier 𝑇𝑛 , the liabilities process, is the first passage time 

of  𝑌(𝑡) by 0, with finite expected time under the condition, stated before, 𝜇 < 0. 

              Also consider the pensions fund management scheme that raises the assets value 

by some positive constant 𝜃𝑛, when the assets value falls equal to the liabilities process by 

the 𝑛𝑡ℎ time. This corresponds to consider the modification �̅�(𝑡) of the process 𝐴(𝑡) that 

restarts at times 𝑇𝑛 when 𝐴(𝑡) hits the barrier 𝐿(𝑡) by the 𝑛𝑡ℎ time at the level 𝐿(𝑇𝑛 ) + 𝜃𝑛. 

For purposes of later computations, it is a convenient choice the management policy where 

𝜃𝑛 = 𝐿(𝑇𝑛 )(𝑒𝜃 − 1), for some   𝜃 > 0    (7.1).     

The corresponding modification   �̃�(𝑡) of 𝑌(𝑡) will behave as a generalized Brownian 

motion process that restarts at the level 𝑙𝑛
𝐿(𝑇𝑛)+𝜃𝑛

𝐿(𝑇𝑛 )
= 𝜃 when it hits 0 (at times 𝑇𝑛 ). 

                  Proceeding this way, it is reproduced via  �̃�(𝑡) the situation observed before 

when the Brownian motion example was treated. The Laplace transform in (6.1) is still 

valid. 

                   Similarly, to former proceedings, the results for the present case will be 

distinguished with the symbol  (#) .  It is considered the pensions fund perpetual 

maintenance cost present value, because of the proposed asset-liability management 

scheme, given by the random variable: 

𝑉#(𝑟, 𝑎, 𝜃) = ∑ 𝜃𝑛𝑒−𝑟𝑇𝑛 

∞

𝑛=1

= ∑ 𝑏(𝑒𝜃 − 1)𝑒−(𝑟−𝜌)𝑇𝑛 , 𝑟 > 𝜌

∞

𝑛=1

 

where r represents the appropriate discount interest rate. To obtain the above expression it 

was only made use of the 𝐿(𝑡) definition and (7.1). It is possible to express the expected 

value of the above random variable with the help of (6.2) as 

𝑣𝑟
#(𝑎, 𝜃) =

𝑏(𝑒𝜃 − 1)

𝜃
𝑣𝑟−𝜌

∗ (𝑎, 𝜃) =
𝑏(𝑒𝜃 − 1)𝑒−𝐾𝑟−𝜌𝑎

1 − 𝑒−𝐾𝑟−𝜌𝜃
            (7.2). 

As 𝜃 → 0  

lim
𝜃→0 

𝑣𝑟
#(𝑎, 𝜃) =

𝑏𝑒−𝐾𝑟−𝜌𝑎

𝐾𝑟−𝜌
   (7.3), 



another expression explicit in (1). 

                    In a similar way, the maintenance cost up to time t in the above-mentioned 

management scheme, is the stochastic process 

      𝑊#(𝑡; 𝑟, 𝑎, 𝜃) = ∑ 𝑏(𝑒𝜃 − 1)𝑒−(𝑟−𝜌)𝑇𝑛 𝑁(𝑡)
𝑛=1 ,  𝑊#(𝑡; 𝑟, 𝑎, 𝜃) = 0 if 𝑁(𝑡) = 0, 

with expected value function 

𝑤𝑟
#(𝑡; 𝑎, 𝜃) =

𝑏(𝑒𝜃 − 1)

𝜃
𝑤𝑟−𝜌

∗ (𝑡; 𝑎, 𝜃)        (7.4). 

The results of section 6 with r replaced by 𝑟 − 𝜌 may be combined as in (7.4) to obtain an 

asymptotic approximation. 

    

8. CONCLUDING REMARKS 

             In the general diffusion setting, the main results are formulae (4.1) and (5.9). The 

whole work depends on the possibility of solving the equation (3.1) to obtain the Laplace 

transforms of the first passage times. Unfortunately, the solutions are known only for rare 

cases. An obvious case for which the solution of the equation is available is the one of the 

Brownian motion diffusion processes. The main results concerning this particularization are 

formulae (6.2) and (6.6). Certain transformations of the Brownian motion process that 

allowed us to make use of the available Laplace transform may be explored as it was done 

in section 7. Formulae (7.2) and (7.4) are this application most relevant results. 
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