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ABSTRACT

We present a novel Gate based symmetric cryptographic system in a 2D environment that incorporates
ray tracing on standard conics, such as; parabola, hyperbola, ellipse etc. as well as on generic first,
second and third degree polynomials in order to encrypt as well as decrypt information using a light
ray. In our scheme we also make use of discrete boolean logic gates in a pseudo-random manner on
the light ray at different parts of the 2D environment to make the cryptographic scheme even more
complex and secure.

Keywords Objects - Ray tracing - Cryptography - Gates

1 Introduction

We introduce a Gate based symmetric key Cryptographic scheme in a 2D environment (in cartesian coordinates)
consisting of multiple objects in the form of standard conics such as parabola, ellipses, hyperbola etc. as well as
generic first, second and third degree polynomials. At each step of the encryption process, the scheme is made secure
due to the interaction of the light ray with linear and non-linear equations in the form of the aforementioned objects,
involving reflection or refraction. The security is further enhanced due to the projection of the light ray after each of
these interactions into a new Non-optical gate box position in the 2D environment depending on the boolean Gate based
operation applied to the light ray prior to each of it’s projection.

Motivation In the past years, studies have been conducted in the area of Ray Tracing as well as Cryptography. We
introduce a novel technique here to combine both of these areas together in order to present the idea that ray tracing
involving discrete and non-linear transformations of the position and direction of the light ray in a 2D environment
can be used successfully as a symmetric key cryptographic scheme. Since this approach is newly introduced by us,
combining two vast areas of research in a very specific manner, we can arguably consider our cryptographic scheme to
be highly secure.

2 Related Work

Our work is inspired mainly from [Reif et al.|[1994] wherein the ray tracing problem takes a initial light ray at a certain
position and depending on the configurations of various objects in the 2D setup (optical system), it is determined
whether or not the final light ray exits at a fixed point, p. It has been concluded that out of the six different combinations
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of optical systems that have been illustrated in this paper, except for two of the simplest configurations, the ray tracing
problem is undecidable. [Han et al.|[1999]] worked on Optical image Encryption based on XOR operations. [Blansett
et al.[[2003]] discusses the Photonic Encryption using All Optical Logic. In this paper, cryptographic algorithms have
been examined in detail and the constraints of optical logic gate technology have been determined. In addition, novel
encryption approaches that utilize photonic properties (such as; dispersion, polarization, etc.) that could be modulated
by certain electrical devices have been explored. The illumination problem is discussed in Tokarsky|[|[1995] regarding
Polygonal rooms where they use right, acute and obtuse isosceles triangles mapped throughout the room to show that
not every point is illuminable from every other point within this closed space.

3 Overview

Figure[I] showcases a sample 2D setup with all our visual components as well as the part of the Encryption performed
due to subsequent reflection or refraction at the individual surfaces of these visual components. The part of our
Encryption scheme involving discrete boolean logic gates has also been shown here.
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Figure 1: Encryption steps of the Gate based Symmetric key Cryptographic scheme

4 Visual Elements

Our approach takes a ray of light starting at the boundary of the environmental setup, (x5, ys) and let’s it hit various
objects in the given 2D coordinate system. The objects that are placed in various parts of this given environment are
intersected, while keeping the incident and reflection angles equal in the respective cases if reflection is chosen. In the
case of refraction, the light ray bends at a certain angle at the boundary of these objects depending on the Snell’s law
and the refractive indices of the respective media. We are aware that the laws of reflection and refraction are different
for curved surfaces in comparison to plane surfaces but to maintain uniformity in the case of generic and standard
reflective as well as refractive surfaces, we use the techniques mentioned in the paragraph above, for reflection and
refraction respectively.

Throughout our work, we have made use of “objects’ in the form of standard and generic conics in 2D of degree one,
two and three respectively. A sample case of visual elements in our 2D environment has been shown in Figure[I] We
have covered objects that could also be translated and rotated w.r.t the cartesian coordinate system. Table[T]illustrates
these objects in a compact form.
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Local Object Box This consists at max of one standard or generic conic or polygon. This means that it can consist of
either no object or a single object. For our Gate based cryptography approach, we have introduced two types of Local
Object Boxes, i.e; a 'Reflection Box’ which signifies that reflection occurs at the surface of the object contained within
it if the light ray intersects with it as well as a "Refraction Box’ wherein refraction occurs if the light ray intersects
with the object contained within it. The Local Object Box also serves as a boundary restricting the objects described
in Table[T] In the absence of this boundary, the object would be allowed to stretch infinitely within the bounds of the
Global Object Box, thereby potentially causing issues for the encryption-decryption process.

Global Object Box This box, also referred to here as Global Bounding Box in our scheme consists of the complete
2D environment in (x, y) cartesian coordinates that could contain multiple Local Object Boxes within it.

Object The Objects are as described in the subsections below. These are either customizable in that the user renders
the objects at specific locations of the 2D environment or are dynamically generated as part of the encryption key in the
Gate based approach developed by Tobias Grugel as part of his Master Thesis (Grugel| [2023]]).

4.0.1 Standard and Generic objects in 2D

The table below illustrates standard conics (Parabola, Ellipse, Hyperbola) as well as a linear equation in 2D. It also
illustrates the generic second as well as third degree polynomials in the 2D cartesian system.

Object Type Equation
Linear dy(x —x0) —d(y —y0) =0
Parabola ax”? —y =0
Ellipse 2?a® +y?[b* =1

b2’ + a2y’2 — a2b? = 0
Hyperbola 22 /a® —y?/b? =1

b2x'2 _ a2y12 _ a2b2 =0
Generic Second Degree Poly- | az’? + by? +ca’y’ +dz’ + ey’ + f =0

nomial
Generic Third Degree Poly- | az"3+by">+ca?y’ +da'y* +ex?+ fy"* +ga'y'+ha'+jy' +k =
nomial 0

Table 1: Objects in 2D

These objects are put through rotation and translation matrices in 2D using the following rotation and translation
matrices respectively :

x| | cos® sinf| [x—h| | (x—h)cosd + (y — k)sind
Y|~ |—sinf cosb| |y—k| ~ |—(x — h)sinf + (y — k)cosd

The rotation matrix rotates the objects in the counter-clockwise direction relative to the space.

4.1 Light Ray

The other major visual element in our setup is the light ray itself. This light ray is a vector, with the form described
by Eq. (1), that interacts with the objects in the 2D environment and thereafter in each case, behaves as a reflected or
refracted ray depending on which type of Local Object Box (described in Section[d) it has entered. A light ray is an
element that has a source point (z, ys) and a direction (z4, y4). We use the vector representation of a line to describe a

light ray as follows :
Ts Tq
A 1
(5:) () ®

The light ray could be described by a linear equation. We chose the vector representation due to the limitation that the
light ray only travels in one direction. The use of the vector representation leads to a negative A if the intersection of the
light ray and an object is behind the source of the light ray. The positive A and negative A are derived from solving
linear, quadratic and cubic equations in our case, as illustrated in the following sections.
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4.2 Intersection Calculation

This section illustrates the intersection of the light ray with various objects. The idea would be to incorporate Eq.(T)
into the equations of the objects in 2d, shown in TableT|based on which object the light ray is intersecting. This would
then result in equations with coefficients of A, A2 and/or A depending on the degree of the object (polynomial).

4.2.1 1st Degree

The first order equations involve linear components and therefore an intersection of the light ray with them would entail
solving the linear equation in A.
ax+b=0 2

4.2.2 2nd Degree

We can compute the point of intersection between the light ray and the second degree object by substituting the x and y
values of the object before they are rotated, with the light ray values.

[a::] _ {0039 sin@} {(xs + A\zg) — h} _ [0050 sinﬁ} {x - h] L [ cost) sinﬁ} {xd] 3)

Y —sinf cosO| | (ys + Ayq) — k —sinf cosl| |ys — k —sinf cost| |yq
The source point (z, ys) is both rotated and translated while the ray direction (x4, y4) is only rotated. The value for A
is then found after substituting the new =’ and 3’ into the object’s equation.

This results in a quadratic equation in .
aX’ +bA+c=0 )

Solving the above equation gives us two possible quadratic roots.

In the case where b?> — 4ac < 0, there is no intersection between the light ray and the object. This case is caught and
returned as no intercept. The value of a is required to always be non-zero while finding the intersection point(s) between
the object and the light ray.

4.2.3 3rd Degree

We can compute the point of intersection between the light ray and the third degree object in a similar manner as the
second degree object, rotating and translating x, and y, values as well as rotating z4 and y4 before substituting the
resulting 2’ and 3’ into the third degree object equation in order to find .

aX}  +bX2+ceA+d=0 (5)

To solve the cubic equation we use Cardano’s formula whose usage has been illustrated below.

_ 3ac—b?
Q= 9a?
:9ab0727a2d72b3
- 54a3
D=Q*+R? (6)
S=\/R+VD
T=VR-VD
The roots of the cubic equation are given by
b
M=—r+S+T
3a
b1 V3
- _ - (s — 7
A2 3 2(8+T)+ 5 (S-=T) (7
b1 i3
)\3—_3701_5(8“!‘7—)_7(8—7’)
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| discriminant | roots |
D <0 3 real, all unequal
D=0 3 real, at least 2 are equal
D>0 1 real, 2 complex

Table 2: Roots of cubic formula

Similar to the second degree object, only the real roots of the cubic equation are of interest to us. The polynomial
discriminant can give us an indication how many real roots we could expect.

In the case when D is negative, the programming language can no longer find values for S or T and therefore
cannot calculate the roots. In this case, we use De Moivre’s Theorem in order to rewrite the equation into something

that can be directly calculated. Solving for S as an example, S = {/R +1i/|D| = G/3 x (& + i—v(‘;pl)l/3 =
G'/3 % (cosf+isinf)'/3. At this point, we apply De Moivre’s Theorem to get G/ x (cos(6/3) +isin(0/3)). This can
then be simplified by removing # and reducing the trigonometric functions. G1/3 % ¢10/3 = G1/3 x (¢t*atan(V/IPI/R)/3),

Here, we define G = (y/R? + (1/|D|)?) and § = atan(%) for simplicity.

4.3 Tangent and Normal
4.3.1 Tangent

X

c; of the tangent line can then be calculated by solving the equation of the tangent with the aforementioned slope and
point coordinates in consideration.

The slope of the tangent is calculated by taking the % We take a point,(x;,y;) of interest on the tangent. The intercept,

4.3.2 Normal

The slope of the normal is the calculated as 72—”3. Similar to the above, the intercept, c,, of the normal line can be
calculated by solving the equation of the normal by taking the aforementioned slope of the normal and point of interest,
i.e; (xy,yn)- The slope of the normal is valid only as long as the slope of the tangent, j—:’ £ 0.

The normal, 77, can also be calculated by taking the gradient of the object, V F', at the point of intersection. The resulting
vector is not limited by the individual values of dz nor dy and may be oriented in any direction. For consistency, the

normal vector is set to point ’into’ the object. More specifically, i -7 > 0. When this is not the case, 7 is set to —7i.

4.4 Reflection at the Point of Interest

Reflection at the point of interest, i.e; the point of intersection between the object and the light ray in our case has been
calculated using the mirroring technique elaborated below.

Mirror Technique The Mirror technique evaluates the mirrored point of the incident light ray taking the tangent
as the mirroring element. The mirrored point is then traced through the point of intersection with the object, (2, yp)
in order to find the equation of the reflected light ray. This technique has been explained in detail in the Appendix [A]
An example illustration of reflection has been shown in Figure[2] In our scheme, the brown box could be used as an
additional boundary, to limit the object within it. It could also be used interchangeably with the Local Bounding Box,
serving the same purpose, as described in Section[d] The Local Bounding box specifically in this setup, in Figure [3]as
well as in Figure[6]shows us where the object is centered in it’s local environment.

Using tanf This technique mainly uses the concept of tan # calculation to make sure that the angle of incidence
is equal to the angle of reflection at the intersection point with the object, (x,, ¥, ). This information is then used to
calculate the equation of the reflected light ray.

Vector Reflection The reflection can also be described in terms of a vector, 7 = 7 — 2(?~ )7 Here, the input vector
1 is projected onto the normalized normal vector, 1. Subtracting this value in the n direction creates a right triangle.

Subtracting this again creates an isosceles triangle with sides 7, 2(7 - 7)7, and 7 — 2(i - 2)f. This final side is parallel to
the output vector. This process is explained more elaborately in the source by [de Greve| [[2004]. It is also elaborated in
the Appendix
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Figure 2: Example of reflection of ray at the surface of a parabola

4.5 Refraction at the Point of Interest

Refraction of light through two mediums is calculated using Snell’s Law.
ny8inlf; = nasinbs ®)

However, this can be re-written to exclude any angles and only use vectors to calculate an output vector|de Greve|[2004].
Here, the two mediums are combined into a single term, ;1 = nq /no.

7= (i — (- D) + /1 — 21— (- 3)?) ©)

. The Vector based technique for refraction has been covered in detail in the Appendix [D] An illustration of refraction at
the surface of an object has been shown here in Figure 3]
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Figure 3: Example of refraction of ray through a parabola

5 Gate based Symmetric Cryptographic Scheme

5.1 Encryption

The Encryption process as described using the Flow Chart in Figure [I| begins at the initial position of the light ray,
(zs,ys), with initial direction, (x4, yq), located at the boundary of the Global Bounding Box. These parameters also
form the Plaintext of our cryptographic scheme. On entering a Local Object Box (either Reflection or Refraction Box)
and having performed intersection with an object and thereafter successful reflection or refraction, the exit point of
the light ray, i.e; the point of intersection of the reflected or refracted light ray with the Local Object Box, (z., y.) is
obtained. This floating point coordinate is transformed into it’s binary representation. The binary (z,y) coordinate
obtained at this step is then passed through a boolean logic gate of type XOR, MatrixMix, rotated NOT-Shift or NO
Operation in a pseudo-randomized manner of selecting one of these gates. The resulting point is then transformed from
it’s binary representation to it’s floating point representation, which gives us the projected point, P’ = (z’,3'). We
create a Non-Optical gate Box at this point of projection and retain the same direction as the reflected/refracted light
ray in the previous Local Object Box, where the light ray originally exited, at (z., ye ). This Non-Optical gate Box is
pushed to a stack. No operation is performed on the exit point of the Local Object Box, (z., y.) when none of the
Non-Optical gate coordinates using the above logic gate operations turn out to be valid. The conditions for the validity
of the Non-Optical gate point is described in the subsequent paragraphs . The new light ray then either intersects the
next Local Object Box containing the next object in the 2D environment (in the case where one of the aforementioned
boolean logic gates were used) or continues onward without any changes after reflection or refraction in the Local
Object Box (in the case where No operation was performed on the light ray ). The whole process is now repeated until
the light ray finally intersects the Global Bounding Box and thereafter marks an exit point, (z;, y;) and exit direction,
(24, ya4)- These form the Ciphertext of our encryption scheme along with the complete stack of Non-Optical gate boxes.
There could also potentially be cases where the light ray doesn’t reach the Global Bounding Box even after multiple
successive intersections with objects as well as projections to Non-Optical Box positions. For such cases, the number of
interactions of the light ray with the objects can be custom chosen, thereby leading to an ’early’ final exit point (x;, y;)
and final direction, (z4,yq) before reaching the Global Bounding Box. A sample Encryption over our 2D setup is
shown in Figure[T|where 1 a) denotes the incoming light ray, into the Global Bounding Box, 1 b) shows the projection
of this light ray to the first Non-Optical gate position, after refracting in the first Local Bounding Box. 2 a) shows
the new projected light ray entering the next Local Object Box, 2 b) denotes the projection of this light ray to a new
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Non-Optical gate Box position after reflection and 3 a) shows the final light ray in this 2D scene, which exits at the
Global Bounding Box.

Non-Optical Gate Box This is a box within the Global Bounding Box. It does not contain any object nor is it
considered during the encryption process (except that no two Non-optical gate boxes can overlap). After a successful
manipulation of a point P = (z.,y.) using one of the boolean logic gates discussed in Section to a point
P’ = (2/,y), we create a Non-Optical gate box at the position P’.

This Non-Optical gate box contains the point P/, a boundary, an unique identifier to the object box, the type
of boolean logic-gate that has been applied, and the number of places to the right of the decimal point of (x’,y’). This
is important for the process of decryption, since the P’ = (x/, ") should get mapped to it’s correct binary form.

During the encryption process, Non-Optical gate boxes are pushed to the stack within the 2D environment.
During the decryption process, Non-Optical gate boxes are popped from the stack within the 2D environment, which
helps retrace the path of the light ray backwards to the initial position of it’s entry into the Global Bounding Box, at

(25, Ys)-

Validity of Non-Optical Gate Box We find the conditions for which the projection of a point P to P’ from a Local
object box to a certain point in the 2D environment can be carried out.

We consider a point P’ = (2, y’) as invalid if it is outside of the Global Bounding Box, within the same Local Object
Box, within another Non-Optical gate Box or potentially enclosed in a closed object such an ellipse or a polygon
formed by intersection of linear equations.

If any of the following conditions are fulfilled, then the point P’ is outside of the Global Bounding Box
G = (z¢, ya, widthg, height,) and is therefore invalid. ' < z¢, 2’ > z¢ + widthe, v’ < ya,y' > ya + height,.

To verify if the point P’ is within the same Local object Box or within another Non-optical gate Box, we use similar
conditions like above but instead of testing for outside of the box, we test for inside of the box. We achieve this by
replacing every < with > and vice-versa.

The next case we need to verify is whether P’ is enclosed by an object. For objects of the 15 degree, we test whether
the point P’ is contained within it’s four vertices. For 2" degree objects we need to consider the case where the 27¢
degree object is an ellipse. For this, we compute the value of the formula of the ellipse with the point P’ as input. For
the two aforementioned types of objects, if the point P’ is within the object then we consider the position as invalid.

If none of the conditions discussed above, which lead to an invalid point is fulfilled, we consider the point P’ as a valid
position, and therefore the projection from P to P’ is applied.

5.2 List of Discrete Boolean Gates

Based on pseudo-random selection, one of XOR, MatrixMix or NOT-Shift operation is chosen to be applied on the
point of exit, (x., y.) of the light ray at the Local Object Box, after transforming these coordinates from their floating
point form to their binary form, provided the point of projection, P’ = (z’,3’) (position of the Non-optical gate box)
turns out to be valid. The algorithms used to perform floating point decimal to binary conversion and vice-versa have
been shown in Appendix [E} All of the gate based operations that we use are invertible. This property has been used in
designing our symmetric key cryptographic scheme.

XOR-Gate The XOR-Gate is a bit-wise XOR (exclusive or).

The XOR-Gate takes two bit-numbers as input: Let a, b be 8-bit numbers, we compute the XOR a @ b in a bit-wise
manner. That means we XOR the same position of the two numbers to get the resulting XORed value.

ali] ® b[i] = c[i] where 0 < <7 (10)

The resulting value c is an 8-bit number where each position is computed independently using the values a, b and the
XOR-truth table.
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XOR is associative, commutative and each element is it’s own inverse. Using these properties we show that the operation
is reversible by reapplying the XOR-operation using the same value Let a, z be a bit-number

(a®zr)®r=aP(z®zr)=ad0=a (11)
MatrixMix The MatrixMix-Gate is the operation where we could potentially mix every position of a bit-number a.
The input of the MatrixMix-Gate is the matrix representation of the bit-number ¢ and a mixing matrix M.

The mixing matrix is a pre-computed permutation of all matrix positions for a given matrix size. The possible matrix
sizes used in our scheme have been shown in the Appendix [/

Let M be a 2 x 3 matrix, the positions of a 2 x 3 are the following

0,0) (0,1) (0,2
(o) 1) &) 0

To compute the mixing matrix, we take all positions of a matrix as a list, compute a permutation of this list, and
transform the permutation back to a matrix. To invert the process, we follow the reverse steps until we obtain back the
original bit input.

Original:(0, 0), (0,1), (0, 2), (1,0), (1,1),(1,2)

MatrixMix:(1,2), (1,0), (1,1), (0,0), (0, 1), (0, 2)

(13)

(1,

Dict(MatrixMix):(0,0) : (1,2), (0,1) : (1,0), (0,2) : (1,1), (1,0) : (0,0),(1,1) : (0,1),(1,2) : (0,2)
1,0)
(0,1

((1,2)

(0,0) (0,1)
Dict(InvMatrixMix):(1,2) : (0,0), (1,0) : (0,1),(1,1) : (0,2),(0,0) : (1,0),(0,1) : (1,1),(0,2) : (1,2)

SortedDict(InvMatrixMix): (0, 0) : (1,0), (0,1) : (1,1),(0,2) : (1,2),(1,0) : (0,1), (1,1) : (0,2), (1,2) : (0,0)

InvMatrixMix:(1, 0), (1, 1), (1,2), (0, 1), (0, 2), (0,0)

(14)

There are some cases where the bit-string is of prime number length, p. In such cases, we compute the mixing matrix in
a slightly modified manner. We used the prime-factorization to create the size of the matrices, as seen from the Table in
Appendix [F] This leads to an issue when the length p is prime. If we used the prime-factorization for these cases, we
end up having a matrix of size (1, p) or (p, 1).

To resolve this issue, we break the p length bit-string into the first p — 1 bits and then store the last bit of the sequence
separately. We can now proceed as the normal case with the p — 1 bits by taking it’s prime factorization and having
obtained the final MatrixMix string, we add back the last bit into this new sequence.

NOT-Gate followed by Left-/Right-Rotational-Shift The NOT-Gate takes one bit-number as input: Let a be an
8-bit number, we compute NOTa in a bit-wise manner.
—ali] = c[i] where 0 < ¢ <7 (15)

Also, in the reverse direction,
—=ali] = —¢li] = afi] where 0 < i <7 (16)

The resulting value c is an 8-bit number, where each position is computed independently using the values a and the
NOT-truth table.
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For the Left-/Right-Rotational-Shift operation after the NOT gate operation, we have a bit-number —a and an integer
k as input. Depending on the direction (left/right) we move all the bits of the bit-number —a by k positions into the
direction. Let —a be a 8-bit number, let k be a integer. We take k& mod 8, let the direction be left:

cli] = —ali + &k mod 8 where 0 < i <7 (17)

To reverse the shift operation we apply the same number of steps in the opposite direction. So for the above example,
the direction would be taken as right.

5.3 Key

The Key in our cryptographic scheme consists overall of three parts and is created dynamically from the terminal during
runtime. A sample key has been shown in Figure[d] The three parts of the key include, the parameters for the Global
Bounding Box, the parameters for the cryptographic element and the list of parameters for the Local Object Boxes and
the object they contain within them.

[[-10@.0, -100.0, 200.0, 200.6], \\ global bounding box parameters
[5676, 2@@.0], \\ parameters for the cryptographic element

[[2, \\ object and cbject box parameters

"refraction”,

["-18.6445098741414247759166755713522434234619140625", "44.86265660099414276373863685876131@577392578125",
"30,3520675644498396650305949151515960693359375", "15.4784478210874425485599203066557979583740234375",
"23.0256821642892219870191183872520923614501953125", "15.3524239567622799995660898275673389434814453125",
"-31.9164505757922825068817473948001861572265625", "-21.21731773069092241712496615946292877197265625",
"0.130336273842283301149791441275738179683685302734375", "1,0002999999999999669597627871553413569927215576171875",
"1.520000000000000017763568394002504646778106689453125", "11110011111011000011100000101600180101110011010100010800100110111",
"1111101001100101000100100160100110011101111011610111101100011011",

"(2, 3)" {"(e, @)™ (0, )", (0, 1)": "(0, 2)", "(0, 2)": "(0, 1), "(1, O)": "(1, 1)”
"(2, )" {"(0, @)1 "(0, )7, "(e, V"1 "(9, ©), (0, 1)": "(1, 3)", "(0, )1 "(1, 0)"
S T S SR S A

"(1, 1) (1, 07, (1, )" (L, )7,

{7(2, 2)7: {7(8, ©)": "(9, 1), (8, 1)": "(1, ©), (1, B)": "(8, )7, "(1, )" "(1, 1)},
R R E W L CHE S L O RO

\\ rest of the dictionary components removed due to lack of space for visibility
1, "ds420a29-c1b6-46f3-9fas-7dfse162dhee”, 1, @]]]]

Figure 4: Components of a sample Key

The parameters for the Global Bounding Box include it’s point of origin, which is the (x,y) coordinate of the
bottom-left point, as well as the width and height of the Global Bounding Box.

The parameters for the cryptographic element include one integer as the seed for the random number genera-
tor within the cryptographic element and one floating point number which is the width of the Global Bounding box.
The seed is specified by the user during runtime and fixes the number, type and positions of the object boxes during that
particular execution so that we can perform encryption and decryption over the same setup.

This is followed by the list of parameters for the object boxes which include the type of object (2" degree,
37 degree etc.), the type of Local Object box (reflection/refraction), (x, ) coordinates of the bottom-left of the object
box, it’s width and height, the object contained within, including the different coefficients of the terms associated with
the first, second or third degree polynomial (e.g: coefficients of 22, 3/ etc.), the refractive indices of the respective
media (if it is a "refraction’ Local Object box), two 64 bit-strings for the XOR gate, each a string of random bits to use
as the respective mask for the part of the XOR number before the decimal place and the other for the part of the XOR
number after the decimal place, followed by dictionaries for the MatrixMix-Gate as well as Inverse MatrixMix-Gate.
‘We have the unique identifier which is used to link a Non-Optical gate box to the correct Local Object Box. Finally,
the key contains two integers : the first is the amount of shift positions and the second is the shift direction for the
Shift-Gate. 1 signifies a right shift and O signifies a left shift in our scheme.

5.4 Decryption

The Decryption process for the same setup as in Figure[I]is shown in Figure[5] Decryption begins at the final position
of the light ray, (z;, y;), with final direction, (24, y4), located at the boundary of the Global Bounding Box. We also

10
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return the full stack of Non-Optical gate Boxes. These form the Ciphertext of our symmetric key Cryptographic scheme.
We begin the decryption process by popping the last Non-Optical gate Box element from the stack, thereafter followed
by converting the Non-Optical gate box position coordinates from it’s floating point representation to binary. The binary
form of these coordinates are then transformed using the Inverse operation of the corresponding boolean logic Gate,
that was applied during the Encryption process. This leads back to the previous exit point, (2., y.) of the reflected or
refracted light ray at the Local Object Box. Then using the laws of reflection or refraction, depending on the type of the
Local Object Box, the light ray is retraced backwards. This whole process continues until all the Non-Optical gate
Boxes are popped from the stack and the corresponding inverse Gate based operations have been applied, leading to
the initial position of the light ray, (x5, ys) and initial direction, (x4, y4) where the light ray first began at the Global
Bounding Box. The numbers 1, 2 and 3 respectively in the Figure [5|below show the subsequent steps in our symmetric
key cryptographic scheme for a sample 2D scene.

754

50 1

25 s0-| S 100

—— Lightray —— Fake Box —— Refraction Box —— Reflection Box 2. degree object
Object Box Entry ~ —e— Object Interaction 1. degree object Global Bounding Box 3. degree object

Figure 5: Decryption steps of the Gate based Symmetric key Cryptographic scheme

5.5 Precision of values

For our simulation, we have split the floating point representation of the point where the light ray exits a Local
Bounding Box (., y.) after having interacted with the object within it in the form of reflection or refraction, into
two parts, the part before the decimal point (integer part) and the part after the decimal point (decimal part). Both
the . and y, are split in the aforementioned manner. Thereafter we set the number of default positions after the
decimal point to be 15. So, the maximum number that can be fit into it is 999999999999999 (which can be represented
using around 50 bits). For the part before the decimal point, the total number of positions is set as default to the
log,, (widtho f Global BoundingBox).

In the next step, while converting the floating point number described above to it’s binary representation, we set the first
bit of the part before the decimal point to be 0 or 1 depending on whether the number in it’s floating point representation
is positive or negative respectively.

The key described in Section [5.3| has bit-strings of length 64 each for XOR masking of the part before the decimal point
as well as the part after the decimal point so that enough bits are available to mask the binary form of (., y.) at the
Local Object box exit, incase XOR gate is selected using the pseudo-random selection of gates described in Section[5.2}
The unused bits of the XOR masks are just stored as noise and don’t partake in the rest of our cryptographic scheme.

In practice, it is possible to have any number of positions on the left as well as the right of the decimal place of the
floating point numbers, (., y.) but for a large number of interactions of the light ray in the 2D environment, we can
expect a slight difference between the actual initial start point of the light ray, (x5, ys) and the computed position of the
light ray obtained after decryption. This divergence factor could also be dependent on the Programming language used
for simulation.

11
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6 Attacks and Mitigation

This section elaborates the possible attacks to our cryptographic system and their respective mitigation techniques.

6.1 Pattern Detection

The attacker could launch a brute-force attack on the 2D environment to learn the objects. While it might be very
difficult to learn *open’ objects, since not only does the light ray need to retrace it’s way backwards during decryption
through Non-optical gate boxes but also has to solve potentially several linear and non-linear equations during the
reflection or refraction processes to reach the initial start point of the light ray, (z,ys). However, over time, the
structure of "closed’ objects, such as; ellipses or polygons have some possibility of getting learnt since no Non-Optical
gate box could be created in such parts of the 2D environment.

The other possibility of Pattern Detection is when only one of the objects is intersected by the initial light
ray, involving reflection or refraction before reaching the Global Bounding Box as an exit point. This makes the 2D
setup susceptible to both, Plaintext as well as Ciphertext attacks, thereby leading to the discovery of the object position
as well as shape. Therefore we would ideally need atleast two interactions of the light ray in the 2D environment to
make our cryptographic scheme secure enough.

6.2 Plaintext Attack

As described in Section the Plaintext in our scheme consists of the initial origin of the light ray, (x5, y;) and it’s
initial direction, (x4, yq) at the Global Bounding Box. Even if the attacker has this information, they would not be able
to recreate the 2D environment with the Local Object Boxes, the object positions, the objects themselves, the unique
identifiers linking the correct Non-Optical gate boxes to their original Local Object boxes as well as the light ray path
through them since all of the above information is part of the key itself, as described in Section[5.3] Therefore as far as
the possibility of a Plaintext attack goes, our cryptographic scheme stands arguably robust against it.

6.3 Ciphertext Attack

As described in Section the Ciphertext in our scheme consists of the final exit point of the light ray, (x;, y;) and it’s
final direction, (x4, y4) at the Global Bounding Box. It also includes the full stack of Non-Optical gate boxes produced
during the encryption process.

Intercepting this information may let the attacker know about the positions of the Non-Optical gate Boxes,
but retracing the way back through the objects is not possible without the knowledge of the Gate-based operation linked
to each Non-Optical gate Box. Also each Non-Optical gate Box comes with it’s unique identifier, that links it back to
it’s original Local Object Box. These critical information are only part of the key itself. The attacker might then try to
brute-force their way back to the original Local Object Boxes from the respective Non-Optical gate Boxes but there is
every possibility that they would not reach the Global Bounding Box at the correct initial position of the light ray,
(zs,ys). At this point the stack of Non-optical gate boxes would already be empty and the Plaintext is not known to the
attacker, so it’s arguably difficult for the attacker to verify whether the position they reached at the Global Bounding
Box is indeed the actual initial position of the light ray.

7 Applications

One possible application of our visual toolbox even without the discrete logic Gate-based elements could be to use the
objects and Local Object Boxes in order to enhance existing cryptographic schemes such as the Hybrid ECC|model, the
Flow diagram of which has been shown in the Appendix (G} The final exit point of the light ray, (x;, y;) at the Global
Bounding Box or in the case of customization, at the end of the specified number of object interactions could be fed
into the Hybrid ECC model as part of the plaintext. The other parameters that could be part of the plaintext are the
final direction of the light ray, (x4, yq) at the Global Bounding Box, the magnitude (Euclidean distance) of the initial
ray between the first intersection with an object and the initial point of the light ray, and the number of interactions that
have occurred before the final point was reached by the light ray. Once a shared key has been generated using the
Elliptic curve cryptography (ECC) scheme, Advanced Encryption Standard (AES) could be used to encrypt each of the
aforementioned plaintexrt parameters. The AES encryption creates three outputs: ciphertext, authenticationT ag,
and nonce.

12
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The ciphertext is the encrypted input message. In order to check for tampering, authenticationTag is generated
using the ciphertext as an input for an authentication function. The value is sent to the receiver, who runs the same
authentication function using the ciphertext received as an input. When the value of the authenticationT'ag received
does not match the value of the authenticationT ag generated, it is a sign the ciphertext has been tampered during
transmission. When an AES system is set up, a random value is required during the setup. This value is nonce and
must be sent as an output in order for the receiver to setup their decrypting AES system with the same random number.

The receiver could then use these as well as publicK eySender and the private K ey Receiver generated during the
ECC encryption step to decrypt the message and ensure it has not been tampered during transmission. The ciphertext
in this case is a binary number generated for each of the plaintext parameters described above. These binary numbers
could be changed into their floating point representations and then bounded within the Global Bounding Box limits
using modulo operations before then multiplying by a randomly selected positive or negative 1 in order to fool’ the
attacker into believing these to be indicative of the true point of exit of the light ray.

Figure [ shows a sample 2D setup with the initial light ray in green, followed by interactions of the light ray with
multiple objects and the final light ray in yellow. We have customized the number of interactions here of the light ray
with the objects, therefore the final light ray doesn’t necessarily exit at the Global Bounding Box.

In the case of a Plaintext attack on the 2D setup, with the plaintext involving the initial light ray position and direction,
the attacker would have to potentially solve multiple interactions with linear and non-linear objects in the form of
reflections or refractions before arriving at the correct final direction and exit point of the light ray (therefore, the
ciphertext). But these ciphertext parameters after the ray-tracing through the visual elements in the 2D setup could be
further fed into the Hybrid ECC model as plaintext parameters, in the manner described in the paragraphs above. The
final exit point of the light ray, following the Hybrid ECC scheme would be the *purple dot” such as the one shown in
Figure[6] This would arguably throw off an attacker into assuming that this is the actual exit point of the light ray.

Also, another method to *fool’ the attacker attempting a Plaintext attack on the 2D setup could be to ’mute’ some
objects, such as; the parabola shown in Figure [|doesn’t actually interact with the initial light ray. This could ’fool” the
attacker into pursuing a completely different path in the 2D setup and thereafter exit at a wrong point.

I A

20 1

> 0 \
_10 4
_20 4
-30 T T T T T
-30 -20 -10 0 10 20 30
= Objects Final Ray Reverse Direction
m— Rays = | ocal Bounding Box

=== Qutput Ray Forward Direction === Object Limit Boundary

Figure 6: An example 2D setup including the false exit point
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8 Conclusion and Future Work

We have introduced a novel Gate-based symmetric key cryptographic approach to encrypt and decrypt information on a
light ray in a 2D ray tracing environment. We have used reversible logic Gate based as well as reversible reflection and
reflection operations, thereby making our cryptographic scheme symmetric. The encryption process is not only made
secure because potentially multiple non-linear as well as linear equations have to be solved in order to trace the path of
the light ray through the objects, but is further enhanced by incorporating pseudo-random selection of discrete logic
gate based operations to be applied at the exit point, (z., y.) of every Local Object Box. A further layer of security is
ensured by producing the 2D setup dynamically through the terminal at every run. Added to that is the security that
comes from the fact that the XOR-masks, the MatrixMix permutation dictionaries as well as the shifting direction and
the shift constant for the NOT-Shift gate are all part of our key, and are hence hidden information. We also discuss about
the possible errors in precision values in our scheme due to divergence in floating point numbers in Section[5.5] In
Section [ we elaborate different types of attacks and their possible mitigation strategies. In Section[7} we finally present
an application of our 2D setup in combination with the Hybrid ECC model to create a complex cryptographic scheme.

As a possible Future Work, we would like to incorporate our Gate based cryptographic system into a 3D en-
vironment, consisting of (x, y, z) cartesian coordinates. We would also like to design and launch specific attacks on our
existing cryptographic scheme in 2D and study it’s robustness against these. Apart from this we would be exploring the
possibility of adding both reflection as well as refraction simultaneously on the surfaces of our 2D objects using Fresnel
equations as described in [Skaar|[2019].
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A Mirror Technique for finding the Reflected Ray

The mirroring technique uses the tangent as the mirror at the point of intersection of the light ray with the object. The
point mirrored by the tangent is determined using the mid-point theorem of a line segment. On tracing a line through
this mirrored point and the point of intersection, we obtain the reflected light ray.

PR

o)
[* e~
% a\o?

Figure 7: The Mirroring Technique

yr = .’Eleff+ C1 (18)
yr = (xT — al).diff_norm + b1 (19)

By rearranging Eqs.(T8) and (19), we obtain :

c¢1 — by + aq.diff_norm
_ 20
T diff_norm — diff (20)

Using the mid-point theorem of a line segment,

Tor + a1

rr =g 21
b
yr = 2L 22)
Rearranging (21)) and (22)), we obtain :
Tor = 2T — a1, Y21 = 2y1 — b1 (23)
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Using (20) and (I8), we obtain (za7, yor).
‘We also know that,

Y — Yor _ Ys — Yor 24)

T — 2T Ts — X2T

This gives us

. (ys = yor)(z = 2or) Uor (25)

Ts — X2

Solving this results in the equation of the reflected light ray (as the equation of a line).

B Method using tand for finding the Reflected Ray

This method uses the fact that the angle between the incident ray and the normal to the surface of the object is the same
as the angle between the reflected ray and the normal.

Assume that the slope of the incident light ray is m; and the slope of the normal is m. Let the slope of the reflected
light ray be ms. We know that as per the Law of Reflection, the angle between the incident ray and the normal is the
same as the angle between the normal and the reflected light ray.

We hence come up with the following Formula :

mp —m _ m — Mg (26)
1+mm 1+mam
Solving this would give us a quadratic equation which would in turn result in two possible values for the slope of the

reflected light ray, m..

C Vector Technique for finding the Reflected Ray

=)

Figure 8: Vector Technique for finding the Reflected Ray

To calculate the reflected ray using vectors, we note that the inputs are the input ray, i, and the normalized normal vector
into the object at the point of intercept, n, which by definition has a magnitude value of one. As seen in the diagram,

the dot product of these two vectors, i, isthe projection of the input ray onto n. Since this is a scalar, multiplying it

by n changes the magnitude of 7 but not its direction. By then multiplying this value by two and subtracting it from ¢,
we obtain an output vector 0. The vector ¢ has the same direction as the output ray due to reflection. We can see this
is true, due to the fact that reflection arises from the angle between the incidence ray and the normal being equal to

the angle between the normal and the output ray. The vectors here create two right triangles, one with sides ||;|| i,
and ||i — (i - 7)n)); the other with sides ||&]|, 7 - 7, and || — (7 - 1)7|. These triangles are equivalent, due to two sides
and the angle between them being equivalent. Thus, the angle between ¢ and 7 is equal to the angle between i and f.
Therefore, 0'is the output ray from reflection.

D Vector Technique for finding the Refracted Ray
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Figure 9: Vector i derived from addition of orthogonal vectors
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(AXT) XA

Figure 10: Use of cross product of vectors in finding Refracted ray

Refraction using vectors follows from the same initial point as reflection using vectors. We note from Figure ] that
(i-n)nand i — (i - )7 are two orthogonal vectors that, when added together, produce vector ¢. There is a second
method to calculate the same direction as ¢ — (7 - 72)7 using the cross product, (22 X #) X 7 as seen in the Figure.

Also, in the Flgure m note that all rlght angles are denoted. The value for nxi points in a third direction, orthogonal
to both 7 and i. Meanwhile, (7 x z) X 7 is in the same plane as 7 and 4 i. With this equivalence, we can say,

i=G-a)a+i—(i-n)a= > A)a+ (A xi)xnh 27)

For simplicity, we normalize i as 7. Snell’s Law is the equation to calculate refraction from one medium into another
using
nysinf; = nasinbs (28)

Setting ;4 = n1 /ns, this can be rewritten as
usinfy = sinby (29)
The definition of cross product, for two vectors A and B with angle 6 between them, states
sinf = (A x B)/[|A[l||B]| (30)
We can now rewrite Snell’s Law for some output vector 7 using the cross products as
(i X 1) =nx 7 (31)
The vector 7, like %, can be expressed as
F=F-nn+7—(F-n)n=(F n)n+ (A X7)Xn (32)
Using this, we can substitute the first cross product with Snell’s Law:

7= (7 n)i 4 p(h x 1) X i (33)
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The cross products can be replaced once again, giving us

7= (F-a)n+ p — (- n)n) (34)
Now, 7 must be removed from the right side of the equation. This can be done by setting 7" to a normalized vector, 7.
7 = (7 )A)* + (u(i — (- 2)7))* + 2(((7- )A) - (u(i — (i-7)n))) (35)
As the two components are orthogonal, the dot product between them is zero.
7% = (7 n)2R% + 2 (12 = 2((( - a)a) - (1) + (i - 2)?R%) (36)

Since 7 and ; are normalized vectors, their squares are simply one.
2= (7 )? + p(1 =20 - )2 (- n)?) = (7 1) + 12 (1 — (i - 7)?) 37)

Finally, since #? = 1 as well,

)= +y1— 21— (i-2)2) (38)

. We know the square root is positive, as the angle between 7 and 71 is always less that 7r/2. Thus we have the solution

7= (i — (- D) + /1 — 21— (- 3)?) (39)

E Algorithms

Algorithm 1 ConvertDecimal ToBinaryUsingModF

Input: numberToConvert, numberOfDecimalPlaces = 15 > Decimal number to Convert

Output: binaryNumber
1: if numberToConvert < () then
2 sign + 1
3 numberToConvert < |numberToConvert)|
4: else
5: sign + 0
6: end if

7: ilntegerPart + int(numberToConvert)

& fDecimalPart < numberToConvert - ilntegerPart

9: iDecimalPart + int(fDecimalPart * 10 ** numberOfDecimalPlaces)

10: hinarylntegerPart « bin(ilntegerPart)

11: hinaryDecimalPart <— bin(iDecimalPart)

12: leadingZeroes +— numberOfDecimalPlaces - length(iDecimalPart)

13: sLeadingZeroesDecimalPart + "0" * leadingZeroes

14: return sign binarylntegerPart . sLeadingZeroesDecimalPart binaryDecimalPart
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Algorithm 2 ConvertBinaryToDecimalUsingModl

Input: numberToConvert > Binary number to Convert
Output: decimalNumber

=] & v & Wbk =

—_ = =
[ I === R ]

. binintegerPart + digits before the decimal point in numberToConvert
: binDecimalPart + digits after the decimal point in numberToConvert
. if binarylntegerPart[0] == 1 then

sign +— —
end if

. binintegerPart + binIntegerPart|1 :|

. ilntegerPart < int(binintegerPart, 2)

. iDecimalPart < int( binDecimalPart, 2)

. binDecimal Part Temp < bin(iDecimalPart)

. leadingZeroes = length(binDecimalPart) — length(binDecimal Part Temnp)
: prepend 0 # leadingZeroes to iDecimalPart

. return sign ilntegerPart.iDecimal Part

Algorithm 3 ConvertBitstringToMatrix

Input: bitString
Output: malriz, lastil

s W b —

if length(bitString) in lengthToMatrizSize then > Precomputed dictionary
lastBit + —1 > Not required
RowCount < lengthToMalrizSize. Rows
ColumnCount < lengthToMatrizSize. Columns
tempRow < 0
tempColumn < ()
for ¢ < length(bitString) do
matriz{tempRow|[tempColumn| « bitString|i|
tempColumn < tempColumn + 1
if tempColumn mod ColumnCount then
tempColumn < 0
tempRow < tempRow + 1
end if
end for
: else
bitString < bitString|0] ... bitString[length(bitString) — 2|
lastBit + bitString|length(bitString) — 1]
matriz < ConvertBitstring ToMatriz( bitString')
: end if

: return matriz, lasti3il
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Algorithm 4 ConvertMatrixToBitstring

Input: matriz, lastBit
Output: bitString

oo

10:

1
2
3
4
H

S

: bitString + emptyString
: for i < RowCount(matrir) do

for j < ColumnCount(matrir) do

Append matrizli|[j] to bitString

end for
end for

if lastBit # —1 then
Append lastB3it to bitString

end if

return bitString

Algorithm 5 ApplyMatrixMix

Input: matriz, rowCount, columnCount, MatrizMix

Output: matrictMized

H
2: for i < rowCount do
3 for 7 < columnCount do
4
5
6:
T:
8 return matrizMized

maltrizMized < emptyMatrix of size rowCount x columnCouni

iterndndex < MatrizMixz((i, j)|
matrizMized|i)[j] < matriz|itemIndez|0)][itemindex(1]]

end for

end for

F Table Summaries

| Length | Size [ Length | Size || Length | Size [ Length | Size |
Z 2.2 6 2.3 8 .4 9 3. 3)
10 (2,95) 12 3,4) 14 2,7) 15 (3,5)
16 4,4) 18 (3,6) 20 4,5) 21 (3,7
2 (@I 24 | &6 25 (.5) 26 | (2, 13)
27 (3,9) 28 4,7) 30 (5,6) 32 4, 8)
33 GBI 34 [&in| 35 |G 36 | (6,6
38 12,19 39 |G 13| 40 | G98) 2 6,7
4 T &ID | 45 [ 5.9 %6 2.2 48 | 69
9 [ (L7 50 (G100 | 5T | G, 1D | 52 | & 13)
54 (6,9) 55 (5, 11) 56 (7, 8) 57 (3,19)
58 (2,29) 60 (5, 12) 62 (2,31 63 (7,9)
64 (8, 8)
Table 3: Bit-string length mapped to Matrix Size
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G Hybrid Elliptic Curve Cryptography

Inputs
G — generator point (starting point)

n - order of entire curve
p — finite field size (mod p)

a, b —variables of Weierstrass curve

h — number of cyclic groups/cofactor

PublicKeyR
PrivateKeyR*G

PrivateKeyR
Random number < n

PublicKeyS
PrivateKeyS*G

Inputs
a, b — variables of Weierstrass curve
G — generator point (starting point)
h = number of cyclic groups/cofactor
n —order of entire curve
p — finite field size (mod p)

|

Secret Key

Hash(publicKeyS*PrivateKeyR)

Secret Key

Hash(publicKeyR*PrivateKeyS)

PrivateKeyS
Random number < n

Output Message

* x, yi—final point of light
ray

® g ya—final direction of
light ray

e magnitude of initial light
ray before first interaction

AES Setup

AES Decypt

Inverse operations of AES
encrypt in reverse order

number of interactions

False Point
Ciphertext of x;, yi is converted from
binary to a float value, moludo is taken
w.r.t. global bounding box, and
multiplied by 1 or -1 randomly

AES Mode
Galois/Counter Mode

Nonce
Random number used
to start encryption

Input Message
* X yi—final point of light ray
® Xy, ya—final direction of light ray
e magnitude of initial light ray
before first interaction

AES Setup

Authorization Tag
Check value to confirm
ciphertext not tampered

Ciphertext
Encoded message

* number of interactions
AES Encrypt

Key Expansion (Key Schedule)

AddRoundKey (XOR)

Loop 9, 11, or 13 times from AES setup:

SubBytes (Lookup table substitution)

ShiftRows

MixColumn (multiply by fixed polynomial)

AddRoundKey

End Loop

. SubBytes

10. shiftRows

11. AddRoundKey

LCONOULAEWNRE

Figure 11: A flowchart illustrating the various components of the Hybrid ECC Cryptographic scheme.
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