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1 INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have gained significant attention towards overcoming several
limitations for traffic monitoring purposes that may arise with the use of conventional sens-
ing technologies (Brahimi et al., 2020). They offer several key advantages in monitoring traffic
networks, due to their ability to fly between areas at high altitudes and collect high-quality spa-
tiotemporal traffic-related data with no installation costs (Barmpounakis & Geroliminis, 2020).
Despite the many advantages that UAVs can offer, their applicability has so far been limited
to occasional surveillance of road networks through the provision of live video feeds to traffic
operators or recording of videos for offline processing (Barmpounakis & Geroliminis, 2020) and
extraction of historical traffic data (Barmpounakis & Geroliminis, 2020, Krajewski et al., 2018).

One of the most challenging tasks of UAVs is path planning, which aims to determine the
most efficient route of a UAV from an initial to a target point, with respect to a specific task
to be optimised. To the best of our knowledge, there is no research work in the literature
that has investigated the online construction of UAV trajectories with respect to minimising the
uncertainty or maximising the information gained of traffic states.

In this work we propose an online probabilistic optimal UAV trajectory construction scheme,
that strategically selects the next sampling points from which the UAV should obtain mea-
surements of the traffic density, to minimise the total uncertainty of the traffic density in the
time-horizon under study. We incorporate the Gaussian Process (GP) model into a Bayesian
framework to accurately estimate the traffic density of specific road segments in a multi-lane
highway, even when data points are sparse within the specified time-space region under study
and develop a novel approach to obtain a Bayesian optimal UAV trajectory.

2 METHODOLOGY

2.1 Problem Formulation

Assume a traffic network that is comprised by N¥ = |£| road segments segments. Each segment
consists of N distinct road lanes. We monitor the traffic network for a fixed time period 7" and
denote as M”™ C &£ the set of monitored segments at time-point 7, while the total number of
monitored segments is N7 = |MT| such that N™ < NE.

We consider a collection of NV UAVs, with identical flying and sensing capabilities, are
hovering above the network. The network is discretised into P UAV sampling points, represented
by SU = {s1,...,sp}. Each UAV achieves complete coverage of the road infrastructure by
visiting all sampling points. Every UAV moves between sampling points at a constant velocity
equal to vY4V [m/s| such that it requires 7Y, = dys/0U4V 3] to travel from sampling point s

to ', with s,s’ € SU. Here, d,y represents the distance between these two sampling points.
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At different sampling points, UAVs can observe specific subsets of the network, such that
multiple UAVs observe potentially overlapping subsets of time-space region A. Consolidating
these time-space subsets from different UAVs yields the following measurements:

e The density of road segment i: p; = [pi1,-..,piL;]* [veh/km].

e Time-window indices associated with density measurements: 7 = [151,..., 7, L]t sl
Above, p;; is the lth measurement obtained from road segment i, 7;; = j’ indicates that the Ith
measurement corresponds to time-window 7; and L; is the total number of measurements in the
specific road segment. The absence of index j in 7; indicates that no UAV has observed any part
of road segment ¢ over time-window 7;

2.2 Solution Approach

2.2.1 Gaussian process model

Given data in the format of (p,Z), where Z = {z; ;i = 1,...,N¥ 7 =1,...,L;} are the time-
space inputs and p = {p;» = pi(zi-)|i = 1,...,NF 7 =1,..., L;} is the traffic density obtained
at irregularly spaced sampling time-points denoted by 7; € N W we make the assumption that
pi = [i(Z) + &;. Functions f;(-) are unknown, and each g; signifies the measurement noise,
independently drawn from a normal distribution €; ~ N(O, O’Z I). We have that T' = ZZ]\L b; L;

and matrix Z € RT*N” has NP blocks where the ith block is defined as Zyy = [Zi1, ... ,zi’Li]T,
which corresponds to the input set of function f;(-). The vector of observations p has also N¥
components such that p; = [pi1,...,p;, 1.]T, which corresponds to the observations of f;(-) at
input Zg;;. Our aim is to approximate each segment’s output simultaneously in order to account
for correlations across different road segments.

An important aspect of the GP model involves estimating the traffic density, denoted as p,
at an unobserved time-space point Z. By employing standard results, we obtain the subsequent

conditional posterior distribution p | p,02,7,v% ~ N (,u(Z), 32(2)>, where
- - ~ - ~ - 2
W(Z) = C(2)'Sp, () = o’[8 -~ C(Z)'S (@) &
Above, C(Z) = K(Z,Z;~) = [k11(Z,Z;~), ...,k ye(Z,Z;~)]T represents the block matrix of

correlations between the traffic density at each Z and the traffic density at the new time-space
point Z. In a similar manner, ¥ = K(Z,Z;~).

2.2.2 Bayesian inference

Prior distributions are specified for all unknown parameters. The joint prior distribution as-
sumed in this work is 7(02,~,v?) = (0?)7 ()7 (v?) (Rasmussen & Williams, 2006). By apply-
ing Bayes’ rule we can compute the posterior density of o2, 4 and v? denoted as 7(c2, v, v%|p) o
m(o?)w(v)w(v?) 7 (p|o?, v, v2). To derive the posterior predictive distribution for p at Z, it is nec-
essary to integrate out all unknown parameters by considering their marginal posterior distribu-

tions. We use the conditional posterior predictive distribution g | p,0?,v,v%2 ~ N (u(Z), 52(2)>,

where 4i(Z) and s%(Z) are given through Equations (2), and the posterior distribution 7(c2, 7, 2| p)
as shown above. Hence, the unconditional posterior predictive distribution, is

wlo)= [, [ [ 781 p0" v 0An(c? 72 | o iy i 3)

2.2.3 Bayesian optimal UAV trajectory construction scheme

We define a UAV trajectory as a sequence denoted by ¢ = [sp,, Sp,, - - - , Sp,, |, comprising n points,
where {b1,...,b,} takes values from the set of UAV sampling points SU. A n-size optimal
UAYV trajectory ¢* is defined by comparison with the set S of all possible trajectories of size
n with respect to a specific criterion. A Bayesian optimal UAV trajectory (* maximises the
expected utility U(¢) = E[u((, 0, p)], where the expectation is with respect to the future data
p and parameters 8 = [0°,~,%]T € ©. An appropriate utility u(-) is the Shannon informa-
tion gain between the prior and the posterior predictive distribution (Shannon, 1948). The
maximisation of the expected Shannon information gain for p is equivalent to maximisation of
U¢) = [ [logm(plp,{)m(p, p|¢)dpdp, see Verdinelli et al. (1993), where 7(p|p, () is the poste-
rior predictive density given in (3). The intuition behind the chosen expected utility is to find the
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Bayesian optimal UAV trajectory Cyclical trajectory
95% prob. bounds MAPE (%) MAPE SD (%) | 95% prob. bounds MAPE (%) MAPE SD (%)
Time-point 149 119.66 3.91 0.59 212.98 9.56 1.84
Time point 201 33.94 4.19 0.39 64.32 6.24 0.44
Time-point 301 42.76 3.53 0.17 95.13 5.41 0.21
Time-point 431 53.77 3.44 0.25 55.24 3.85 0.84
Total time-horizon 13.98 0.65 0.05 41.91 1.92 0.19

Table 1 — Average 95% probability bounds, average MAPE and MAPE standard deviation (SD)
of all road segments for different time-points and the total time-horizon under study.

Bayesian optimal UAV trajectory than maximises the information gain about the traffic density
at unobserved time-space points, or equivalently, that minimises the uncertainty regarding the
traffic density at these points. Hence, we aim to solve the following optimisation problem

" e arg max U(¢). (4)
3 RESULTS

To assess the effectiveness of the proposed methodology, we conduct a simulation study using a
specific segment of the M25 motorway in London, England. We operate under the constraint of
having only one UAV available for traffic density measurements and define SY = 6 UAV sampling
points placed to cover all road segments comprehensively. The scenario under examination
involves a 1.5-hour traffic simulation, initially depicting free-flow traffic conditions. However,
during this period, an accident occurs resulting some segments to enter the congested regime.
We compare the estimation performance of the Bayesian optimal UAV trajectory against
a basic cyclical trajectory. We calculate the average 95% probability bounds of the posterior
predictive distribution, 7(p|p), of all road segments for the next five moves of the UAV, as well
as the average Mean Absolute Percentage Error (MAPE) of the estimated density at unobserved
time-space points against the ‘true’ traffic density, along with the standard deviation (SD) of
the MAPE to show the consistency of estimation across different road segments. The MAPE is

given by MAPE = 1/S Zle[(\p”“e — ps|)/ P €1100%, where p'™€ is the ‘true’ traffic density

S S
and p the estimated traffic density at the S unobserved time-space points.

Table 1 presents the estimation performance of the Bayesian optimal UAV trajectory com-
pared to the basic cyclical trajectory. We specifically examine selected time-points spanning
from congested to free-flow conditions within the total study time-horizon to observe the varia-
tion in the 95% probability bounds and MAPE. Additionally, we provide these metrics for the
entire time-horizon under study. At time-point 149, where the transitioning from free-flow to
congested conditions has initiated, both trajectories exhibit their highest probability bounds,
while at time-point 431, during free-flow conditions, both approaches yield very similar results.
Notably, the probability bounds obtained using the Bayesian optimal UAV trajectory are 50%
smaller than those obtained from the cyclical trajectory. The Bayesian optimal UAV trajectory
improves the probability bounds by up to 70% compared to the cyclical trajectory.

To provide a deeper understanding of how the Bayesian optimal UAV trajectory is con-
structed considering the uncertainty of traffic density at various time-space points, we present
heatmaps depicting this uncertainty at the specific time-points selected in the previous results
for the different road segments of the network. These heatmaps are placed alongside with the
Bayesian optimal UAV trajectory, allowing for comparison with heatmaps depicting the uncer-
tainty obtained for the cyclical trajectory at the same time-points.

In Figure 1, the top row displays plots corresponding to the Bayesian optimal UAV trajectory,
while the bottom row corresponds to the cyclical UAV trajectory. Dashed lines in all plots
correspond to the UAV trajectory up to the indicated time-point, while uncertainty in traffic
density estimations is depicted from the start of the study’s time-horizon up to the specified
time-point. Additionally, uncertainty for the prediction window duration, represented by the
next m = 5 moves of the UAV, is included. Across all plots, the highest uncertainty for the next
five moves is consistently observed in road segments 1 and 2 (congested segments). The Bayesian
optimal UAV trajectory strategically selects sampling points associated with these segments to
minimize resulting uncertainty. Conversely, for the cyclical UAV trajectory fails to incorporate
this information, resulting in slower reduction of uncertainty regarding traffic density and higher
average 95% probability bounds, as also demonstrated in Table 1.
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Figure 1 — Heatmaps of the 95% probability bounds of the estimated traffic density for each road
segment alongside the Bayesian UAV trajectory for time-points (a) 149, (b) 201, (c) 301, (d)
481 and the cyclical UAV tragectory (e) 149, (f) 201, (g) 301, (h) 431.

4 DISCUSSION

In this work we propose an online Bayesian optimal UAV trajectory construction methodology to
strategically select the optimal UAV sampling points in real-time, while minimizing the overall
traffic density uncertainty across time and space. The proposed approach was validated using
realistic simulations of a multi-lane highway stretch. Results showed that the proposed approach
yields low uncertainty traffic density estimations and compared to a simple cyclical UAV trajec-
tory, it yields a significant reduction in uncertainty of density estimates, showcasing the efficacy
of our methodology for improving traffic management and planning.
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