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Abstract. In this paper, a new optimization method for the trajectory optimiza-

tion problem is presented. This new method allows to predict racing lines de-

scribed by cubic splines (problems solved in most cases by stochastic methods) 

in times like deterministic methods. The proposed Double Gradient Method 

(DGM) is not affected by the dimensionality of the problem. Comparison of the 

results with data collected from professional drivers has shown that the DGM is 

reliable for lap time simulations with race line optimization. It can help drivers 

find the fastest racing line, be used for embedded algorithm development or for 

autonomous vehicle competitions. 
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1 Introduction 

Over the years, simulators have been developed to help drivers find the fastest racing 

line [1] or to help develop embedded algorithms, such as stability control [2]. Lap 

time simulators with race line optimization using nonlinear programming have be-

come attractive since the advances in computing capacity, as they can perform opti-

mizations of hours [3, 4] in a few minutes [5, 2, 6, 7, 8].  

In 2014, F. Biral and R. Lot [5] developed a method for predicting the optimal path 

using the three-dimensional coordinates of the track as an implicit reference in the 

equations of the vehicle model. Using Darboux's trihedron, they modeled the circuit 

in curvilinear coordinates, which in turn were used to derive the vehicle's motion 

equations. The proposed method can optimize racing lines in less than a minute but 

requires the equations to be formulated at a symbolic level to derive the model which 

is inserted into the solver. 

The formulation of equations at the symbolic level requires information that is not 

always available to engineers from, for example, the Brazilian automotive categories, 

especially the semi-professional ones. Data for tire modeling are particularly difficult 

to obtain, even in professional categories. Stochastic methods [9, 10] and derivative-
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free methods [11] can solve optimization problems without having to fully model the 

tires of the vehicle [1, 12, 13], but are not as fast as deterministic methods [9].  

Autonomous vehicle competitions are an interesting platform to develop control 

algorithms to work at the limit of handling [14] aiming at more reliable embedded 

systems for road vehicles. Trajectory prediction time is a key factor for such competi-

tions [15, 16]. Simplifying the vehicle model and precomputing the racing line for a 

new track using cubic splines [13] is one strategy to reduce the trajectory prediction 

time. As in regular semi-professional competitions where tire data is not available, 

trajectory optimization for simplified models with cubic splines path description falls 

back to stochastic or derivative-free methods. 

Based on foregoing, this paper proposes an optimization method based on the gra-

dient descent concept and inspired by Neural Networks to solve trajectory optimiza-

tion problems: Double Gradient Method (DGM). This new method allows us to pre-

dict racing lines described by cubic splines in times similar to deterministic methods. 

The results of the developed method were compared with the results obtained by the 

following methods: Genetic Algorithm (GA) [17, 18], Differential Evolution (DE) 

[19, 20], Nelder-Mead [21, 22, 23] and Trust Region [24, 25, 26, 27]. These methods 

were chosen because they can solve the optimization problem without using the de-

rivative of the objective function, which is not available in cubic spline path optimiza-

tion problems. 

The main contributions of this work are: 

1. Development of a new method to solve trajectory optimization problems graphical-

ly i.e., manipulating a cubic spline that describes the vehicle path. 

2. Application of this method on a race line prediction problem. 

3. Comparison of the DGM with four other methods capable of solving race lines 

graphically. 

4. Results validation comparing with professional driver performance. 

This paper is organized as follows: Section 2 presents the optimization problem for a 

path interpolated by a cubic spline. Section 3 develops the proposed Double Gradient 

Method, and simulation results are presented in Section 4. Section 5 contains the con-

clusions, applications of the algorithm, limitations of the algorithm, and future works. 

2 Optimization problem 

The DGM presented in this paper is applied to the following problem: Given a vehicle 

model with one degree of freedom and a trajectory described by cubic splines, deter-

mine the path that gives the shortest lap time on a circuit by directly changing the 

control points of the cubic splines (see Fig. 1). 

The optimization problem in the standard formulation is given by: 

  (1) 

Subject to: 

min
𝑢

𝐹𝑜𝑏 𝑢 =  
2 ∙ 𝑠𝑖(𝑢)

𝑥 𝑖(𝑢) + 𝑥 𝑖−1(𝑢)
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  (2) 

 

Fig. 1. Updating the trajectory control points position during the optimization process. The 

control coordinates (in red) are interpolated by the 𝑡 parameters of the 𝑢 vector of decision 

variables to generate the cubic spline control points 𝑃〈𝑛〉. 𝑝𝑖 are the interpolated points between 

control points. 

The objective function 𝐹𝑜𝑏 𝑢  is the numerical integration of the path distance 𝑠𝑖 as a 

function of velocity (lap time), where 𝑠𝑖 is the linear distance between two consecu-

tive discrete points 𝑝𝑖−1 𝑝𝑖̅̅ ̅̅ ̅̅ ̅̅  describing the vehicle path. The distance 𝑠𝑖 cannot be inte-

grated as a function of the spline by Bézier curves [28], since it is an elliptic integral, 

hence the use of a linear approximation between the interpolated points, which re-

quires an appropriate interpolation mesh (less than 1m between two consecutive 

points, for errors up to the third decimal place). 𝑥 𝑖 represents the speed and is deter-

mined according to the model used to represent the vehicle on the track. 

 

Fig. 2. In red, the control coordinates for generating the path for the Goiânia circuit. 

The interpolation of the trajectory is based on control points that are uniformly dis-

tributed along the track. The control points must be homogeneously distributed due to 

the interpolation properties of the spline by Bézier curves. The interpolated points are 

distributed as a function of the linear interpolation of the Bézier points [29], so an 

irregular distribution of the control points leads to an irregular distribution of the in-

𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑠 
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terpolated points. Since the interpolated points correspond to the problem discretiza-

tion in space domain, it is necessary that they are distributed as homogeneously as 

possible to ensure an adequate mesh. 

The 𝑢 vector of decision variables contains the linear interpolation parameters of 

the pairs of control coordinates shown in Fig. 1 and Fig. 2, which form the control 

points for spline interpolation, so problem (1) has 𝑗 − 1 degrees of freedom for a 𝑢 

vector with 𝑗 parameters 𝑡. The bounds for the 𝑢 vector are: 𝑢𝑖 = 0 and 𝑢𝑠 = 1. 

The 𝐹𝑜𝑏 𝑢  solution requires the vehicle model simulation on the track, so the op-

timizer cannot use the objective function itself to solve the problem using determinis-

tic methods. The 𝐹𝑜𝑏 𝑢  solution is not available for evaluation until the simulation 

is completed, so probabilistic methods and derivative-free methods are better suited to 

solve it, despite the high time cost. The “Double Gradient” method proposed in this 

paper was inspired by Neural Network topology and aims to take advantage of the use 

of gradients in solving optimization problems: Speed. 

The requirements for the method are: 

• The simulation time of the developed algorithm must be comparable to the simula-

tion times of deterministic algorithms – a few minutes [5, 2, 6, 7, 8] – to allow its 

application during the shakedown of racing vehicles or during competitive events. 

• The algorithm must optimize the trajectory without using the vehicle's dynamic 

equations, which allows for greater flexibility in terms of the simulation method 

used to represent the vehicle on the track. This flexibility allows the use of com-

plex models with as much vehicle information as possible [6] or simplified models 

that require minimal vehicle data [13]. 

• The algorithm must be able to solve the problem graphically by directly modifying 

the cubic spline that defines the path. This requirement is a direct consequence of 

the previous requirement. 

3 Double Gradient Method 

Artificial Neural Networks (ANN) are the electrical equivalent of the biological neu-

ral networks from which they were inspired [17]. Neurons are represented by linear 

functions, while synapses are represented by nonlinear inhibitory functions that limit 

the signal amplitude processed in a cell. 

The method developed in this section was inspired by a particular topology of Arti-

ficial Neural Networks: the single-layer network with error back-propagation, as 

shown in Fig. 3. 

In matrix form, the topology of Fig. 3 is represented as follows: 

  (3) 

Where 𝑌 𝑘  and 𝑌′ 𝑘  are the reference and the output of the network in 𝑘 iterations. 

𝑊 and 𝑈 are the weights matrices and the inputs matrices respectively and 𝜑 is the 

activation function. The adaptation law is given by the gradient rule: 

  (4) 

𝑌′(𝑘) = 𝜑 𝑊(𝑘) ∙ 𝑈(𝑘)  

𝑒 = 𝑌 − 𝑌′ 
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  (5) 

  (6) 

 

Fig. 3. Topology of an artificial neural network with error backpropagation 

In order for the neural network's 𝑊 weights to adapt, the network is presented with a 

set of 𝑈 input data and their respective reference outputs 𝑌 during training. Only one 

input is available for solving the optimization problem and there is no reference to the 

error, yet the Double Gradient Method uses the basic topology presented for con-

structing the algorithm. 

For application in solving the problem of trajectory optimization by control points 

for spline interpolation, the topology of Fig. 3 was modified according to Fig. 4. The 

following equations (7 to 15) were developed to emulate the specialization phenome-

non of a Neural Network by adjusting the weights to determine the best path. The 

resulting topology is not an ANN (there is no learning process), but an analog for 

optimization problems. 

 

Fig. 4. Basic topology of the Double Gradient Method 

In Fig. 4, the vector 𝜗 of inputs (𝑢 in the neural network) is an invariant fixed refer-

ence (e.g. the track center line) during the optimization process and the vector 𝑢 be-
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comes both the “network” output and the input for the simulator running the vehicle 

model, i.e., it becomes the vector of decision variables of the optimization problem. 

In matrix form: 

  (7) 

Where ∗ denotes the row-wise product of the 𝑊  and 𝜗  matrices such that 𝑢  is an 

𝑛 × 1 matrix. Three gradients are considered for the construction of the adaptation 

law: 

  (8) 

  (9) 

  (10) 

Where 𝑃𝑓𝑡, defined by equation (11), is a function that accounts for the time gain/loss 

between the control points of the spline that forms the trajectory and 𝑃𝑦, defined by 

equation (12), is a function that accounts for the variation in lateral acceleration of the 

vehicle between the spline control points that form the trajectory. Both equations were 

established empirically. Equation (12) was established to emulate the driver’s pace on 

the track and the second and third terms of equation (11) provide more factual trajec-

tory results when defined in this manner. 

 

 

  (11) 

 

 

 

 

 

  (12) 

 

 

Thus, the algorithm adaptation law is given by: 

 

  (13) 

 

The updating of the weights of the algorithm, as shown in equation (13), depends 

only on the sign of the gradient. The optimization of the trajectory is done by chang-

ing the location of the spline control points that form the path (see Fig. 1) .The value 

of the gradient is not important and makes it difficult to control the degree of change 

𝑃𝑓𝑡 =

 
  
 

  
 
𝐹𝑜𝑏(𝑢)2  ∙  

2 ∙ 𝑠𝑖
𝑥 𝑖 + 𝑥 𝑖−1

𝑖𝑃 𝑛 

𝑖𝑃 𝑛−1 

 ∙   
2 ∙ 𝑠𝑖

𝑥 𝑖 + 𝑥 𝑖−1

𝑖𝑃 𝑛+1 

𝑖𝑃 𝑛 

, 𝑖𝑓 𝑛 = 1,⋯ , 𝑗 − 2

𝐹𝑜𝑏(𝑢)2  ∙  
2 ∙ 𝑠𝑖

𝑥 𝑖 + 𝑥 𝑖−1

𝑖𝑃 𝑛 

𝑖𝑃 𝑛−1 

 ∙   
2 ∙ 𝑠𝑖

𝑥 𝑖 + 𝑥 𝑖−1

𝑖𝑃 1 

𝑖𝑃 0 

, 𝑖𝑓 𝑛 = 𝑗 − 1

 

𝑃𝑦 =

 
  
 

  
 

  𝑦 𝑖 − 𝑦 𝑖−1 
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  𝑦 𝑖 − 𝑦 𝑖−1 

𝑖𝑃 𝑛 

𝑖𝑃 𝑛−1 

+   𝑦 𝑖 − 𝑦 𝑖−1 

𝑖𝑃 1 

𝑖𝑃 0 

, 𝑖𝑓 𝑛 = 𝑗 − 1

 

𝑢〈𝑛〉(𝑘) = 𝜑 𝑊〈𝑛〉(𝑘) ∗ 𝜗〈𝑛〉(𝑘)  

𝑊 𝑘 + 1 =  
𝑊 𝑘 − 𝛼(𝑘) ∗ 𝑠𝑔𝑛  𝜕𝑃𝑓𝑡 𝑘  ∗ 𝑠𝑔𝑛 𝜕𝑢 𝑘  , 𝑖𝑓 𝜅𝑃〈𝑛〉 ≥ 0.002

𝑊 𝑘 − 𝛼(𝑘) ∗ 𝑠𝑔𝑛  𝜕𝑃𝑦 𝑘  ∗ 𝑠𝑔𝑛 𝜕𝑢 𝑘  , 𝑖𝑓 𝜅𝑃〈𝑛〉 < 0.002
 

𝜕𝑃𝑓𝑡〈𝑛〉(𝑘) 𝑛×1 = 𝑃𝑓𝑡〈𝑛〉(𝑘) 𝑛×1 − 𝑃𝑓𝑡〈𝑛〉 𝑘 − 1  𝑛×1  

𝜕𝑢〈𝑛〉(𝑘) 𝑛×1 = 𝑢〈𝑛〉(𝑘) 𝑛×1 − 𝑢〈𝑛〉(𝑘 − 1) 𝑛×1  

𝜕𝑃𝑦 〈𝑛〉(𝑘) 𝑛×1 = 𝑃𝑦 〈𝑛〉(𝑘) 𝑛×1 − 𝑃𝑦 〈𝑛〉(𝑘 − 1) 𝑛×1  
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of the trajectory between iterations of the optimization process, so only the sign of the 

gradient is needed for the adaptation law. 

Comparing equations (13) and (6), we find that the weight updating step in (6) de-

creases as the reference error decreases, while this step in equation (13) is constant 

since there is no error parameter. To mimic the weighting update process, some fea-

tures of equation (13) need to be analyzed: 

• The weights are updated based on 𝜕𝑃𝑓𝑡〈𝑛〉 if the path curvature at the point 𝑃〈𝑛〉 is 

such that it can be considered a curve  𝜅 ≥ 0.002 . Under this condition, small 

changes in the position of the control points can produce reasonable gains/losses in 

lap time. 

• The weights are updated based on 𝜕𝑃𝑦〈𝑛〉 if the path curvature at the point 𝑃〈𝑛〉 is 

such that it can be considered a straight line  𝜅 < 0.002 . In this condition, small 

changes in the position of the control points do not effectively affect the lap time. 

In this case, better results are obtained by reducing the variation of the lateral ac-

celeration 𝑦. 

• Gradients serve only as a “compass” to indicate the direction of the update weights. 

The update step is defined by the update rate 𝛼. 

• The second term of equation (13) is always different from zero at all points except 

the trivial solution points. As the function approaches the suboptimal point, it stabi-

lizes and oscillates indefinitely around that point. 

Since we know that 𝛼  is the only parameter that changes the update step of the 

weights, and that equation (1) stops progressing when approaching a suboptimum, the 

update rate 𝛼 is treated as follows: 

 

  (14) 

Where the parameter 𝜍 indicates how many consecutive 𝑘 iterations 𝐹𝑜𝑏 𝑢  does not 

progress and % represents the remainder of the division 𝜍/𝑛𝑘 . The parameter 𝑛𝑘 

specifies how many iterations are allowed without result progress. The limit of 

0.0001 is fixed because path changes at the level of tenths of a millimeter are mean-

ingless for the lap time. 

Finally, the 𝜑 function ensures that 0 ≤ 𝑢〈𝑛〉 < 1 by the modified sigmoid accord-

ing to equation (15), where 𝑓 =  𝑊 ∗ 𝜗 : 

  (15) 

4 Results 

In this work, data collected from data loggers in competition vehicles were used to 

validate the simulated data (see Fig. 5 to Fig. 8). Track data obtained from two pro-

fessional drivers at the Autódromo Internacional Ayrton Senna (Goiânia) were used 

for validation. Vehicles and competition cannot be disclosed for confidentiality rea-

sons.  

𝛼(𝑘 + 1) =  

𝛼(𝑘)

2
, 𝑖𝑓 𝜍 > 0 𝑎𝑛𝑑 𝜍 % 𝑛𝑘 = 0 𝑎𝑛𝑑 𝛼 > 0.0001

𝛼 𝑘 , 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
 

𝜑 𝑓 =
1

1 + 𝑒−15.637∙𝑓+7.819
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Four already available methods were compared with the Double Gradient Method: 

Genetic Algorithm, Differential Evolution, Nelder-Mead and Trust Region. These 

methods were chosen because they can optimize problems without requiring the de-

rivative of the objective function. This is the main feature for solving optimization 

problems with racing lines by cubic splines.  

The Goiânia circuit was modeled by 93 pairs of control coordinates (see Fig. 2). 

Table 1 shows the results obtained after the simulations with the four selected optimi-

zation methods and the Double Gradient Method developed and presented in this 

work. The proposed method was the only one that could solve the problem within a 

time window of minutes, comparable to that of the deterministic methods, which 

range from about 1 to 10 minutes [8]. To valid data analysis, all data were compared 

taking the inner edge of the track as a fixed reference. The reference vector 𝜗 was 

used as the initial guess for the four selected methods. Only the Double Gradient data 

are presented so as not to overload the figures. 

Table 1. Simulations results compared to the driver’s performance. 

Method Simulation time Lap time [s] Difference [s] 

Differential Evolution 06:37:50 93.29 0.37 

Genetic Algorithm 19:55:22 96.72 3.80 

Double Gradient 00:07:29 93.30 0.38 

Nelder-Mead 01:15:29 94.23 1.31 

Thrust Region 01:59:45 94.30 1.38 

Driver 1 NA 92.92 0.00 

Driver 2 NA 93.20 0.28 

 

The following figures show the metrics comparisons between the proposed method 

and professional driver’s performances: 

 

Fig. 5. Vehicle position along the track in relation to the track inside edge. 
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Fig. 6. Vehicle speed along the track. 

 

Fig. 7. Race line (path) curvature 

 

Fig. 8. Simulated g-g diagram compared to those obtained with professional drivers. 

5 Conclusion 

In this paper, a new optimization method for the trajectory optimization problem was 

presented, where control points are used to manipulate a spline representing the path 

of the vehicle. Since the solution to the problem involves direct manipulation of the 
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spline control points for path construction (see Fig. 1) and these control points are 

manipulated by a vector of linear interpolation parameters that vary between zero and 

one, the matrix product structure modulated by an activation function of Neural Net-

works was suitable for this application. 

By changing the topology, the role of the Neural Network variables was changed 

as follows: 

• The input variables have begun to act as reference vectors. For the optimization 

problem presented in this paper, the most suitable reference vector is the centerline 

of the track. 

• The modifications applied to the network topology were made to emulate the spe-

cialization phenomenon of a Neural Network by adjusting the weights to determine 

the best path. 

• The Neural Network output vector is the result of the problem posed to it. In the 

modified network, the output of the network is passed to the simulator, which cal-

culates the vehicle lap time. The task of the network is now to adjust the vector of 

decision variables of the optimization problem, i.e. to change the layout of the cen-

ter line of the race track until the lowest possible lap time is reached. 

• The adaptation law of the Neural Network is constructed as a function of the error 

gradient. In the modified network, the adaptation law is constructed based on the 

gradients of the simulator outputs (lap time and lateral acceleration) and the gradi-

ent of the vector of decision variables. The adaptation law uses two functions 

where two gradients are applied, hence the name of the proposed method. 

5.1 Algorithm limitations: 

• Since it is based on gradients, long stretches of straight lines can produce a local 

minimum. This condition has a small effect on the total lap time, but it can produce 

a path that is unusual for professional drivers. Once drivers travel a known path in 

the straight lines, the control points on these sections can be set at the known posi-

tions, minimizing this problem. 

• The algorithm assumes that the vehicle simulation model is able to follow the path 

defined by the spline. This is done either by linking the curvature and spline length 

data to the model equations or by running a control algorithm that follows the op-

timization trajectory. 

5.2 Algorithm applications: 

• Vehicle setup assistance during test sections in competitions. 

• Baseline prediction for autonomous vehicle competitions. 

• Development of amateur and semi-professional drivers, helping to learn the best 

race line for the circuit of interest. 
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5.3 Future works 

• Generalize the method for solving various problems graphically by cubic splines or 

surfaces manipulation. 

• Trajectory optimization in restricted 3D space such as racetracks or test tracks 

modeled in three dimensions. 

•  Trajectory optimization in unrestricted 3d space for applications with drones, Un-

manned Aerial Vehicle (UAV) or Autonomous underwater vehicle (AUV). 

─ Acknowledgement: The Authors would like to thank Bahia Research Founda-

tion (FAPESB) for the financial support (grant 0342/2021). 
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