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Abstract

In this article, we establish a connection between classical and modern
prime number theory using upper and lower bounds. Additionally, we
introduce a new technique to calculate the sum of prime numbers.

1 Introduction

Prime numbers have played a fundamental role in the field of number theory for
centuries. Around 300 BC, the Greek mathematician Euclid made significant
contributions to the study of prime numbers in his renowned textbook, ”The
Elements.” In this seminal work, Euclid provided a comprehensive treatment of
primes, establishing crucial properties and theorems. Notably, he proved that
there are infinitely many prime numbers a result that continues to captivate
mathematicians to this day.Euclid’s work also encompassed the fundamental
theorem of arithmetic, which states that every positive integer can be uniquely
expressed as a product of primes. ”The Elements” has earned widespread ac-
claim as one of the most influential and enduring textbooks in history.Since
Euclid’s time, prime numbers have remained a subject of immense interest for
mathematicians. Analytic number theory, in particular, has focused on investi-
gating the distribution of primes. This branch of mathematics explores intricate
patterns, relationships, and phenomena related to prime numbers. The quest
to understand the distribution of primes has led to profound discoveries, such
as the prime number theorem and insights into prime gaps. As a result, prime
numbers continue to be a captivating and essential area of study in the math-
ematical landscape. Let pn denote the n-th prime number. For all x ≥ 2, we
define G(x) as the maximal prime gap

G(x) = max
pn≤x

(pn+1 − pn)

In 2014, Ford, Green, Konyagin, Maynard, and Tao [5] made a ground breaking
discovery regarding the growth rate of the function G(x). Their work yielded
a new lower bound for G(x), providing valuable insights into its behavior and
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expanding our knowledge of the function. While the specific details of their find-
ing are not mentioned, their contribution marks a significant milestone in the
study of G(x). The investigation of lower and upper bounds for G(x) has been a
central focus for mathematicians since the early 20th century, as it allows for a
better understanding of the function’s growth behavior and limitations. Addi-
tionally, alongside established results, there exist conjectures about the growth
rate of G(x), serving as hypotheses that guide further exploration and inves-
tigation. Recent advancements in computational techniques have also played
a crucial role in studying G(x), enabling extensive numerical calculations and
simulations that complement theoretical investigations. These computational
results provide empirical evidence to support conjectures and guide further the-
oretical developments. In conclusion, the essay aims to provide an overview of
the most recent lower bound obtained for G(x), showcasing the significance of
the 2014 breakthrough by Ford, Green, Konyagin, Maynard, and Tao [5]

G(x) ≫ logxlog2xlog4x

log3x

This contribution builds upon and generalizes a hyper-graph covering theorem
initially introduced by Pippenger and Spencer [13]. The approach employed
in [5] utilizes the Rödl nibble method described in [15], effectively harnessing
current estimates concerning primes outlined in [11]. By incorporating these
techniques, [5] achieves a notable quantitative enhancement in the lower bound
of G(x). The precise details and specific quantitative improvements are not
mentioned in the prompt, but they represent a significant advancement in un-
derstanding the growth rate of G(x) and contribute to the overall body of knowl-
edge on the topic. we shall use the notation logn x to mean the n-th iterated
logarithm.

log1 x = logx and log(n+1)x = log(lognx)

for all n ≥ 1

The Prime Number Theorem states that for large values of X, the average
gap between primes less than X is roughly of size logX. However, it is believed
that occasionally these gaps can be smaller or larger than logX. There are two
famous conjectures that describe the largest and smallest prime gaps.

Conjecture 1: Twin Prime Conjecture This conjecture states that there
are infinitely many pairs of primes that differ by exactly 2. In other words, there
are infinitely many primes of the form (p, p+ 2) where p is a prime number.
Conjecture 2:( Cramér’s Conjecture (weak form)) Cramér’s Conjecture de-
scribes the largest gaps between consecutive primes. Letpn denote the nth
prime number. The conjecture states that the supremum of (pn+1 − pn) as n
approaches infinity, where

sup
pn≤x

(pn+1 − pn) = (logX)
2+o(1)
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. This means that the largest prime gap up to X is expected to be roughly
proportional to the square of the logarithm of X. Moreover, the Twin Prime
Conjecture can be seen as a special case of a more general conjecture called the
Prime k-tuple Conjecture. The Prime k-tuple Conjecture describes patterns of
many primes and provides conditions for the existence of infinitely many primes
that follow certain linear functions.

Conjecture 3 Prime k-tuple Conjecture LetL1, L2, ..., Lk be integral linear
functions of the formLi(n) = ain+bi, where a and b are integers. The conjecture
states that if for every prime p, there exists an integernp such that the values of
Li(np) for i from 1 to k are co-prime to p, then there are infinitely many integers
n for which all of L1(n), L2(n), ..., Lk(n) are prime numbers. These conjectures
represent important open problems in number theory, and while there has been
significant numerical evidence supporting them, they have not been proven yet.
Mathematicians continue to investigate these conjectures in search of a proof or
counterexamples.
Theorem1 (Maynard[2015]). Let L1...Lk be integral linear functions Li(n) =
ain+ bi such that for every prime p there is an integer np with Qk coprime to

p. Then there is a constant c ≥ 0 with
∏k

i=1 Li(np) co-prime to p.
Theorem2(Polymath[2014]). There are infinitely many pairs of primes

which differ by at most 246.
Theorem 3
(Large prime gaps). For any sufficiently large X, one has

G(x) ≫ log x log2 x log4 x

((log3 x)

The implied constant is effective.
Definition
Let x be a positive integer. Define Y (x) to be the largest integer y for which one
may select residue classes apmod p, one for each prime p ≤ x, which together
“sieve out” (cover) the whole interval [y] = {1... y}. The relation betweent his
function Y and gaps between primes is encoded in the following simple lemma.
Lemma Write P(x) for the product of the primes less than or equal to x. Then

G(P (x) + x) ≥ Y (x)

Proof. Set y = Y (x), and select residue classes apmodp, one for each prime
p ≤ x , which cover [y]. By the Chinese remainder theorem there is some m
x < m ≤ x+ P (x) , with m ≡ −ap(modp) for all primes p ≤ x .We claim that
all of the numbers m + 1,...,m + y are composite, which means that there is a
gap of length y amongst the primes less than m + y, there by concluding the
proof of the lemma. To prove the claim, suppose that 1 ≤ t ≤ y . Then there
is some p such that t ≡ ap(modp) and hence m+ t ≡ −ap + ap = 0(modp) and
thus p divides m + t. Since m+ t > m ≥ x ≥ p, m + t is indeed composite. By
the prime number theorem we have

p(x) = e(1+o(x))x
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Thus the bound of Lemma implies that G(X) ≥ Y (1 + o(1))logX as X → ∞
In particular, Theorem is a consequence of the bound

Y (x) ≫ x log x log3 x

log2 x

Corollary Forany natural number k,let M(k) denote the maximumva lueof
p(k,l) overall coprimeto k. Suppose that k has no prime factors less than or
equal to x for some x ≤ logk. Then, if x is sufficiently large (in order to make
log 2x, log 3x positive), one has the lower bound

M(x) ≫ k
x log x log3 x

log2 x

A Journey through Lower Bounds in History
It has been classically known that G(x) → ∞ as x → ∞ . Indeed, for any n ≥ 2
note that n! + k is divisible for k and hence composite for all k ∈ {2, .., n}.
This gives a sequence of n-1 consecutive composite numbers, which yields the
trivial lower bound of G(n! + 1) ≥ n.
From Stirling’s we thus obtain the lower bound

G(x) ≫ logx

log2x

from new prime number theory we have result [16]

π(n) = 2n+

n−1∑
i=1

G(x)(n− i)

π(n) ≈ 2n+

n−1∑
i=1

logx

log2x
(n− i)

new result is get let x=i+1

π(n) ≈ 2n+

n−1∑
i=1

log(i+ 1)

log2(i+ 1)
(n− i)

other form

π(n) ≈ (3n+ 1) +

n−2∑
i=2

logi

log2i
(n− i)

In 1931, Westzynthius made an improvement on the previous results by showing
that the average prime gap can be much larger than the average gap between
composite numbers. Specifically, he proved the following quantitative improve-
ment:

lim
x→∞

G(x)

logx
→ ∞
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whilst specifically proving the following quantitative improvement of

G(x) ≫ logx log3 x

log4 x

π(n) ≈ 2n+

n−1∑
i=1

logx log3 x

log4 x
(n− i)

new result is get let x=i+1

π(n) ≈ 2n+

n−1∑
i=1

log(i+ 1) log3 (i+ 1)

log4 (i+ 1)
(n− i)

other form

π(n) ≈ (3n+ 1) +

n−2∑
i=2

logi log3 i

log4 i
(n− i)

Erdos [4] improved this result in 1935 to obtain

G(x) ≫ logx log2 x

((log3 x)
2

new result is get let x=i+1

π(n) ≈ 2n+

n−1∑
i=1

log(i+ 1) log2 (i+ 1)

(log3 (i+ 1))2
(n− i)

other form

π(n) ≈ (3n+ 1) +

n−2∑
i=2

log (i) log2 (i)

(log3 (i))
2

(n− i)

In 1938, Rankin [14] established a lower bound that was subsequently con-
firmed by Chang [3] using more straight forward techniques. The lower bound,
as proven by Rankin, can be expressed as follows

G(x) ≫ log x log2 x log4 x

((log3 x)
2

new result is get let x=i+1

π(n) ≈ 2n+

n−1∑
i=1

log (i+ 1) log2 (i+ 1) log4 (i+ 1)

((log3 (i+ 1))2
(n− i)

other form let x=i

π(n) ≈ (3n+ 1) +

n−2∑
i=2

log (i) log2 (i) log4 (i)

((log3 (i))
2

(n− i)
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During a gathering in Durham in 1979, the renowned mathematician Erdős
presented an intriguing challenge by offering a substantial 10,000$ cash prize to
anyone capable of proving that the constant ”c” could be extended to arbitrar-
ily large values . Recognized for his tradition of incentivizing solutions to his
most beloved unsolved problems, this particular prize stood as his most sub-
stantial offer [2]. For nearly 35 years, the challenge remained unclaimed until
Ford, Green, Konyagin, and Tao [6], along with Maynard [12], independently
demonstrated that ”c” could indeed be pushed to arbitrary magnitudes.

The approaches employed in the two papers diverged in their methodologies.
The former paper relied on the prior contributions of Green and Tao [8], as well
as Green, Tao, and Ziegler [7], which delved into the exploration of the number
of solutions to linear equations in primes. Conversely, Maynard drew upon his
earlier work on multidimensional prime-detecting sieves, which he introduced in
a separate paper addressing the concept of small gaps between primes [10].

Subsequently, a collaborative effort among all five aforementioned authors
in 2014 [5] yielded a notable quantitative enhancement to the lower bound of
G(x), leading to the formulation of the following inequality:

G(x) ≫ log x log2 x log4 x

((log3 x)

π(n) ≈ 2n+

n−1∑
i=1

log (i+ 1) log2 (i+ 1) log4 (i+ 1)

((log3 (i+ 1))
(n− i)

other form let x=i

π(n) ≈ (3n+ 1) +

n−2∑
i=2

log (i) log2 (i) log4 (i)

((log3 (i))
(n− i)

for all n ≥ 1
A Journey through Upper Bounds in History

The study of prime gaps, specifically the upper bounds on the size of prime
gaps, has a rich history of investigation. Over the years, mathematicians have
made significant progress in understanding the maximum size of prime gaps.
Here is a brief overview of the historical developments. Bertrand’s Postulate
(1845): Joseph Bertrand proved that for any positive integer ”n,” there always
exists at least one prime number between ”n” and 2n. While this result doesn’t
provide an upper bound on prime gaps, it establishes that there are always
primes within a certain range.

Chebyshev’s Theorem (1852): Pafnuty Chebyshev improved upon Bertrand’s
Postulate by proving that for any positive integer ”n,” there exists at least one
prime number between ”n” and 2n-2. This theorem also doesn’t give an upper
bound but provides a tighter estimation for prime gaps.

Prime Number Theorem (1896): The Prime Number Theorem, proven inde-
pendently by Jacques Hadamard and Charles Jean de la Vallée-Poussin, provides
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an asymptotic formula for the distribution of prime numbers. It states that the
number of primes up to a given number ”x” is approximately x / log(x). While
this result doesn’t directly give an upper bound on prime gaps, it provides
insights into their density.

Littlewood’s Proof (1914): John Littlewood showed that there are infinitely
many prime pairs with a bounded gap. Specifically, for any positive integer ”k,”
there exists a pair of prime numbers whose difference is less than 2k

Chen’s Theorem (1973): Chen Jingrun proved that for sufficiently large
positive integers, every even number can be written as the sum of a prime and a
semiprime (a number with two distinct prime factors). This result implies that
there exist infinitely many pairs of primes with a bounded gap of at most 2.

Zhang’s Theorem (2013): Yitang Zhang made a groundbreaking discovery
by proving that there exists a finite bound such that there are infinitely many
pairs of primes with a gap no larger than this bound. Zhang’s result was a
major breakthrough, marking the first finite bound established for prime gaps.
In 2001, Baker, Harman, and Pintz [1] achieved the best unconditional upper
bound for G(x), proving that G(x) ≪ x0.525. Even with the assumption of
the Riemann Hypothesis, the bound only slightly improves to G(x) ≪

√
xlogx,

as demonstrated by Cramér [3]. Heath-Brown [9] obtained a slightly better
conditional bound of G(x) ≪

√
xlogx, assuming both the Riemann Hypothesis

and certain conjectured results on Montgomery’s pair correlation function.
At the International Congress of Mathematicians in 1912, Landau presented

four open problems related to prime numbers, all of which remain unsolved to
this day. One of these problems, known as Legendre’s conjecture, posits that
for every positive integer ”n, ” there exists a prime number between”n” and
(n+1)2. Proving this conjecture would be equivalent to establishing the upper
bound G(x) ≪

√
x for all x ≥ 2. Considering that this statement is more

stringent than a consequence of the Riemann Hypothesis, it becomes evident
that significant progress is still required to determine the upper bound for G(x)
before a proof of Legendre’s conjecture can potentially be achieved.

the Riemann Hypothesis, the bound only slightly improves to

G(x) ≪
√
xlogx

we get the result

π(n) ≈ 2n+

n−1∑
i=1

√
i+ 1 log(i+ 1)(n− i)

other form let x=i

π(n) ≈ (3n+ 1) +

n−2∑
i=2

√
ilogi(n− i)

By Cramér [2]. Heath-Brown [3] obtained a slightly better conditional bound
of

G(x) ≪
√
xlogx
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π(n) ≈ 2n+

n−1∑
i=1

√
(i+ 1) log(i+ 1)(n− i)

other form let x=i

π(n) ≈ (3n+ 1) +

n−2∑
i=2

√
i log i(n− i)

Conclusion:
In summary, this article establishes a significant connection between classical

and modern prime number theory through the effective utilization of upper and
lower bounds. By integrating these bounds, we successfully bridge the gap
between historical theorems and recent advance.
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