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Abstract Dual-energy computed tomography (DECT) can identify the 

material properties with its excellent material quantitative analysis ability. 

However, the application of DECT is restricted by the problems of 

inaccuracy of energy spectrum estimation, non-linearity and 

inconsistency of imaging geometry, which will lead to the degradation of 

material distribution images. Hence, deep learning (DL)-based methods 

have become the state-of-the-art technique in DECT rely on its excellent 

feature recognition performance in the case of few spectrum prior. In this 

work, we propose an asymmetrical Dual-Cycle adversarial network 

(ADCNet) for both material decomposition and synthesis of dual-energy 

CT images, which has certain advantages in spectral CT multi-task 

parallel, improvement of image quality and radiation dose reduction. The 

experimental results show that the cycle framework achieves the 

adversarial learning of dual networks, and promotes the quality of 

generated images by introducing multiple mechanisms. Compared with 

the traditional DL-based methods, the proposed method has outstanding 

qualitative and quantitative indicators. 

1 Introduction 

 

Dual-energy computed tomography (DECT) utilizes the 

potential information in energy spectrum to achieve 

quantitative analysis of substances, which is highly 

promising for clinical applications. Although DECT has 

certain preponderance over conventional CT, a tiny 

disturbance in spectrum-imaging would bring out an 

inestimable impact on the material decomposition. 

Meanwhile, the radiation accumulation of DECT scanning 

is another question worthy of attention in clinical 

application. Exploring methods of reducing the radiation 

dose of DECT is also a key issue in the research field.  

In order to effectively extract the intrinsic feature of the 

spectral CT images and improve the quality of decomposed 

images, deep learning (DL)-based methods have become 

the state-of-the-art technique in DECT. In 2019, Zhang et 

al [1] exploited the characteristics of DECT to optimize the 

traditional U-Net architecture and build a dual U-Net with 

butterfly structure. It shows that the dual U-Net architecture 

with information interaction has presented great potential in 

DECT material decomposition. To further improve the 

network performance, Shi et al [2] adopted the General 

Adversary Network (GAN) [3] to the dual U-Net structure 

and compared different GAN variants，creating a network 

called interactive Wasserstein GAN (DIWGAN). Based on 

this method, the effect of material decomposition has been 

further promoted. In 2022, Zhou et al [4] analysed the 

requirements of tradeoffs between the level of radiation and 

the quality of spectral CT images,  

and proposed a cycle adversarial network with multi-

strategy to synthesize high-energy images from low- energy 

images. The bidirectional loop structure based on 

CycleGAN [5] have achieved promising results in the 

synthesis task of spectral CT images. 

In this paper, we combine the two tasks: base material 

decomposition and synthesis of dual-energy CT images 

with an asymmetrical dual-cycle adversarial network 

(denoted ADCNet). In practical application, our method can 

use conventional CT image to synthetize dual-energy 

images to further reduce the radiation dose of CT scanning, 

and achieve accurate material decomposition at the same 

time, which is conducive to shorten the time of clinical 

diagnosis and promotes the practical application of DECT. 

2 Materials and Methods 

 

2.1 Dual-Cycle Adversarial Framework 

 

Here, we first describe the composition of the dual-cycle 

generation adversarial network framework. To realize one-

time conversion of multi-task in a integral framework, we 

design a double-entry and double-out architecture based on 

CycleGAN. The material decomposition module (Module I) 

and the image synthesis module (Module II) have been 

contained in the circle framework, as illustrated in Fig. 1.  

Different from the traditional CycleGAN, the proposed 

ADCNet has been improved and innovated in network 

architecture, loss function and training methods. 

 

2.2 Loss Function 

 

The input high- and low-energy images r

HX , r

LX are 

generated as truth data to provide dual-energy spectrum 

information for the material decomposition. On the other 

side, we have prepared bone and tissue images separated 

from the head data of patients, which are presented as r

BX ,
r

SX . To distinguish the real material images from the fake 

style images converted by generator G , and the real high- 

and low-energy images from the fake style images 

converted by the other generator F , we define the follwing 

loss functions: 
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Figure 1: Dual-Cycle Adversarial Framework architecture. 1st line : Module I of material decomposition. 2nd line: Module II of synthesis 

of dual-energy CT images. From left to right are the loss functions in the image domain and projection domain. 
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where 1

GAN
 and 2

GAN
represent the loss of GAN at 

BSD and 

HLD  respectively; ,H Lx and
,B Sx  represent 2 spectral CT 

images and base materials. measuring the distance between 

the generated fake images and the real images and giving 

judgement. Cycle  aims to make the output images c

HX  and 

c

LX  (or ,c c

B SX X ) consistent with r

HX and r

LX (or ,c c

H LX X ) in 

style. The identity loss
Idt

 is also an indispensible link to 

maintain grey scale information of the materials. In addition, 

we introduce edge loss 
edge

to restore the texture and edge 

features of images. , ,f f f

H L BY Y Y and f

SY represent the output 

of generators. Meanwhile, to further improve the quality of 

images, we try to excavate the projection information of the 

image from the projection domain as a loss function to 

constrain. We assume the projection of label images are r

HP ,
r

LP , r

BP and r

SP respectively. The generated images should 

be as close as possible to the label images. Therefore, the 

projection loss can be described by  
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The whole loss function is given by 

 
1 2

1 2 3 4 5 6     SUM GAN GAN Cycle Idt edge proj= + + + + +           (7) 

 

where  ,  1,2,...,6i i = represents the balance parameters 

of different loss functions. 

2.3 ADCNet Architecture 

 

In this paper, we proposed ADCNet which integrates 

multiple mechanisms to achieve the decomposition of bone 

and tissue from high- and low-energy CT images. The 

double-entry and double-out network with information 

interaction between the two paths can effectively acquire 

the internal characteristics of base materials from spectral 

CT images. On the contrast, to achieve the task of synthesis 

of DECT images, we design a single-entry and double-out 

network architecture to generate high- and low- energy 

images from fused images. Fig. 1 shows the structure of 

generator G , generator F and discriminator D . Moreover, 

we also introduce DANet module [6] which combines 

spatial attention and channel attention to enlarge the 

receptive field and restore the texture details of bones and 

tissues. In particular, we add butterfly architecture [1] to the 

deepest downsampling of ADCNet in generator G , in order 

to collect high-level abstract semantic information of high- 

and low-energy spectral images. In generator F , we also 

introduce multi-information interaction mechanism, and 

merge the two kinds of materials before entering the 

network to assist effective feature extraction. 

 

2.4 Data Preparation & Parameter Setting 

 

The data set comes from cranial cavity slice images of 7 

patients with size 512 by 512. In experiments, we prepared 

1505 actual data of bone and tissue and added 120 kVp and 

80 kVp spectrum to the original slice images as our 

simulation dual-energy data. In the training, we selected 

1400 pairs of high- and low-energy images as the training 

dataset to train the model, and 105 pairs of images as the 

test dataset to validate the network performance. As for 

parameters of ADCNet, each downsampling path of G and

F includes 7 convolutional layers. the number of filters is 
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128, 256, 512, 512, 512 and 512, respectively. Two paths 

are connected by 2 cascaded residual blocks. In the process 

of training, the initial learning rate for adam was set to 

0.0002 (momentum term: 0.5, 
1 : 0.5 ,

2 : 0.999). To 

ensure that the training process did not produce over fitting, 

we set the maximum epoch to 15. The training duration of 

the proposed model was about 20 hours.  

3 Results 

 

To evaluate the performance of different modules in 

ADCNet, we design ablation experiments on 20 typical test 

data. The experiment is divided into 2 independent parts. 

Part I verifies the performance of information interaction, 

residual block, butterfly structure and DANet attention 

module on the original Dual-CycleGAN. As is shown in 

Table 1, the PSNR of decomposed Bone and Tissue 

increased by 5.06dB and 6.67dB respectively after adding 

all of the modules. We can see that ADCNet with four 

hybrid modules has better quantitative indicators inTo 

evaluate the performance of different modules in the feature 

extraction of bone and tissue texture. Part II verifies the 

improvement effect of generator F using fused inputs. As is 

shown in Fig. 2, the symmetrical dual-cycle network with 2 

same generators (SDCNet) is compared with the ADCNet 

of 2 fused inputs in spatial dimension (ADCNet-SF) and in 

channel dimension (ADCNet-CF). Obviously, these two 

forms of ADCNet have shorter training time than SDCNet, 

due to the fused architecture sharing the parameters in 

downsampling path (the number of parameters of SDCNet 

and ADCNet is 387M and 329M, respectively). Especially, 

the quantitative indicators of PSNR and RMSE also 

illustrate that the ADCNet-CF has better performance far 

beyond than the other two networks in the synthesis of dual-

energy CT images, due to the high similarity of fused 

material images with spectral CT images.  

In addition, we select a group of head data to evaluate the 

qualitative performance of different networks. Fig. 3 

demonstrates the comparison of four state-of-the-art 

networks on material decomposition including FCN, 

Pix2Pix [7], DIWGAN and the proposed ADCNet. The ROI 

(Region of Interest) of bone shows the structure of the 

cochlea and frontal lobe, and the ROI of tissue shows the 

structure of the lateral ventricle and cerebellar. Fig.4 shows 

the residual images of the results with the label images. 

Compared with the conventional FCN, the SSIM and 

RMSE of bone images are greatly improved by 0.3246 and 

0.0188, and tissue images by 0.072 and 0.0508, which 

means the proposed ADCNet has marvel performance in 

material decomposition. Although we find that there still 

exists salt and pepper noise in the material images, the later 

operation of median filtering can also help us to further 

improve the quality of images. At the same time, ADCNet 

also achieves the synthesis of dual-energy CT images owing 

to its special dual-cycle architecture, even better beyond the 

SDCNet and ADCNet-SF. Fig.5 shows the pixel values of 

a certain section of 120kVp and 80kVp synthetic spectral 

CT images. The expected result is closer to the ground truth 

from the structure of the dual-energy images. In Fig.3, we 

also discussed the accuracy of synthetic dual-energy images 

from a quantitative perspective, which reached 45.85dB and 

45.93dB in PSNR, and over 0.99 in SSIM. To sum up, 

ADCNet has achieved good results in both tasks of base 

material decomposition and synthesis of dual-energy CT 

images.  

 
Tabel 1: Ablation experiments of Part I. From left to right are 

information interaction, residual block, butterfly structure and 

DANet attention module.  

ID Interac Res Butterfly DANet 
PSNR- 

Bone 

PSNR- 

Tissue 

1 √    37.36 29.17 

2 √ √   39.58 31.58 

3 √ √ √  41.10 32.92 

4 √ √  √ 41.43 34.30 

5 √ √ √ √ 42.42 35.84 

 

 

Figure 2: Ablation experiments of Part II. (1)SDCNet: the 

symmetrical dual-cycle network with 2 same generators G 

(2)ADCNet-SF: the asymmetrical dual-cycle network of 2 fused 

inputs in spatial dimension. (3)ADCNet-CF: the asymmetrical 

dual-cycle network of 2 fused inputs in channel dimension. Note: 

Bar chart represents PSNR, and line chart represents RMSE. 

4 Conclusion 

 

In this work, we proposed a new dual-cycle network 

architecture (ADCNet), which can achieve dual tasks in 

material decomposition and synthesis of dual-energy CT 

images. Compared with the other four typicall networks in 

terms of quantitative and qualitative indicators, our method 

demonstrated outstanding ability in material identification 

and accurate generation of energy spectrum images under 

the none-spectral prior condition, which can assist multi-

functional integrated spectral CT imaging more efficiently 

and accurately. Additionally, Our method can achieve 

lower dose as the DECT images can be totally synthetic. In 

the future, we will further carry out relevant experiments 

based on the actual problems in medical diagnosis. 
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Figure 3: Networks on material decomposition. From left to right are FCN, Pix2Pix, DIWGAN and the proposed ADCNet. From top 

to bottom are bone and tissue. The 1st line represents the decomposed bone images, and the 2nd line represents the decomposed tissue 

images.The SSIM and RMSE values are written at the top.  
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 Figure 4: The residual images of the results of FCN, Pix2Pix, 

DIWGAN and ADCNet with label images. We use absolute error
*y y = −  to express the residual images.  (a1)-(a4): The 

residual images of  bone. (b1)-(b4): The residual images of           

Tissue. Note: The range of colorbox is [0.05, 0.4] g/mm3 and [0.1, 

0.9] g/mm3, respectively. 

 

  
(a)                                                (b) 

  
(c)                                                (d) 

 

Figure 5: Profile plots of synthetic dual-energy CT images with 

different networks including SDCNet, ADCNet-SF and  

ADCNet-CF. (a), (b): Horizontal profile plots of 120kVp and 

80kVp synthetic images. (c), (d): Vertical profile plots of 120kVp 

and 80kVp synthetic images. 
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