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Abstract—This paper discusses the challenges of integrating
close-range interactions, such as touch and physical proximity,
into Mixed Reality (MR) environments. While current MR
systems excel at providing visual overlays of digital content
onto the physical environment, the nuanced aspects of close-
range interactions remain underdeveloped. The research aims
to enhance this integration by focusing on haptic and tracking
systems, creating a more immersive and responsive MR expe-
rience that mimics real-world interactions. The text emphasizes
the need for precise calibration using the Automatic Calculation
of the Transformation Matrices method to ensure accuracy
in MR environments, particularly when multiple systems are
utilized. The proposed approach showcases the effectiveness of
haptic and tracking camera systems in real-world applications,
offering a solution for seamless and efficient MR calibration and
contributing to the advancement of precise and immersive mixed-
reality experiences.

Index Terms—Mixed Reality, Calibration, Tangible Interac-
tions

I. INTRODUCTION & BACKGROUND

Mixed reality (MR) technologies have brought about a new
era of technology, seamlessly merging digital and physical
realms to provide an immersive and engaging user experience.
The efficacy of MR is seen in the seamless incorporation of
digital components into the tangible environment. However,
the full utilization of MR’s capabilities is hindered by the
existing constraints on incorporating kinesthetic and propri-
oceptive sensory modalities, which are especially noticeable
when interacting with digital items in spatial environments.

An essential aspect is the comprehensive integration of
these sensory modalities, particularly for activities that require
complex design cognition [1], [2]. An ongoing obstacle in
MR interfaces is the smooth integration of the tactile aspects
related to interactions at close distances in the real world.
Although current MR systems Fig.2 are effective at presenting
visually enhanced content that is superimposed onto the real
world, they do not fully handle the subtle components of
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interactions that occur at close distances, such as touch and
physical proximity [3], [4]. This difference highlights the need
for a focused attempt to combine haptic and tracking systems,
thus enhancing the tangible aspects of physical interactions in
the MR framework.

It is imperative to acknowledge that the incorporation of
haptic and tracking technology fundamentally changes the
mixed reality (MR) encounter. Therefore, a crucial obstacle
arises in the necessity to accurately adjust these systems,
reducing inaccuracies and guaranteeing a smooth integration
of digital and physical components. Calibration is an essen-
tial part of integrating these technologies, with the goal of
achieving seamless interaction without sacrificing the integrity
of the mixed-reality experience. Our research aims to investi-
gate a calibration method that effectively incorporates haptic
and tracking devices into the MR framework, considering
the complexities involved. This calibration method aims to
improve both the physical features of close-range interactions
and reduce system mistakes, resulting in a more precise and
dependable mixed-reality experience.

Multiple methods for calculating the orientation and trans-
formation matrix were investigated. Horn [5] proposed so-
lution uses unit quaternions for rotation representation, en-
hancing precision in translational offset, scale, and rotation,
outperforming approximate methods based on limited points.
Havelock [6] analyzed the precision of estimating a target’s
position in digital images by considering possible digital repre-
sentations, leading to indistinguishable locales. It reveals how
noise tolerance for position estimation is affected by the topo-
logical properties of locales. Another method by Umeyama
[7] used singular value decomposition and least-squares esti-
mation to determine rotation, translation, and scaling between
data points, rejecting reflection-based solutions and instead
choosing the closest transformation matrix solution, claiming
it consistently yields accurate solutions even with corrupted
data. Lorusso et al. [8] compared four widely used algorithms
for calculating 3-D rigid transformations in machine vision.
The algorithms encode the transform using singular value de-



composition, orthonormal matrices, unit quaternions, and dual
quaternions. The comparison evaluates precision, robustness,
and computational speed in handling noise, degenerate data
sets, and relative computational speed.

II. METHOD

We utilized OptiTrack, an advanced Optical-passive tech-
nology known for its precise tracking of retroreflective mark-
ers using a series of infrared cameras. The purpose of this
optical tracking system is to accurately record and monitor
the motions of these markers, offering real-time data on their
positions and rotation angles. The system functions by strategi-
cally positioning infrared cameras in the surroundings, which
subsequently monitor the reflected markers on a certain object
or subject. OptiTrack offers a significant benefit by enabling
highly accurate monitoring of stiff bodies. This implies that
the system has the capability to not only identify the current
position of the markers but also furnish comprehensive data
regarding their rotational angles. The results obtained from
the rigid body tracking system are shown in a customizable
coordinate system, which improves the system’s versatility and
capacity to adapt to different experimental configurations. The
real-time data generated by OptiTrack enables an in-depth
understanding of the dynamic motions and positions of the
tracked markers inside the designated coordinate system. Op-
tiTrack’s high level of precision and ability to track in real-time
makes it an invaluable tool for virtual reality applications and
augmented reality experiences. The dependable and adaptable
characteristics of the coordinate system enhance the accuracy
and flexibility of the data acquired using this optical tracking
technique. Conversely, the Touch haptic device, in conjunction

Fig. 1: Haptic and OptiTrack coordinate sytems

with its OpenHaptics API, provides a fully immersive virtual
environment interaction that is tailored for a workstation that
is roughly the size of a letter-sized piece of paper. With the
help of this haptic device, users can feel as though they are
physically connected to virtual objects within this specific

Fig. 2: Mixed Reality environment setup and calibration

spatial range, which increases engagement and realism. It is
easy to integrate a virtual object into the haptic workflow.
But there is a problem when you want to integrate the Touch
haptic device with other systems, especially because each
of them uses a different coordinate system Fig.1. Notably,
the Touch haptic device’s preset coordinate system limits
its ability to be modified to meet the needs of an external
tracking system or particular application. When attempting
to synchronize the Touch haptic device with other tracking
technologies, like an optical tracking system that uses its
own coordinate framework, this becomes more relevant. A
unified coordinate system is essential to overcoming this gap
in coordination and creating a smooth connection between
different systems. This unified system operates as a common
reference point, bridging the gap between the external tracking
system’s coordinate system—which may be based on camera
data or the haptic device’s intrinsic coordinate system—and
the native coordinate system of the Touch haptic device.
A number of variables, including the particular application
requirements, precision considerations, and the desired degree
of synchronization between the haptic and tracking systems,
influence the decision between the camera and the haptic
coordinate system.

We used an approach to solve the matrix problem that was
based on the work of Cashbaugh and Kittis [2], utilizing
linear regression optimization techniques. According to this
methodology, our implementation makes use of their insights
to maximize the matrix equation’s solution, improving the
computing process’s overall correctness and efficiency. Our
method seeks to further improve the matrix equation’s resolu-
tion by extending and modifying these ideas, guaranteeing the
system’s stable calibration. This application of optimization
methods is consistent with previous work in the field but also
represents a deliberate incorporation of previous understanding
to improve the computational features of our investigation.

Our goal in this case is to find the transformation matrix T
so that VB = T · VA will be used to explain the relationship
between the vectors VB and VA. The transformation that
translates the coordinates from the original space defined by
VA to the altered space represented by VB is what we are
trying to compute.
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To precisely characterize this geometric transformation, this
entails determining the rotation and translation operations
contained in the matrix T (1). The resulting matrix T is an
essential element for smoothly transferring between these two
vector spaces, allowing accurate and effective transformations
inside the framework of mathematics.

x′
B = r11xA + r12yA + r13zA + tx

y′B = r21xA + r22yA + r23zA + ty (2)
z′B = r31xA + r32yA + r33zA + tz

The terms x′
B , y

′
B , z

′
B on the left side of the equations (2)

are called the expected values in this context. The aim is to
optimize these values, which are produced by a process of
calculation. In order to accomplish this optimization, the first
derivative of the equations (2) is subjected to the Mean Square
Error (MSE) E (3):

E =

n∑
i=1

(VB − V ′
B) (3)

Minimizing these derivatives and bringing them closer to
zero is the goal. In order to get a precise fit between the
expected and actual values, it is imperative to minimize the
first derivatives. Deviations between the expected and actual
values are quantified by using Mean Squared Error (MSE), a
statistical measure frequently employed in optimization prob-
lems. The focus in this particular instance is on the equations’
first derivatives, and the goal is to get these derivatives as
near to zero as feasible. Through this optimization procedure,
the calculated values for the coefficients rij are established.
These coefficients are essential for improving the model’s
ability to predict outcomes. The optimization process, which
is driven by the first derivatives’ minimization, helps improve
the model’s overall performance by improving the accuracy
of the predictions. We express rij and tx, ty, tz in terms of a
matrix-vector multiplication, with the matrix A (4) taking the
non-singular form:
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Meanwhile, rij and tx, ty, tz can be obtained from these
equations: 
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III. RESULTS

In our comprehensive evaluation, we rigorously tested the
system’s performance by subjecting it to the analysis of
68 distinct point groups, each comprising six sample points
Fig.3. To gauge the accuracy of our system, we employed
the Mean Squared Error (MSE) metric (measured in mm),
comparing the Haptic-captured data against the corresponding
data calculated using the transformation matrix. The outcomes
of this meticulous analysis furnish valuable insights into the
precision of our system. The calculated mean MSE across all
tested point groups was determined to be 0.203141, providing
a central measure of the overall accuracy.

TABLE I: Statistics metrics

Metrics Value (mm)
Mean 0.203141

Median 0.141731
Standard Deviation 0.199265

Variance 0.039706
Minimum 0.022448
Maximum 0.898051

Range 0.875603
1st Quartile (Q1) 0.073249

2nd Quartile (Q2, Median) 0.141731
3rd Quartile (Q3) 0.217622

The median, representing the middle value of the MSE
dataset, was found to be 0.141731. Further, the standard devia-
tion, a measure of the variability in MSE values, was computed
as 0.199265, while the corresponding variance was 0.039706.
The analysis also revealed specific data points such as the
minimum MSE (0.022448) and maximum MSE (0.898051),
providing a range of 0.875603. Quartiles, including the first
quartile (Q1) at 0.073249, median (Q2) at 0.141731, and third
quartile (Q3) at 0.217622, contribute to a comprehensive un-
derstanding of the distribution of MSE values. This statistical
approach affords a nuanced perspective on the accuracy and
variability exhibited by our system across diverse point groups.

Given that 50% of the MSE values are below this cutoff, the
box plot’s 4 median value of 0.141731 indicates that the data’s
central tendency is reflected in this finding. The following is
the interquartile range (IQR): The box, which spans from the
first quartile (Q1), which is at 0.073249, to the third quartile
(Q3), which is at 0.217622, represents the interquartile range
(IQR). The spread, which represents the middle 50% of the
data, is described by the IQR. Outliers are defined as any
points that deviate from the data range and have whiskers that



Fig. 3: Line Plot of System Errors

Fig. 4: Box Plot of System Errors

extend beyond the box. In this case, the data points peak at
0.898051, indicating the potential for outliers in the higher
MSE value range.

Central tendency can be measured using the mean
(0.203141) and median (0.141731) values 5. The median
denotes the distribution’s middle point, and the mean shows
the MSE’s average value. The distribution may be skewed
to the right because the median is smaller than the mean.
The variance (0.039706) and standard deviation (0.199265)
measure how far apart the MSE values are. Understanding the
range between the lowest (0.022448) and highest (0.898051)
MSE values is possible thanks to the range (0.875603). The
large range, with values ranging from relatively low to high
mistakes, points to a varied distribution of system errors.

The comment highlights how important it is to understand
that system errors include both intrinsic system errors and,
most importantly, user errors. User errors, particularly those
that transpire during the point-picking process, are quite im-

Fig. 5: Distribution of System Errors

portant. This is especially important when taking into account
the possibility that the haptic tip and tracker center are not
aligned properly. Conversely, “user errors” highlight faults
induced by human contact with the system, especially during
the crucial point-picking process. In order to do this, the
user must choose particular locations in the real or virtual
space. These inaccuracies have a complex nature and can be
caused by a variety of factors, including the accuracy of the
user’s motions, visual perception, and the alignment of the
haptic tip with the center of the tracker. One particular area
of potential mistake is highlighted by the statement that the
haptic tip is not always at the center of the tracker. Users’
interaction haptic tip may or may not line up with the tracker’s
center, which introduces unpredictability into the spots that are
chosen. This misalignment may lead to variations in the overall
point-picking accuracy and, as a result, compromise the output
reliability of the system.

IV. CONCLUSION

In conclusion, our research addresses the challenges and
limitations in the current state of mixed reality (MR) systems,
specifically focusing on integrating kinesthetic and propriocep-
tive sensory modalities for precise spatial interactions. While
MR has successfully merged digital and physical environ-
ments, the finer aspects of close-range interactions, such as
touch and physical proximity, still need to be developed. The
paper identifies the need for a more comprehensive integration
of haptic and tracking systems to enhance the tangible aspects
of physical interactions within the MR framework. This is
particularly crucial for tasks involving design cognition. The
integration of technologies like OptiTrack, known for its
precise optical tracking, and the Touch haptic device provides
a tangible virtual experience and forms the basis of our ap-
proach. Calibration emerges as a critical aspect of seamlessly
combining haptic and tracking technologies.

The comprehensive evaluation of our system, involving
68 point groups and utilizing Mean Squared Error analysis,



demonstrates promising results with an MSE of 0.203141, in-
dicating improved accuracy. However, it is crucial to acknowl-
edge the inherent complexities in the system, encompassing
both system and user errors. User errors, especially during
point picking, are highlighted, emphasizing the potential mis-
alignment of the haptic tip with the tracker’s center. This
recognition underscores the need for a holistic understanding
of inaccuracies in MR systems, encompassing both technical
and user-related factors.

Our research contributes to the ongoing efforts to advance
MR technologies by proposing a calibrated system that effec-
tively integrates haptic and tracking technologies, addressing
challenges in close-range interactions and user engagement.
The findings open avenues for further exploration and refine-
ment, paving the way for more immersive and accurate mixed-
reality experiences.
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