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Abstract—Accurately assessing the speed of vehicles is im-
portant for traffic management systems. This is especially the
case for heavy goods vehicles such as lorries/trucks, since they
cannot easily stop at short notice. Previous work has shown that
deep learning can be used for identifying and distinguishing
trucks on the road from other vehicles, e.g., [1], however
accurately estimating their speed from roadside cameras remains
a challenge. One solution we employ is using video data from the
roadside cameras, then extracting the speeds of vehicles in the
video from the Infra-Red Traffic Logger (TIRTL) systems, which
are provided by the Department of Transport, Victoria. The
TIRTL system is very accurate but expensive and only deployed
at a few key locations around Melbourne. A solution that works
at the edge and uses lightweight Internet-of-Things devices to
produce accurate speed data is thus highly desirable. In this
paper, we propose a Convolutional Neural Network (CNN) model
using a light-weight Siamese backbone and associated feature
correlations to track and detect the speed of trucks. We build
a dataset that contains images with speed and bounding-box
annotations to train the proposed model. To enable the model to
maintain a high degree of accuracy with different camera setups,
we train and test the proposed model using image augmentation.
The results show our model has an average speed estimation
error of 4.92% and an average Intersection over Union (IoU)
of 75.8% whilst incorporating different intrinsic and extrinsic
parameters based on image augmentation. Such a capability has
the potential to change the way services are deployed across the
road network to record vehicle types and speeds.

Index Terms—Vehicle speed detection, Deep learning, Convo-
lutional neural network.

I. INTRODUCTION

Vehicle speed detection plays important roles in traffic
management, law enforcement, safety and the environment.
There are two main types of speed detection methods: active
and passive. Active methods require special hardware such as
induction-loops [2], radar [3], lasers [4] or infra-red lighting
(TIRTL) [5] to record the timestamp, distance and hence speed
of vehicles. Such devices make active speed detection methods
possible, however, they are expensive to purchase, deploy and
maintain, with devices typically costing hundreds of thousands
of dollars (in the case of TIRTL). Internet of Things (IoT)
and smaller scale Internet-enabled cameras offer a much more
flexible and scalable solution, however establishing the speed
of vehicles from such cameras has previously been difficult
without a major effort in camera calibration, e.g., recording
the distance and angle to the road. Tackling this issue is the
goal of this paper. Namely, we want to estimate the speed of
specific vehicles (trucks and trailers) from video streams using

real world traffic flows from the motorways of Melbourne on
cameras that have no calibration.

In contrast to active methods, most passive speed detection
methods, e.g., based on video from roadside cameras, use
pixel displacements between adjacent frames [6]-[11]. Such
methods normally require knowledge of the accurate correla-
tion between the sizes of objects in an image and their real-
world counterparts, e.g., some object of known size is used
to estimate the distances moved based on pixel displacement
between frames. However, the correlation changes if the
location and setup of the camera change. Therefore, a speed
detection method for monocular camera surveillance systems
requires camera calibration to produce correct mapping if
intrinsic and extrinsic parameters of the camera change, e.g.,
the perspective, scale, rotation, and location.

Automatic camera calibration methods for speed detection
such as [12]-[14], use the vanishing points and scale of
the image to produce the intrinsic and extrinsic parameters
of the cameras. However, it is impossible to estimate the
scale of an image if the size of objects is unknown [14]. To
tackle this problem, one method is to include (calibrate) the
related dimension information of vehicles or lanes manually
[15]. This may or may not be possible with IoT cameras
or it may be the case that this requires considerable manual
intervention. Another method [12] is to employ detector to
detect the type and bounding-boxes of vehicles, then use
the normal/standard dimension information of vehicle types,
e.g., specific commonly occurring vehicles are known to be
of a given size. This is unlikely to work in all situations
however, e.g., where no instances of those vehicles occur in
the video. Generally, camera calibration methods need external
information to estimate the scales of images, and this is
problematic and leads to inflexible solutions that will only
work in one, manually established and calibrated situation.

In this work, we present a deep learning model capable
of detecting the speed of trucks without the need for camera
calibrations. Relatively little effort has been made to estimate
speed using deep learning applied to video streams. It is
difficult to integrate current camera calibration methods into
deep learning speed detection models, e.g., based on Convo-
lutional Neural Networks (CNN), since it is not possible to
know which parameters in the CNN backbone represent the
intrinsic and extrinsic parameters of a given camera. Some
works such as [7], [16] employ deep learning models to detect
and track vehicles in videos to get the location information



such as bounding-boxes, and then estimate the speed using
pixel displacements methods, however as noted, this requires
models to have knowledge of accurate correlation between the
sizes of objects in an image and their real-world counterparts.
To tackle this problem, [16] measures the distance between
vehicles based on real-world coordinates, while [7] assumes
the maximum speed information of the roads is known.

Assumptions on camera calibration makes deep learning
models difficult to apply to estimate the speed of vehicles
directly. An alternative approach is to train CNN models with
data sets that have images or videos taken from different
camera setups. Barros et al. [17] propose a deep learning
model trained using a synthetic data set based on the CARLA
simulator. They simulated different light and weather con-
ditions for different vehicles in the data set with the same
setup parameters for the cameras in different scenarios. This
included fixed overhead cameras positioned to view the rear
of vehicles. The camera setup of the validation data set [18]
was also fixed. Although the authors claimed their model
could avoid the need for camera calibration, their work was
somewhat limited, e.g., it did not provide experimental results
dealing with changes of rotation, perspective, shift and scale
- all of which are necessary for real world camera setup
scenarios to measure the speed of vehicles, e.g., it is typically
not the case that cameras can be placed above the road to
record vehicles.

The speed of heavy vehicles is an important factor that
can be used to indicate congestion, traffic jams, speeding
violations as well as air pollution, e.g., slow moving vehicles
in traffic jams will give rise to more localised pollution. In
this work, we propose an end-to-end deep learning speed
detection model that can not only track and estimate the
speed of a given heavy vehicle, but also can adapt to the
change of setup parameters of cameras automatically without
the requirement for camera calibration. To achieve this, we
build a data set that has highly accurate bounding-boxes and
associated speed annotations for image pairs extracted from
road cameras. To produce the bounding-boxes and identify
the specific types of trucks, we employ a state-of-the-art
deep learning heavy truck classifier [1] trained with a data
set comprising images captured from cameras on multiple
road conjunctions in Melbourne. The mean Average Precision
(mAP) of the classifier reached 79.09% for the different truck
types across all sites. For the speed annotations, we employ
the data captured from the TIRTL detection system, which has
a speed detection error less than 1% [5].

To enable the proposed model to estimate speed correctly in
different camera setups, we employ augmentation technologies
to simulate different camera settings with a focus on varying
perspective, shift, scale, rotation, light, and diverse weather
conditions. We hypothesize that a CNN model can learn
automatically the correct mapping between the sizes of objects
in an image and their real-world counterparts by training it on a
data set containing images with varying intrinsic and extrinsic
parameters, since the mapping is highly correlated with factors
such as truck type, bounding box, travel distance, and width of

the lane, among others. Based on this hypothesis, we designed
an associated model and ran a range of evaluation experiments.

Specifically, the proposed deep learning model includes
two parts: tracking vehicles and speed estimation. Inspired
by SiamBan [19] which utilises a Siamese architecture [20]
as the backbone to track objects, we employ a three-branch
Siamese architecture where all of the branches share the same
parameters as the backbone to produce the feature maps. For
tracking, the model uses a depth-wise separable correlation
block [19], [21] to produce cross-correlation features between
trucks in video frames for estimating the bounding boxes. For
speed estimation, inspired by FlowNet [22], we use spatial
correlations [22] between frames as features, from which the
model estimates the speed of truck by using a full connection
block.

This paper makes the following contributions:

o we propose an end-to-end model that can not only track
target trucks from diverse traffic flows, but also estimate
the speed of these trucks in videos based on deep learning
methods;

« we establish a data set with highly accurate speeds and
bounding-box annotations that is suitable for training and
evaluation of the deep learning model;

o the proposed model achieves an average error of 4.1%
for speed estimation and average Intersection over Union
(IoU) of 79% for bounding-box estimation;

« the proposed model achieves an average speed estimation
error of 4.9% when the images are augmented to re-
flect different weather, light conditions, perspective, shift,
scale and rotations.

Our work has several known limitations. First, the proposed
model focuses on tracking and detecting the speed of a single
heavy vehicle. As a result, the model requires an additional
truck detector to detect a given truck and obtain its bounding
box in order to initiate inference from the real-world video.
Second, the data augmentation methods we used are not
capable of representing all intrinsic and extrinsic parameters
of images in real-world scenarios, e.g., zooming in/out. Third,
the proposed training and test data sets are generated from
at present a single site, and hence the augmentation methods
may not be able to accurately detect the speed of vehicles from
other sites with complete accuracy. This is primarily because
we require gold standard speed recordings, which are only
available through systems such as TIRTL. As noted these are
expensive and immobile and will never be deployed at scale
across the complete road network. Despite these limitations,
the work illustrates a viable model that could form the basis
for widespread service delivery model for vehicle classification
and speed estimation in IoT environments. It is also noted
that at present the Department of Transport in Victoria is not
allowed to store video streams in a centralised repository due
to privacy legislation in Australia. Hence vehicle classification
and reporting on public street networks demands IoT-based
services/solutions that can process the data locally.
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Fig. 1. Overview of Speed Detection based on the TIRTL System [5]

II. RELATED WORKS

We begin this section with a discussion of the TIRTL
technology, which is an active method used to collect vehicle
speed data. We then review passive methods for detecting
vehicle speed in videos. In terms of passive speed detection
methods, there are two types: non-deep learning methods and
deep learning methods. We also discuss methods for camera
calibration, as most passive speed detection methods require
camera calibration to be completely accurate.

A. TIRTL

In this work we utilise ground truth speed and vehicle
classification data from the TIRTL system. Fig. 1 illustrates the
basic TIRTL set up. Specifically, the TIRTL system transmits
two infra-red light beams passing slightly above the road
surface. TIRTL then uses the times that the first and second
parallel beams are blocked and unblocked by the tyres of a
given vehicle. The timing difference between the beams is then
used to calculate the speed of vehicles based on the distance
between the wheels/axels and the time that the beams were
broken. A TIRTL system has an accuracy of less than 1%
error at up to 250km/h. The Australian National Measurement
Institute and The National Association of Testing Authorities
(NATA) have accepted TIRTL as the basis for speed detection
cameras throughout Australia [5]. However as noted, the
TIRTL cameras and the software they use are very expensive
and only located in a few locations around Melbourne.

B. Non-Deep Learning Passive Methods

Passive speed detection methods first track objects and then
estimate their speed using pixel displacement between adjacent
frames in a given video stream [6], [8]-[10].

CVS [10] extracts the foreground information (vehicles)
based on the difference between frames and uses edge de-
tection to produce a bounding box around the vehicle and
its associated centroid. Using the Euclidean distance of the
centroid of the vehicle in adjacent frames, the model estimates
the vehicle’s speed. Through this approach, CVS achieves an
average error of 7km/h.

Some methods utilise segmentation. As one such example,
the KNN method [8] first uses K-Nearest Neighbours (KNN)
to extract segmentation information from the foreground of
images. It then produces a bounding box from the contours of
the vehicle segmentation before using centroid pixel distances
of the bounding-boxes between two consecutive frames to
identify moving vehicles. To get the correct sizes of objects
in the image, knowledge of the standardised sizes of road
traffic signs and lines (in China) are used. Finally, the model

estimates the speeds of vehicles based on pixel displacement of
the tracked vehicle. Overall it achieves a relative error of 5%.
Whilst the results are positive, they are based on assumptions
that mean that the model needs adaptation to other locations
(countries), e.g., for different sized signs and lines.

The intrusion-lines method [6] estimates the speed of ve-
hicles based on intrusion lines that are drawn on the ground
plane of the image in parallel (not in the real world). The
model allocates intrusion lines for images based on the dis-
tance in the real-world. The speed can then be calculated
based on the number of intrusion lines and the frame rate
of the video. The model achieves an average error of 2.17%.
However, the accuracy of this method depends on the accuracy
of distances between the intrusion lines, which change when
the setup of the camera changes.

C. Deep Learning Methods and Data Sets

There are two key data sets that have speed annotations
[12], [18]. Luvizon data set [18] has video based data samples
with associated speed annotations. These speeds are produced
by inductive loop detectors. The videos were captured by a
fixed overhead camera. In total 7,766 vehicles with speeds
and associated plate numbers were annotated. Sochor data
set [12] is for camera calibration, in which three over-head
cameras were used to capture 20,865 vehicles with the speed
annotations obtained by a pair of LiDAR devices on the side of
road. However, these two data sets do not provide bounding-
box annotations of the objects moving in the image.

We consider speed detection models that employ deep
learning methods for detecting, tracking or computing the
speed of vehicles. The detect-then-track method [7] employs
a deep learning detector [23] to detect vehicles and produce
their associated bounding-boxes. It then employs optical flows
as enhancements to track vehicles across adjacent frames. For
speed calculation, the model assumes that the maximum speed
limit is known and at least one vehicle drives at that speed.
Under this assumption, it uses the proportion between the
movement of the target vehicle and the maximum local move-
ment to estimate the speed based on the assumed maximum
speed. Although this method can avoid camera calibration,
the assumption of the maximum speed limit is unlikely to be
correct in real-world scenarios.

To avoid camera calibration challenges, Bell et al. [16]
employ real-world coordinates to obtain the distance between
trucks across frames. The model first detects the vehicle by
using a fine-tuned YOLOv2 detector [24], before tracking the
vehicle by using the Simple Online and Realtime Tracking
(SORT) method [25]. The final speed estimate achieves a mean
absolute percentage error of 20.92%.

Deep learning speed estimation models require data sets
with annotations for the ground-truth speeds and bounding
boxes of the vehicles. To tackle this problem, Barros et al.
[17] use a synthetic data set based on the CARLA simulator
[26] to train their deep learning model pipeline. They first
use a Faster R-CNN model to detect the vehicle, then employ
the DeepSORT tracker to track the vehicle. They then use



FlowNet2 [27] to extract the dense optical flow between
adjacent frames, before finally feeding the optical flow to
a VGG16 CNN to estimate the speed. The benefit of this
synthetic data set is that the researchers can build a data set
for multiple scenarios, including different light, weather and
camera setups. The model was validated using Luzivon’s data
set [18] and achieved an error range of [-3, + 2] km/h for
85.4% of data samples.

D. Camera Calibration Methods

Many camera calibration methods use vanishing points
(VPs) and scale to estimate the intrinsic and extrinsic pa-
rameters of given cameras. [28], [29] use a projection matrix
P = K[RT] for calibration between two cameras, where T is
based on the scale, and R and K are based on the focal length
of the camera and other parameters.

There are many methods that have been applied to tackle
VPs and scale. For example, Dubska et al. [14] employ Hough
transforms to detect three VPs used to capture the motion of a
vehicle. The first VP is the direction of the vehicle; the second
VP is perpendicular to the first VP (in the ground plane),
whilst the third VP is perpendicular to the ground plane. The
model detects vehicles to get their bounding-box and type,
before using dimension information of the specific types of
vehicles to calculate the scale. Other methods, such as [30]-
[33] employ road lines or lanes as vanishing points and input
the width of lanes or sizes of other objects manually to get
the scale of the particular content of images.

III. PROPOSED MODEL

The proposed speed detection model includes four parts: a
Siamese CNN backbone; two five-layer Depth-wise Separable
Correlation Blocks (DSCB) inspired by [19], [21], a Spatial
Correlation Block (SCB) inspired by [22], [27] and a Speed
Full Connection Block (SFCB) as shown in Fig. 2. The model
requires three input images including the first search frame, the
target frame and the second search frame. The search frames
are the input images. The target is a given truck who’s speed is
to be estimated. The target frame is a cropped patch of the first
search frame based on the bounding box of the target truck.
The three images are fed into the triple-Siamese backbone to
produce three five-layer feature maps. Each layer of the feature
maps is fed into a DSCB to produce a classification map and
a regression map. The outputs are then fused (averaged) as
shown in Figure 2. The regression maps are then used to
produce bounding-boxes of the truck in the search frames. For
estimation of the speed, classification map 1 and classification
map 2 are fed into the SCB and SFCB. The outputs of the
model include two classification maps, two regression maps,
and an estimated speed of the target truck. The loss function
uses all five outputs to produce the losses for the optimizer
during model training.

The classification map itself has two channels: one channel
indicates if a pixel belongs to the foreground, whilst the other
indicates if a pixel belongs to the background. The regression
map has four channels, where each channel has information

regarding the distance from a pixel to the coordinates of the
predicted bounding-box.

A. Siamese CNN Backbone

The Siamese Backbone includes three identical sub-
networks comprising three EfficientNet-Lite4s [34] that share
the same weights. From three input images the backbone
produces three feature maps. These are used to extract the
last five layers of the feature maps as inputs to the DSCBs.

B. Depth-wise Separable Correlation Block

The model has 2x5 depth-wise separable correlation blocks
(DSCB) as shown in Figure 2. A DSCB takes a search feature
map and a target feature map as inputs and uses them to
produce a classification map and a regression map. To achieve
this, the DSCB first adjusts the width and height of the input
tensor using bilinear interpolation to make sure it has the
correct sizes, namely: 44x44 for the search feature map and
7x7 for the target feature map. Since we use EfficientNet as
the backbone, the size (width and length) of every layer of
the feature map is different. The convolutional layers decrease
the number of channels of the tensor by half to reduce the
computational cost. The DSCB then feeds the tensors to two
depth-wise correlation layers [21] to produce the regression
map and classification map. These go through a convolutional
layer with 1x1 filters to make sure the output tensor has the
correct number of channels: four for the regression map and
two for the classification map.

The depth-wise correlation layer is a convolutional opera-
tion that uses the search frame feature map as input and target
feature map as filter (kernel), such that the output features have
a strong correlation to the target image (truck) [21]. Although
the depth-wise correction layer is not trainable, the channel
adjustment layers are trainable.

C. Spatial Correlation Block

FlowNet [22] and FlowNet2 [27] are deep learning models
that produce optical flows from input videos. We employ a
Spatial Correlation layer from the FlowNetCorr model [22].
Unlike DSCB that produces correlations between two full
feature maps (the target frame and search frame) that are
used for tracking, the Spatial Correlation Block produces patch
correlations. The spatial correlation between two patches of
the feature maps (f1 and f5) is defined [22] as:

Y (filzri+0) fa(zat0) (D)

o€[—k,k|x [—k,k]

c(xy,x2) =

where x; and zo are the center points of two patches and
(2k +1) x (2k + 1) is the size of the patch. FlowNet uses the
spatial correlation ¢(x1,x2) to produce optical flows, while
we use it to estimate the speed of vehicles. The value of &
decides the number of channels of the output tensor. In this
work, we set k to 5.

The spatial correlation layer in FlowNet produces correla-
tions for all objects between two adjacent frames. However,
given we want to estimate the speed of specific vehicles
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Fig. 2. Proposed model based on the Siamese architecture where all branches of the backbone (EfficientNet-lite4 [34]) share the same parameters (weights).
The Right-Hand-Side (RHS) shows the details of the Spatial Correlation Block (SCB), the Speed Full Connection Block (SFCB) and the Depth-wise Separable
Correlation Blocks (DSCB) [21]. DW_CORR is the Depth-wise Correlation Layer, S-COR is the Spatial Correlation Operation (Equation 1), CLS_corr is the
output of S-COR, CONV is the convolutional layer, Bbox is the bounding-box, CLS_map is the classification map, BN is the batch normalization, FC is the

full connection layer, and ReLU is the Rectified Linear Unit activation.

(trucks), we need the correlation between trucks in two frames
to estimate the speed. This requires the model to extract the
foreground from the feature map to reduce the noise caused
by the background before the correlation operation occurs. In
this work, classification maps fulfill this requirement since
they have the correlations between the frame and the target
truck. The SCB first produces the spatial correlation from
these two classification maps based on Equation 1. These then
concatenate the output correlation map and all classification
maps together, before feeding the concatenated feature map
into a convolutional block to produce the speed feature map,
as shown in the right-hand side of Fig. 2.

D. Full Connection Speed Block

We use a Full Connection Speed Block (FSCB) to estimate
the speed of the target as shown on the right-bottom of Fig. 2.
The input of the FCSB is the output of the Spatial Correlation
Block. We use Rectified Linear Units (ReLLU) as activation
functions in every layer of the FCSB to increase the non-
linearity.

E. Loss Functions and Temporary Stop Mechanisms (TSM)

We optimize the model using three losses: the classification
loss, the bounding-box loss and the speed estimation loss. We
employ a cross-entropy loss function to produce the classifica-
tion loss between the classification map and the ground-truth
classification map. We use a Huber loss function to produce
the bounding-box loss between the predicted regression map
and the ground-truth regression map. We use a smooth L1
loss function to produce the speed estimation loss with inputs

including the predicted speed and the ground-truth speed. The
loss function itself is given as:

L= aLcls + BLreg + (1 - — B)Lsp (2)

where L., Lyeq and Lg, are the classification loss, the
bounding-box loss and the speed estimation loss respectively.
We set @ = 0.3 and 8 = 0.3 as the weights of the losses.
Since back-propagation is guided by three types of loss
in training, it is possible that the model could focus on one
loss but pay less attention to the other loss types, e.g., the
model may do a better job in predicting bounding boxes
than predicting speed. To tackle this problem, we introduce
a temporary stop mechanism in the training process so that
if the average loss of the bounding-box is less than four in a
given batch (with a size of 12), we set 3 in Equation 2 to 0.
As a result, the back-propagation of this batch will ignore the
bounding box loss, which ensures that the model places more
attention on the object speed in the training process.

IV. EXPERIMENTS AND RESULTS
A. Proposed Data Set

In this work, we utilise a data set comprising 2,466 data
samples captured from a stretch of major road network (mo-
torway) near Melbourne. Each data sample includes an image
pair with associated annotations for given truck types in the
image (see Fig. 5). An image pair includes two search frames
extracted from the video captured by the road camera as shown
on the left-hand-side of Fig. 2. These two frames have time
differences of 1 second between them. The annotations include
the bounding-box and speed. The bounding-box annotation is
produced by using a heavy truck classifier which has a mAP
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of 79.09% [1]. The ground truth speed annotation is based on
the TIRTL laser devices deployed across the motorway.

To build the data set, we first applied the truck classifier
[1] on a video stream captured on one specific location in
Melbourne to produce the types (numbers of wheels/axels) and
bounding-boxes of heavy trucks. We then extract two frames
with 1 second time differences and include the same truck
from the video. We extract the speed of the trucks from the
recordings of the TIRTL system by matching their timestamp
and associated vehicle type, e.g., 6-axel truck.

We split the data set into three subsets: a training set with
1,730 data samples; a validation set with 248 data samples
and a test set with 488 data samples. See Fig. 3 for the
distribution of the data samples, where the distribution was
based on the speed of the vehicles in the training and test
data sets. The data set includes highly accurate speed and
bounding-box annotations, however there are some drawbacks.
One drawback of the data set is that the frames are extracted
from video captured from a fixed camera in one location. As
described, our goal is to produce a model that can detect
and classify the speed of trucks using arbitrary surveillance
cameras in different locations and at different angles. To tackle
this, we apply augmentation techniques to the images during
the process of training. A second limitation is that the speed
annotation of some data samples may not be accurate, since
the location of the speed detection devices is approximately 50
meters before the location of the surveillance camera. This can
give rise to a time difference of 3-5 seconds. It is possible that
the speed of the truck might change during this time. A third
drawback of the data set is that we employ a truck detection
model [1] to detect the bounding box of trucks. Although the
detection model has a high accuracy, we also conduct manual
checking of the data samples. However we cannot guarantee
the bounding-box always matches the trucks perfectly.

B. Training, Validation and Testing

We train the models using Nvidia GPU and Intel CPU.
To enlarge the size of the training data and simulate images
from different cameras, we augmented data set based on data

augmentations and associated probabilities as shown in Table
L

TABLE I
AUGMENTATION METHODS. PROBABILITY IS THE PROBABILITY OF
TRIGGERING A METHOD. SEE [35] FOR DESCRIPTIONS AND PARAMETERS.

Augmentation Methods Probabilities
Horizontal Flipping 0.5
Random Brightness Contrast 0.5
Motion Blurring 0.2
Random Fog 0.1
Random Rain 0.3
0.2
Random Sun Flare 0.2
Perspective 0.7
Shift Scale Rotate 0.5

During training, we use Adam as the optimizer with a
learning rate of 2e — 5 and a weight-decay rate of le — 4.

For validation, we use a validation data set augmented using
the same methods and the same probabilities as the training
data set. Ultimately, we select the model which has the lowest
validation loss of speed estimation as the optimal model.

In the test stage, we evaluate the best model using both the
test data set and the augmented test data set. Since the param-
eters of the augmentation methods are produced randomly in
default ranges defined by [35], the test results (Average Error
of Speed as defined by Equation 3) of the augmented test data
set may change within a range of (—0.003,+0.003) in every
experiment. In this work, we use the mean of the results from
multiple experiments as the final result.

C. Evaluation Metrics

For speed evaluation, we use the average error (AE) of speed
estimation as the metric. This is based on:

Z'S

where N is the size of the test data set, and S? red and Sft
are the predicted speed and ground-truth speed of the ¢ data
sample, respectively.

pred

S9°

- 5%
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We use the average Intersection over Union (A.IoU) as the
key metric to evaluate the accuracy of the predicted bounding-
box. The IoU is defined as:

Areaoverlap
IoU = —— 4
o Areaunwn ( )
where Area®®"'®P is the area of overlap of the pre-
dicted bounding-box and the ground-truth bounding-box, and
Area®™°" is the area of the union of both the predicted
bounding-box and the ground-truth bounding-box.

D. Results

We evaluate the model performance by using the original
test data set and the augmented test data set. Table II shows
that our model gets an average speed estimation error of
4.18%, and an average IoU of 0.767 in the original test data
set.



TABLE 11
COMPARISON WITH OTHER MODELS. THE NUMBERS IN THE ERROR
COLUMN WITHOUT KM REPRESENT THE AVERAGE ERROR IN SPEED
(BASED ON EQUATION 3). A.IoU MEANS THE AVERAGE 10U FOR OUR
MODEL. TEST BY ORIGINAL/AUGMENTED IS THE MODEL TESTED USING
THE ORIGINAL/AUGMENTED TEST DATA SET RESPECTIVELY. THE TEST
RESULTS OF OTHER MODELS ARE FROM THE LITERATURE THAT HAS BEEN
CITED, AND THEY ARE NOT RE-EVALUATED HERE.

Model Error A.lIoU
Active TIRTL [5] <0.01 -
Induction-loop [2] <0.05 -
Passive CVS [10] 7km/h -
Intrusion-lines [6] 0.0217 -
KNN (8] <0.05 -
Deep- YOLO+SORT [16] 0.209 -
learning | Synthetic-data [17] | 3km/h in 85.4% -
Ours Test by Original 0.0418 0.767
Test by Augmented 0.0492 0.758

TABLE IIT
AVERAGE ERROR AND IoU COMPARISON USING THE TEST DATA SET
AUGMENTED BY ONLY ONE METHOD, WITH PROBABILITY 1.

Augmentation Average Error | Average IoU
Horizontal Flipping 0.0443 0.776
Random Brightness Contrast 0.0433 0.770
Motion Blurring 0.0437 0.764
Fog 0.0456 0.759
Rain 0.0460 0.757
Shadow 0.0447 0.771
Sun Flare 0.0529 0.753
Perspective 0.0447 0.751
Shift Scale Rotate 0.0504 0.790

To evaluate how our model maintains accuracy of speed es-
timation using other images/videos produced by road surveil-
lance cameras with different setup and parameters, we use a
test data set augmented by two approaches: the first based on
the same methods and probabilities as the training process as
shown in Table I, and the second augmented using only one
method with probability 1. Fig. 5 shows examples from the
augmented data samples. Table II shows that our best model
gets an average error of 4.92% in the test data set augmented
by the first approach. Table III shows the average errors of the
test data set augmented using the second approach.

E. Analysis of Results

The models in Table II and other speed detection methods
are evaluated with different test data sets. Such data sets get
their speed data using different measurement methods such
as GPS devices in vehicles or induction-loop speed detectors.
Such evaluation metrics are not unified. As such, comparison
of results of speed detection models needs to be treated with
care. To evaluate the accuracy of our model, we investigate
the average errors based on different speed ranges in the
augmented test data set. Table IV shows that our model has
average errors of less than 3% when the ground-truth speed
is larger than 80km/h, but has higher average errors when the
ground-truth speed is smaller than 40km/h. The right-top plot

TABLE IV
AVERAGE ERROR AND AVERAGE 10U COMPARISON BASED ON THE
GROUND-TRUTH SPEED IN THE AUGMENTED DATA SET, STD IS THE
STANDARD DEVIATION, SP IS SPEED, AND ERR IS ERROR.

GT. Sp | AErr | STD.Err | MAX.Err | A.loU | STD.IoU
0-40 | 0.138 0.101 0.330 0.730 0.107
40-50 | 0.080 0.066 0.259 0.717 0.138
50-60 | 0.049 0.061 0.270 0.767 0.101
60-70 | 0.058 0.038 0.139 0.773 0.098
70-80 | 0.047 0.048 0.363 0.765 0.105
80- 0.030 0.026 0.191 0.772 0.111
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Fig. 4. Results of the Test Data set. The LHS shows the correlation between
the predicted and ground-truth speeds. The RHS shows the speed estimation
errors of every data sample. The top plots show the results of the non-
augmented test data set and the bottom plots show the results using the test
data set augmented by Shift Scale Rotate with probability 1.

in Fig. 4 shows the same pattern based on the ground-truth
speed of every data set sample.

We also investigate the correlation between the predicted
speed and the (TIRTL-based) ground-truth speed of every data
sample in the test data set. The left plots in Fig. 4 show a strong
linearity between the predicted speeds and the gold standard
(ground-truth TIRTL-based) speeds.

F. Correlation between Bounding-box and Speed

It is reasonable to assume that a deep learning model could
use many factors to estimate the speed of a target vehicle such
as a truck. These factors might include the number of objects,
the size and location of the objects, and the surrounding back-
ground information and other image resolution challenges, e.g.
rain/fog. We consider the speed of target trucks using the size
and location of the targets. To evaluate this, we investigate
the correlation between the error of speed detection and the
IoU of every data sample in the test data set. Fig. 6 shows a
strong correlation between the errors of speed detection and
IoUs of the bounding-boxes in the test data sets (original and
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Fig. 5. Results using the Augmented Data Set. The top images are the first frame, the bottom images are the second frame; EST indicates the estimated

speed and GT indicates the ground-truth speed.
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Fig. 6. Correlation between IoUs and Error of Speed. The LHS shows IoU
vs Error for every data sample in the non-augmented test data set; the RHS
shows IoU vs Error using the data augmented by the methods in Tablel

augmented). Most of the dots in the plots fall into areas with
low errors of speed and high IoUs. Thus our model can predict
speed and bounding-boxes at the same time. It also implies
that the background objects only have a weak influence on
the speed detection.

G. Inference In Videos

There are two requirements for tackling inference in videos
using the proposed model. The first is the frame rate of
the video to establish the time difference between frames.
This can be obtained from the camera or using software
such as OpenCV. The second requirement is establishing the
bounding-box of the target truck. In this work, we use the
truck detector [1] to get the bounding-box of a truck in the
first frame, then feed it along with the image pair after one
second into the model to estimate the speed of the vehicle.
The benefit of this method is that we do not need to infer

TABLE V
ABLATION STUDY: COMPARISON BETWEEN MODELS WITH AND WITHOUT
SPATIAL CORRELATION BLOCK (SCB).

Model Average Error | Average IoU
w/o SCB 0.044 0.791
w SCB 0.041 0.767
w/o SCB(augmented) 0.067 0.795
w SCB(augmented) 0.049 0.758

the speed in every frame, which makes the model more cost
effective.

H. Ablation Study

We also conducted ablation studies to show that the Spatial
Correlation Block (SCB) and Temporary Stop Mechanisms
(TSM) can increase the accuracy and to check that the model
is robust using the augmented test data set. We train a model
without Spatial Correlation Blocks then evaluate it using the
augmented data sets. Table V shows a significant improvement
caused by the SCB. The average error of the model with SCB
decreases from 6.7% to 4.9%. However, it causes a decrease
in accuracy of the bounding-box estimation.

Table VI shows a significant improvement caused by the
Temporary Stop Mechanism (TSM). The best model (with
SCB) trained by TSM has lower average speed estimation
errors compared to the best model trained without TSM.
The decrease in accuracy of the bounding-box estimation is
expected since the TSM ensures that the training puts more
attention to the speed if the loss of the bounding-box is small
enough.

To check the robustness of the model with regards to
changes in the camera’s parameters, we compare the model



TABLE VI
ABLATION STUDY: COMPARISON BETWEEN MODEL WITH AND WITHOUT
TEMPORARY STOP MECHANISM (TSM).

Model w SCB Average Error | Average IoU
w/o TSM 0.052 0.790
w TSM 0.041 0.767
w/o TSM(augmenged) 0.061 0.772
w TSM(augmented) 0.049 0.758
TABLE VII

ABLATION STUDY: TEST RESULTS FOR THE AUGMENTED TEST DATA SET
WITH DEFAULT SETTING [35], AND THE MODEL TRAINED WITH
AUGMENTED AND NON-AUGMENTED DATA SETS

Best model trained by A.Error | A.loU
Non-augmented dataset 0.247 0.15
Augmented dataset (default) 0.049 0.758

TABLE VIII
ABLATION STUDY: TEST RESULTS FOR THE AUGMENTED TEST DATA SET
WITH AGGRESSIVE SETTINGS; COMPARING THE BEST MODEL TRAINED
USING THE DATA SET AUGMENTED WITH DEFAULT AND AGGRESSIVE

SETTINGS.
Best model trained by A.Error | A.IoU
Shift:0.0625,Scale:0.1(default) | 0.067 0.704
Shift:0.2,Scale:0.5(aggressive) 0.053 0.754

trained using the non-augmented data set and the augmented
data set (with default parameters) [35]. If the parameter is a
float number p in a range of [0,1], the shift method will shift
the image by a random factor between 0 and p for both the
height and width, while the scale method will zoom in/out the
image by a random factor in [0, p] [35]. Table VII shows that
our model can adapt to the change of camera setup parameters
if it is trained using the augmented data set.

To show that our model can adapt to more aggressive
changes in camera setup, we increase the parameter p used
for the shift and scale method in the training and test data
set as shown in Fig. 7. We ignore the augmentation operation
that makes the truck/bounding-box too small (less than 5% of
the width or height of the image) or where it places it outside
of the image. Table VIII shows that the best model trained by
the augmentation methods with default parameters has a worse
accuracy based on the test data set augmented with aggressive
parameter settings, however, the best model trained using the
data set augmented with aggressive parameters achieves a
better accuracy.

V. CONCLUSIONS

This paper has made the following contributions:

e we propose a lightweight Siamese CNN backbone to
provide feature-maps that can be used to produce precise
bounding-boxes and estimate the speed of trucks with a
high degree of accuracy;

« we showed that the Spatial Correlation Block can improve
the accuracy of deep learning speed detection models;

o we demonstrated that the Temporary Stop Mechanism
for model training can both improve the accuracy of

EST:50.9 GT:432

EST:46.5 GT:43.2 EST:49.6 GT;43.2

Fig. 7. Demonstration of aggressive augmented images. Top-left is the original
image and the others are augmented by different aggressive parameters. EST
is the estimated speed and GT is the ground-truth speed.

speed estimation whilst maintaining a strong correlation
between the bounding-box and speed;

o we have shown that the proposed model is able maintain

a speed estimation loss of less then 5% without camera
calibration and where the intrinsic and extrinsic parame-
ters are unknown, and

o we have created a data set that can be used to train

vehicle speed detection models from video alone, offering
a unique data set.

Although we trained our model with images produced by
one camera in one location, we have demonstrated that the
model is robust to weather and light conditions, and various
transformations such as perspective, shift, scale and rotation.
As such, the model can be applied to videos captured by
cameras with different setup parameters without necessarily
resorting to manual camera calibration. Importantly, our model
shows a strong correlation between the predicted speed and the
predicted bounding box.

The proposed model and data set have limitations as dis-
cussed previously. Importantly, the test data set is produced
from a single site. We will continue to work on obtaining
more data from additional sites in the future. As more training
images are collected from more sites, we believe that the deep
learning method should be able to track and estimate the speed
of moving vehicles from video capture devices without the
need for manual calibration.

We continue to explore use of these models as part of IoT-
based solutions for vehicle classification and speed detection
services.
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