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Abstract. The problem of finding the minimum number of colors to
color a graph properly without containing any bicolored copy of a fixed
family of subgraphs has been widely studied. Most well-known exam-
ples are star coloring and acyclic coloring of graphs (Grünbaum, 1973)
where bicolored copies of P4 and cycles are not allowed, respectively.
We introduce a variation of these problems and study proper coloring
of graphs not containing a bicolored path of a fixed length and provide
general bounds for all graphs. A Pk-coloring of an undirected graph G
is a proper vertex coloring of G such that there is no bicolored copy of
Pk in G, and the minimum number of colors needed for a Pk-coloring of
G is called the Pk-chromatic number of G, denoted by sk(G). We pro-
vide bounds on sk(G) for all graphs, in particular, proving that for any

graph G with maximum degree d ≥ 2, and k ≥ 4, sk(G) ≤ d6
√

10d
k−1
k−2 e.

Moreover, we find the exact values for the Pk-chromatic number of the
products of some cycles and paths for k = 5, 6.
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1 Introduction

The proper coloring problem on graphs seeks to find colorings on vertices with
minimum number of colors such that no two neighbors receive the same color.
There have been studies introducing additional conditions to proper coloring,
such as also forbidding 2-colored copies of some particular graphs. In particular,
star coloring problem on a graph G asks to find the minimum number of colors
in a proper coloring forbidding a 2-colored P4, called the star-chromatic num-
ber χs(G) [10]. Similarly, acyclic chromatic number of a graph G, a(G), is the
minimum number of colors used in a proper coloring not having any 2-colored
cycle, also called acyclic coloring of G [10]. Both, the star coloring and acyclic
coloring problems are shown to be NP-complete in [2] and [15], respectively.

These two problems have been studied widely on many different families of
graphs such as product of graphs, particularly grids and hypercubes. In this
paper, we introduce a variation of these problems and study proper coloring of
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graphs not containing a bicolored (2-colored) path of a fixed length and provide
general bounds for all graphs. The Pk-coloring of an undirected graph G, where
k ≥ 4, is a proper vertex coloring of G such that there is no bicolored copy
of Pk in G, and the minimum number of colors needed for a Pk-coloring of G
is called the Pk-chromatic number of G, denoted by sk(G). A special case of
this coloring is the star-coloring, when k = 4, introduced by Grünbaum [10].
Hence, χS(G) = s4(G) and all of the bounds on sk(G) in Section 2 apply to star
chromatic number using k = 4.

If a graph does not contain a bicolored Pk, then it does not contain any
bicolored cycle from the family Ck = {Ci : i ≥ k}. Thus, as the star coloring
problem is a strengthening of the acyclic coloring problem, a Pk-coloring is also
a coloring avoiding a bicolored member from Ck. We call such a coloring, a
Ck-coloring, where the minimum number of colors needed for such a coloring
of a graph G is called Ck-chromatic number of G, denoted by ak(G). By this
definition, we have a3(G) = a(G). In Section 2, we provide a lower bound for
the Ck-chromatic number of graphs as well.

Our results comprise lower bounds on these colorings and an upper bound
for general graphs. Moreover, some exact results are presented. In Section 2, we
provide lower bounds on sk(G) and ak(G) for any graph G. Moreover, we show

that for any graph G with maximum degree d ≥ 2, and k ≥ 4, sk(G) = O(d
k−1
k−2 ).

Finally, in Section 3, we present exact results on the P5-coloring and P6-coloring
for the products of some paths and cycles.

1.1 Related Work

Acyclic coloring was also introduced in 1973 by Grünbaum [10] who proved that
a graph with maximum degree 3 has an acyclic coloring with 4 colors.

The following bounds obtained in [3] are the best available asymptotic bounds
for the acyclic chromatic number, that are obtained using the probabilistic
method.

Ω

(
d

4
3

(logd)
1
3

)
= a(G) = O(d

4
3 ).

Recently, there have been some improvements in the constant factor of the upper
bound in [6, 9, 16], by using the entropy compression method. Similar results
for the star chromatic number of graphs are obtained in [8], showing χs(G) ≤
d20d3/2e for any graph G with maximum degree d.

We observe that the method in [6] is also used in finding a general upper
bound for Pk-coloring of graphs, when k is even. This coloring is called star k
coloring, where a proper coloring of the vertices is obtained avoiding a bicolored
P2k. In [6], it is shown that every graph with maximum degree ∆ has a star k

coloring with at most ckk
1

k−1∆
2k−1
2k−2 +∆ colors, where ck is a function of k. Our

result presented in Section 2 improves this result and generalizes Fertin et al.’s
result in [8] to Pk-coloring of graphs for k ≥ 4.
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The star chromatic number and acyclic chromatic number of products of
graphs have been studied widely as well. In [8], various bounds on the star chro-
matic number of some graph families such as hypercube, grid, tori are obtained,
providing exact values for 2-dimensional grids, trees, complete bipartite graphs,
cycles, outerplanar graphs. More recent results on the acyclic coloring of grid
and tori can be found in [1] and [11]. Similarly, the acyclic chromatic number of
the grid and hypercube is studied in [7]. Moreover, [12–14] investigate the acyclic
chromatic number for products of trees, products of cycles and Hamming graphs.
For some graphs, finding the exact values of these chromatic numbers has been
a longstanding problem, such as the hypercube.

2 General Bounds

We obtain lower bounds on sk(G) and ak(G) by using the theorem of Erdős and
Gallai below.

Theorem 1. [4] For a graph G on n vertices, if the number of edges is more
than

1. 1
2 (k − 2)n, then G contains Pk as a subgraph,

2. 1
2 (k − 1)(n− 1), then G contains a member of Ck as a subgraph,

for any Pk with k ≥ 2, and for any Ck with k ≥ 3.

As also observed in [8] for star coloring, the subgraphs induced by any two
color classes in a Pk-coloring are Pk-free. Using this observation together with
Theorem 1, we obtain the results in Theorems 2 and 3.

Theorem 2. For any graph G = (V,E), let |V | = n and |E| = m. Then,
sk(G) ≥ 2m

n(k−2) + 1, for any k ≥ 3.

Theorem 3. For any graph G = (V,E), let |V | = n, |E| = m and ∆ = 4n(n−
1)− 16m

k−1 + 1. Then, ak(G) ≥ 1
2 (2n+ 1−

√
∆), for any k ≥ 3.

We obtain an upper bound on the Pk-chromatic number of any graph on n
vertices and maximum degree d. Our proof relies on Lovasz Local Lemma, for
which we provide some preliminary details as follows. An event Ai is mutually
independent of a set of events {Bi | i = 1, 2..., n} if for any subset B of events
or their complements contained in {Bi}, we have Pr[Ai | B] = Pr[Ai]. Let
{A1, A2, ..., An} be events in an arbitrary probability space. A graph G = (V,E)
on the set of vertices V = {1, 2, ..., n} is called a dependency graph for the events
A1, A2, ..., An if for each i, 1 ≤ i ≤ n, the event Ai is mutually independent of
all the events {Aj | (i, j) /∈ E}.

Theorem 4 (General Lovasz Local Lemma). [5] Suppose that H = (V,E)
is a dependency graph for the events A1, A2, ..., An and suppose there are real
numbers y1, y2, ..., yn such that 0 ≤ yi ≤ 1 and

Pr[Ai] ≤ yi
∏

(i,j)∈E

(1− yj) (1)
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for all 1 ≤ i ≤ n. Then Pr[
∧n

i=1Ai] ≥
∏n

i=1(1− yi). In particular, with positive
probability no event Ai holds.

We use Theorem 4 in the proof of the following upper bound.

Theorem 5. Let G be any graph with maximum degree d. Then sk(G) ≤ d6
√

10d
k−1
k−2 e,

for any k ≥ 4 and d ≥ 2.

Proof. Assume that x = dad
k−1
k−2 e and a = 6

√
10. Let f : V 7→ {1, 2, ..., x} be

a random vertex coloring of G, where for each vertex v ∈ V , the color f(v) ∈
{1, 2, ..., x} is chosen uniformly at random. It suffices to show that with positive
probability f does not produce a bicolored Pk.

Below are the types of probabilistic events that are not allowed:

– Type I: For each pair of adjacent vertices u and v of G, let Au,v be the event
that f(u) = f(v).

– Type II: For each Pk called P , let AP be the event that P is colored properly
with two colors.

By definition of our coloring, none of these events are allowed to occur. We
construct a dependency graph H, where the vertices are the events of Types I
and II, and use Theorem 4 to show that with positive probability none of these
events occur. For two vertices A1 and A2 to be adjacent in H, the subgraphs
corresponding to these events should have common vertices in G. The depen-
dency graph of the events is called H, where the vertices are the union of the
events. We call a vertex of H of Type i if it corresponds to an event of Type i.
For any vertex v in G, there are at most

– d pairs {u, v} associated with an event of Type I, and
– k+1

2 dk−1 copies of Pk containing v, associated with an event of Type II.

Table 1. The (i, j)th entry showing an upper bound on the number of vertices of type
j that are adjacent to a vertex of type i in H.

I II

I 2d (k + 1)dk−1

II kd k
2
(k + 1)dk−1

The probabilities of the events are

– Pr(Au,v) = 1
x for an event of type I, and

– Pr(AP ) = 1
xk−2 for an event of type II.

To apply Theorem 4, we choose the values of yi’s accordingly so that (1) is
satisfied:

y1 =
1

3d
, y2 =

1

2(k + 1)dk−1
.
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3 Coloring of Products of Paths and Cycles

The cartesian product of two graphs G = (V,E) and G′ = (V ′, E′) is shown by
G�G′ and its vertex set is V × V ′. For any vertices x, y ∈ V and x′, y′ ∈ V ′,
there is an edge between (x, y) and (x′, y′) in G�G′ if and only if either x = y
and x′y′ ∈ E′ or x′ = y′ and xy ∈ E. For simplicity, we let G(n,m) denote the
product Pn�Pm.

Theorem 6.

s5(P3�P3) = s5(C3�C3) = s5(C3�C4) = s5(C4�C4) = 4.

To prove this theorem, we start by showing that s5(P3�P3) ≥ 4. Since C3�C3,
C3�C4 and C4�C4 contain P3�P3 as a subgraph, this shows that at least 4
colors are needed to color these graphs. Such a coloring can be obtained as
in (2) by taking the first three or four rows/columns depending on the change
in the grid dimension.

a b c
c a b
b c a

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

(2)

Theorem 7. s5(G(n,m)) = 4 for all n,m ≥ 3.

Proof. Note that 4 = s5(G(3, 3)) ≤ s5(G(n,m)) for all m,n ≥ 3. Since there
exists some integer k for which 3k ≥ n,m and G(n,m) is a subgraph of G(3k, 3k),
s5(G(n,m)) ≤ s5(G(3k, 3k)) for some k. Hence, we show that s5(G(3k, 3k)) = 4.
In Theorem 6, a P5-coloring of C3�C3 is given by the upper left corner of the
coloring in (2) by using 4 colors. By repeating this coloring of C3�C3 k times in
3k rows, we obtain a coloring of G(3k, 3). Then repeating this colored G(3k, 3) k
times in 3k columns, we obtain a P5-coloring of G(3k, 3k) using 4 colors. There
exists no bicolored P5 in this coloring.

In the following, we generalize the previous cases by making use of the well-
known result below.

Theorem 8 (Sylvester, [17]). If r, s > 1 are relatively prime integers, then
there exist α, β ∈ N such that t = αr + βs for all t ≥ (r − 1)(s− 1).

Theorem 9. Let p, q ≥ 3 and p, q 6= 5. Then s5(Cp�Cq) = 4.

Proof. The lower bound follows from Theorem 6. By Theorem 8, p and q can
be written as a linear combination of 3 and 4 using nonnegative coefficients. By
using this, we are able to tile the p×q-grid of Cp�Cq using these blocks of 3×3,
3× 4, 4× 3, and 4× 4 grids. Recall that the coloring pattern in (2) also provides
a P5-coloring of smaller grids listed above by using the upper left portion for the
required size. Therefore, using these coloring patterns on the smaller blocks of
the tiling yields a P5-coloring of Cp�Cq.



6 Kırtışoğlu et al.

Corollary 1. Let i, j ≥ 3 and i, j 6= 5. Then, s5(Pi�Cj) = 4.

Proof. Since Pi�Pj is a subgraph of Pi�Cj , Theorem 7 gives the lower bound.
By Theorem 9, we have equality.

The ideas used above can be generalized to P6-coloring of graphs. We are
able to show the following result by using the fact s6(G(4, 4)) ≤ s5(G(4, 4)) = 4
and by proving that three colors are not enough for a P6-coloring of G(4, 4).

Theorem 10. s6(G(4, 4)) = 4.

Together, with Theorem 10 and s6(G(n,m)) ≤ s5(G(n,m)) = 4, we have the
following.

Corollary 2. s6(G(n,m)) = 4 for all n,m ≥ 4.

Similarly, Theorem 9 and Corollary 2 imply the following result.

Corollary 3. s6(Cm�Cn) = 4 for all m,n ≥ 4 and m,n 6= 5.
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