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Abstract. Federated learning (FL) allows multiple distributed clients
to train a model while protecting their data. Medical data, especially
brain MRIs, might be misdiagnosed due to capture noise and scanner ab-
normalities. Existing noise-handling technologies use data transmission,
raising communication burdens and privacy risks. To address these chal-
lenges, we propose a novel Adaptive Sample Weighting Federated Learn-
ing (ASW-FL) approach incorporating co-training into the FL frame-
work. The local and global models in FL have different learning abilities,
which we use to our advantage. The two models “teach each other” to
ignore noisy labels by exchanging samples with their confident predic-
tions. Our method improved accuracy from 83.05% to 85.20% using var-
ious aggregation algorithms on a benchmark dataset of 1300 brain MRIs
and our own Biobank UK data. Our methodology for accurate, privacy-
preserving medical image analysis is adequate. The proposed model is
precise but requires more processing resources, making it more appropri-
ate for powerful servers than personal devices.

Keywords: Federated Learning · Co-training · Noise Handling · Diag-
nostic Precision· Machine Learning Approach.

1 Introduction

The latest advancements in artificial intelligence (AI) and machine learning have
ushered in a revolutionary age in cancer imaging and research, which is expected
to influence medical practice significantly. These technologies can automate man-
ual tasks associated with clinical image interpretation. Numerous aspects of can-
cer care, such as identity, prognosis, subtype class, and optimisation, heavily
depend on AI [1]. Deep neural networks have undergone extensive training to
study digital pathology slides and radiological pictures across many cancers. For
instance, AI models now exhibit expert-level overall performance in detecting
mammographic lesions [2] [3]. However, the privacy issue has long been afflicted
by deep learning, particularly in healthcare [4]. Medical images typically involve
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patient-sensitive data that must remain private [5]. Federated studying (FL) has
emerged as a promising solution to those challenges, permitting model training
to co-occur on multiple distributed clients. This method addresses privacy, se-
curity, and bandwidth constraints issues, making it attractive for programs in
healthcare, finance, and other domains [6–9].

The manual medical annotation process during dataset preparation is prone
to errors due to the high level of expertise required for clinical diagnosis. Con-
sequently, label noise often arises, challenging the assurance of label accuracy
[10]. In medical datasets, label noise commonly stems from intra- and inter-
observer variability, which can confuse supervised training. Label noise has been
extensively studied in centralized settings within medical [11], but its impact on
federated learning in medical contexts is still unexplored.

To address label noise in medical, federated learning frameworks require pow-
erful denoising techniques. Existing methods often utilize strategies that involve
the transmission of overhead information. For instance, [12] suggests a process
that exchanges class-wise centroids of local data on every device. Similarly, [13]
suggests sending data quality and the amount of training data from each client
to the server in each round.

This study addresses the need for robust FL frameworks to manage label
noise in medical datasets. This study uses FL with co-training in semi-supervised
learning [14]. These are the main contributions:

1. We propose an effective method that easily integrates into existing FL
frameworks to handle mislabeled local data. Our method ensures privacy and
preserves both privacy and communication efficiency.

2. Our federated co-training scheme comes with a performance guarantee.
3. Extensive evaluations on two datasets have been done. Which validate

the superiority of our method over existing approaches, including FedAvg [15],
co-teaching [16], and noise-tolerant FL schemes [12].

2 Related work

Federated Learning is a decentralized model [15] which involve four steps in
each round. First, the central server sends the global model to all the nodes.
Second, the local node updates the model with its local data. Then, the updated
models are transmitted back to the central server. Finally, the global model is
updated from their aggregates [17]. In medical imaging, FL has demonstrated
promise in various applications. [18] integrated differential-privacy techniques
into FedAvg for brain MRI segmentation, ensuring patient data confidentiality.
Explored FL to detect COVID-19 abnormalities in lung CT scans across multiple
hospitals. Extended FL to semi-supervised CT segmentation by leveraging un-
labeled data, highlighting its versatility in medical imaging tasks. Additionally,
[19] tackled data heterogeneity by aligning server and client prototypes, address-
ing class imbalance issues. Our work proposes further advancing noise removal
FL by integrating Co-Training with federated learning. We aim to enhance the
model’s robustness in labelling noise.
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Noise management Federated Learning Medical imaging relies on deep
learning techniques for diagnosis and analysis and suffers from label noise [20].
Classical deep learning models use clean data, which is impossible in medical
imaging. Firstly, constructing a noise transition matrix is crucial. Various tech-
niques have been used, such as constrained linear layers or non-linear networks.
Forward and backward correction methods have been proposed to rectify out-
puts and loss [21]. Secondly, the design of noise-tolerant loss functions plays
an essential role in robust model training in medicine [22]. Symmetric cross-
entropy loss has shown promise in enhancing model robustness [23]. Finally,
MentorNet utilizes pre-trained networks to filter out noisy samples [16]. Co-
teaching randomly initializes networks with different parameters and exchanges
clean samples for mutual learning and updating [24]. In summary, noise man-
agement learning methodologies used in medical imaging applications hold great
potential for improving diagnostic accuracy. Addressing these challenges gives a
promising startup for more robust and interpretable Federated learning models
in medical diagnosis. Table 1. Shows an overview of all the previous literature
techniques used to handle noise in federated learning.

Table 1: Overview of the existing Noise Tolerance Federated Learning.
Paper Techniques Benefit Limitation
[25] Noise adaptation

layer
Improves model robust-
ness to noise

May not be suitable for
all noise types, complex
design

[16] Co-training Improves model robust-
ness to noise, reduces
overfitting

Requires additional
training data, sensitive
to hyperparameters

[26] MentorNet Improves model robust-
ness to noise, reduces
overfitting

Requires additional
training data, sensitive
to hyperparameters

[23] Symmetric cross-
entropy loss

More robust to label
noise than traditional
cross-entropy

May not be universally
applicable

[21] Loss correction ap-
proach

Improves model conver-
gence, reduces noise im-
pact

May not be suitable for
all noise types, complex
design

[27] Noise transition ma-
trix

Reduces label noise, im-
proves model accuracy

Requires additional
data, computationally
expensive

[28] Enhanced co-
training

Improves effectiveness of
co-training in noisy set-
tings

Builds on limitations of
co-training
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3 Methodology

Federated learning (FL) is a decentralized approach to machine learning that
facilitates collaborative model training over distributed datasets while uphold-
ing data privacy. Meanwhile, co-training is a semi-supervised learning method
wherein multiple models are trained on distinct subsets of data. These models
then exchange information iteratively to enhance their performance. Our pro-
posed framework integrates federated learning with co-training and adaptive
weighting sample methodologies to improve brain tumor diagnosis from MRI
scans. This framework addresses noise in federated learning, enhances the iden-
tification of brain cancers in MRI images, mitigates the impact of data uncer-
tainties, and ensures privacy. Through this approach, we aim to develop a robust
and dependable AI model for identifying brain tumors.

3.1 Proposed Architecture

This section presents an overview of the proposed architecture designed to handle
noise in federated learning using co-training to detect brain tumors in MRI
images. The proposed system conceptual architecture is presented in Fig.1. The
dataset we use in this study comprises MRI images sourced from two repositories;
one is the commonly used benchmark Brain Tumor Detection V1.0 dataset,
and the other is obtained from the Biobank. The initial phase of the model
involves data preprocessing, which includes resizing all the images and using
normalization (Z-score) and augmentation. After that, the dataset is divided into
three subsets for training, validation, and testing purposes. The convolutional
Neural Network (CNN) model trains the dataset. The dataset contains brain
MRI images to detect brain tumors. CNNs can effectively learn discriminative
features indicative of tumor presence, making them well-suited for our dataset.
The proposed architecture combines Federated Learning with co-training and
adaptive weighting sample techniques to enhance brain tumor detection from
MRI images. Co-training involves training two models on different subsets of
the dataset, which exchange information to improve performance. The adaptive
weighting sample technique helps in handling noise and unlabeled data. This
integrated strategy aims to minimize the influence of data uncertainties and
ensure privacy while creating a robust and reliable AI model for brain tumor
identification.

3.2 Data Description

The datasets used in this study consist of brain MRI images sourced from two
different repositories: the Brain Tumor Detection V1.0 benchmark dataset and
data obtained from the UK Biobank. The UK Biobank dataset includes informa-
tion from 2819+ brain tumor patients, focusing on MRI images used for surgical
planning in brain tumor treatment. These images vary in in-plane resolutions
of 256 x 256. For a visual representation, a sample of the prepared data is in
Fig.2a.
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Fig. 1: Architecture of the proposed system

Noise Types The MRI images are susceptible to various types of noise, includ-
ing acquisition noise, motion artefacts, and image distortions. Acquisition noise
arises from imperfections in the imaging process, while motion artefacts occur
due to movement during imaging, and image distortions encompass irregularities
in the MRI images. These noise types can impact training by distorting image
features and introducing inaccuracies.

3.3 Data Pre-processing

Pre-processing data is a machine learning technique that turns unprocessed data
into a desirable format. A few variables were applied when processing the MRI
data. These elements are listed as follows:

Image Extraction The data sets were organised using 3D Nifty (Neuroimaging
Informatics Technology Initiative). The first pre-processing entailed taking 2D-
shaped slices out of the 3D images. The "nibabel" library was used to change it
into PNG format.
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Data Labelling and Segmentation After that, all images were classified as
either "Tumor" or "No - Tumor". Sample images illustrating both scenarios
in Fig.2b. The dataset comprised a total of 1300 images. Of these, 80% were
allocated for training and 20% for validation.

(a) Sample Images of Brain Tumor
Dataset

(b) Sample images Tumor and No-
tumor

Fig. 2: Brain Tumor Dataset

After that, the normalization process is implemented using the z-score method.
This technique standardized the pixel values of the images, resulting in a mean
of 0 and a standard deviation of 1. The z-score normalization formula applied
can be expressed as:

z =
x− µ

σ
(1)

3.4 CNN Architectures

Our proposed system uses the VGG16 CNN model using TensorFlow and Keras
libraries. This model is first pre-trained on the sample images dataset, providing
a solid foundation for our training. We adjust the CNN architecture by remov-
ing fully connected layers and adding max pooling layers to reduce feature map
sizes. After flattening the features, we introduced a dense layer with 1024 neu-
rons, followed by a dropout layer to prevent overfitting. ReLU activation was
used for the dense layers, softmax for the output, and the Adam optimizer with
a learning rate 0.001. We optimized the model through grid search by explor-
ing various combinations of activation functions, loss functions, optimizers, and
neuron counts.

3.5 CNN Model Training

The CNN model training process involved several key parameters and techniques
to ensure effective learning and convergence. The dataset comprised 1040 MRI
slices, with 720 images in the "Tumor" class and 320 in the "No-Tumor" class.
To rectify the imbalance in class representation, a greater weight was assigned
to each image belonging to the "Tumor" class throughout the training process.
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The outcome was a weight of 2.25 assigned to the photos classified as "Tumor"
and 1 assigned to the images classified as "No-Tumor. The training includes ten
epochs, utilizing a batch size of sixteen and sixty-five step sizes for the total
loaded data. Additionally, the model employed optimization techniques such as
stochastic gradient descent (SGD) to adjust the model parameters and minimize
the loss function during training.

3.6 Data Augmentation

In data augmentation, we use Gaussian and salt-and-pepper noise techniques.
These methods add variations to the images(Fig. 3), enhancing the training
dataset and the model’s ability.

Fig. 3: Data Augmentation by Adding Noise to Images.

3.7 Federated Learning with Noise Tolerance

In our federated co-training framework Fig. 1, each local training round involves
the client downloading the global model from the central server and using it as
the starting point for training the local model. Unlike disregarding the trained lo-
cal model from the previous iteration, we integrate knowledge from other clients
and the local client’s experience using a co-training paradigm. The workflow
comprises two primary steps: adaptive sample selection and model co-training.
During adaptive sample selection, confident samples, denoted as S′

i,l and S′
i,g,

are chosen based on predictions from the two classifiers. In addition, an adaptive
weighting mechanism is employed to assign weights to these samples, prioritiz-
ing those that are more informative while mitigating the impact of noisy data.
These weighted samples are then exchanged between the global and local models,
and both models are updated using stochastic gradient descent (SGD). Impor-
tantly, the global and local models are independently initialized at the start of
each round to ensure their divergence. Algorithm 1 outlines the adaptive sam-
ple weight noise management federated learning process, where T represents the
number of communication rounds, M represents the number of edge nodes, η de-
notes the learning rate, E denotes the number of local epochs, and τ denotes the
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fixed threshold. Each edge node’s final global and private models are returned
as outputs.

The returned final global model Θ(T+1) represents the model obtained after T
communication rounds. It is important to note that this model does not include
any updates or modifications from the (T + 1)-th round of communication.

Algorithm 1 Adaptive Sample Weighting with Co-Training in Federated Learn-
ing
Require: Number of communication rounds T , Number of edge nodes M , Learning

rate η, Number of local epochs E, Fixed threshold τ
Ensure: Final global model
1: for t = 0 to T do
2: Initialize the global model Θ(t) = 0
3: for i = 1 to M in parallel do
4: Send the global model to edge i
5: Θg

i , Θ
l
i, S

′
i,l, S

′
i,g ← LocalUpdate(Θ(t))

6: end for
7: Aggregate the local models Θ(t+1) = 1

M

∑M

i=1
Θg

i

8: Update sample weights based on the loss from the global model and local models
9: Adjust the threshold τ based on the communication round t

10: end forreturn Final global model Θ(T+1)

Algorithm 2 LocalUpdate
1: Function LocalUpdate(Θ)
2: Perform local training using Θ and local data
3: Identify confident samples (S′

i,l and S′
i,g) based on predictions from Θ and local

model
4: Assign weights to samples in S′

i,l and S′
i,g based on informativeness and noise

mitigation
5: Perform other local update steps
6: return Updated local model (Θg

i ), updated global model (Θl
i), confident samples

(S′
i,l, S

′
i,g)

3.8 Convergence analysis

One drawback of the noisy labels to FL is that they create incorrect decision
boundaries among local clients, making it challenging for separate local models
to agree upon during the global model’s aggregation phase. Because of that,
the number of communication rounds between the local clients and the central
server has increased. In this section, We analyze the convergence of the Federated
Learning (FedAvg), the noise-tolerant FL (Sample selection), and our suggested
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method, Adaptive sample weight with co-training(ASW-FL).

As shown in Fig.4, our suggested Adaptive sample weight with co-training
(ASW-FL) method outperforms both conventional FL and noise-tolerant Fed-
erated Learning approaches in terms of convergence speed while maintaining
classification accuracy. A far lower number of iterations are needed to get the
same precision. For example, with a noise rate of 0.2, the test accuracy of 60%
requires about 50 rounds for regular FedAvg, whereas noise-tolerant Federated
Learning reaches the same accuracy in about 15 rounds. On the other hand,
this accuracy level is reached using our Adaptive sample weight with co-training
(ASW-FL) approach in just 8 rounds. This highlights how our method works
as a communication-friendly FL framework, lowering communication costs by
eliminating the requirement to send overhead messages from local to central
components.

Fig. 4: Comparison of Federated Learning (FedAvg), Noise Tolerance FL (with
two classifiers) and our proposed ASW-FL

4 Experiments

This section presents detailed experiment results to verify the robustness and
accuracy of our proposed algorithm AWS-FL.

4.1 Experiments setup

We evaluated our suggested method using the Brain Tumor Detection V1.0
benchmark dataset and a real-world dataset from Biobank that comprised Brain
MRIs of actual UK cancer patients. In our simulation, each client receives the
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training samples randomly, and the test set is the only thing the central server
keeps around to assess overall performance.

4.2 Computational Resources

The experimentation setup employed a Windows 10 workstation with 32 giga-
bytes of RAM and an NVIDIA GeForce GTX 1070 GPU (11 GB VRAM). While
this configuration allowed for initial exploration, training was performed on an
RTX 2080Ti GPU for significantly faster training times. The RTX 2080Ti’s par-
allel processing capabilities and ample VRAM (24 GB) accelerated the training
process, especially for handling large datasets and complex models. Compatibil-
ity with CUDA and TensorFlow 2.0 ensured seamless integration and optimiza-
tion.

4.3 Implementation

The PyTorch framework was employed in our implementation. We trained the
network in 100 global communication rounds, with 5 local training. We con-
ducted experiments using two versions of our suggested technique with different
loss functions. We used the conventional cross-entropy loss (CE) and robust loss
function Generalized Cross Entropy (GCE) [22]. In earlier studies, it enhanced
model performance when label noise was present.

4.4 Evaluation

We evaluated the performance of our proposed Adaptive Sample Weight with
Co-training (ASW-FL) approach on two datasets, Brain Tumor Detection V1.0
and Biobank Dataset. We compared ASW-FL against several baseline methods,
including FedAvg and Noise Tolerance Federated Learning (NT-FL) with both
Cross-Entropy (CE) and Generalized Cross-Entropy (GCE) loss functions. The
experiments utilized different noise levels (0.2, 0.3, and 0.4) on the Brain Tumor
Detection V1.0 dataset to evaluate the method’s noise-handling capabilities.

As shown in table2, Our evaluations demonstrated that ASW-FL consistently
outperformed other approaches in test accuracy on the Brain Tumor Detection
V1.0 dataset. Notably, with a noise level of 0.3, ASW-FL achieved an accuracy
of 79.11% compared to 75.09% for NT-FL (CE), the second-best performing
method. This improvement highlights ASW-FL’s effectiveness in handling noise.
The Generalized Cross-Entropy (GCE) loss function enhanced performance, with
ASW-FL achieving the highest accuracy of 85.21% at a noise level of 0.2. On
our Biobank dataset, which contains real-world noisy data, ASW-FL maintained
its superiority. Here, ASW-FL with the GCE loss function achieved the highest
accuracy of 79.56%, demonstrating its robustness in practical settings. These
results strongly support the efficacy of ASW-FL for improving the accuracy of
federated learning in medical image analysis, particularly when dealing with
noisy data.
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Table 2: Overview of the Test Accuracies (%).
Dataset Noise FedAvg NT-FL

(CE)
NT-FL
(GCE)

Proposed
ASW-
FL(CE)

Proposed
ASW-
FL(GCE)

Brain Tumor
Detection
V1.0

0.2 73.67 81.11 83.27 82.22 85.21

Brain Tumor
Detection
V1.0

0.3 66.18 75.09 78.23 77.01 79.11

Brain Tumor
Detection
V1.0

0.4 56.26 64.02 67.38 66.40 69.45

Our Dataset 0.3 71.63 76.13 77.25 79.32 79.56

(a) Test accuracy (%) on Noise level
0.2, 0.3, and 0.4.

(b) Test accuracy (%) on Brain Tumor
Detection V1.0 vs our dataset.

Fig. 5: Test accuracy on both datasets.

5 Discussion and Conclusion

The novel ASW-FL method effectively manages noise in federated learning for
medical images, preserving privacy. Integrating CNNs with FL and adaptive
weighting mitigates noise without additional data sharing. Our analysis demon-
strates ASW-FL’s superior noise tolerance compared to existing approaches.
However, it requires additional co-training, increasing local user workload. ASW-
FL is well-suited for cross-silo federated learning but may not be ideal for cross-
device scenarios due to privacy concerns and varying device capabilities. A ben-
efit of ASW-FL is that users retain private local models after training. Future
research will explore this feature with label-noise learning to address non-IID
data issues.
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