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Abstract 
Prediction of water table fluctuation using mathematical models is an emerging technology. An analytical 
solution to predict the dynamic behavior of water table fluctuation in an anisotropic unconfined aquifer is 
presented in this paper. The aquifer overlying on leaky base is subjected to artificial recharge from top 
and withdrawal from wells. In 2-Dimensional aquifer number of basins and well is been considered. Two 
cases based on different hydrological systems is been analyzed. In the first case aquifer considered is 
having two side no-flow conditions and in the second case aquifer is isolated, having all four boundaries 
impervious. The seepage flow is approximated by non-linear partial differential equation called 
Boussinesq equation and is solved by finite Fourier transforms. The application of closed-form solution is 
demonstrated using an illustrative example. Effect of aquifer parameters on the formation of groundwater 
mound and cone of depression due to recharge and withdrawal are discussed. Effect of permeability of 
aquifer base is also observed.    
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INTRODUCTION: 
In this new era mathematical models are the technique that can predict the transient as well as steady-state 
behavior of water table in unconfined aquifers under seepage and recharge conditions. These modeling 
techniques for simulation of subsurface seepage flow in confined as well as unconfined aquifers have 
been presented by several investigators like [20], [11],[18], [19], [26], [22], [1],[2],[3],[4],[5]. Some 
fundamental works concerning water table fluctuations in a rectangular-shaped homogeneous aquifer 
system due to localized recharge and withdrawal include [10], [99],[14],[15],[9], [17].  
In this paper, a new analytical solution of a 2-dimensional linearized Boussinesq equation is developed. 
The hydrological setting of the model consists of an unconfined anisotropic aquifer overlaying a semi-
pervious (leaky) base, subjected to recharge and withdrawal activities through multiple recharge basins 
and extraction/injection wells. This paper consists of a study of two hydrological systems. One is by 
considering two sides no flow condition and in the second case aquifer is isolated, having all four 
boundaries are impervious. The 2-dimensional linearized Boussinesq equation is solved using a finite 
Fourier transform. The closed-form solution is obtained. The sensitivity of the hydraulic head based on 
variation in aquifer parameters is analyzed. The result obtained in both cases is discussed and compared. 
DEVELOPMENT OF MATHEMATICAL MODEL 

The model consists of an anisotropic unconfined aquifer of dimension A х B is underlain by a semi-
pervious (leaky) base. Typically, such leaky semi-porous formations connect the unconfined aquifer with 
adjacent confined aquifers. Hydraulic conductivities of the aquifer along x and y directions are Kx and Ky 
respectively. The aquifer is in contact with two water bodies along with the coastlines x = 0 and x = A, 
maintaining a constant water head h0 along these coastlines. The other two boundaries, namely y = 0 and 
y = B of the aquifer are fully impervious similarly in the second case all four side impervious boundaries 
are considered. The initial depth is uniform h0
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. Recharge and withdrawal activities are carried out using 
rectangular basins and point sized extraction wells located in the domain of the aquifer. If h(x, y, t) 
denotes the variable water table measured from horizontal datum, then the groundwater flow in 
unconfined horizontal aquifer with semi-pervious base is governed by the following 2-dimensional partial 
differential equation:  

 (1) 
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where S = specific yield; k and b are the hydraulic conductivity and thickness of the base. The term P(x, y, 
t) signifies the combined effects of recharge and withdrawal. The number of basins and wells are 
considered to be n1 and n2 respectively. The ith basin is centered at (xi, yi) and is of dimension ai x bi, 
whereas the jth well is located at (xj, yj). Recharge is considered at time-varying rate, whereas the 
extraction/injection is at a constant rate. Qj is the rate of injection/extraction in the jth

 

 well. δ is the Dirac 
delta function. Thus, define P(x, y, t) 
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where Ri(x, y, t) denotes the transient recharge rate in the ith basin extending from xi ≤ x ≤ xi + ai; yi ≤ y ≤ 
yi + bi
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where λ i is a positive constant, determining the rate at which the recharge in the ith basin reduces to a final 
value Ni 0 from an initial value Ni 0 + Ni 1
The initial and boundary conditions are prescribed as follows: 

. 

For case I 
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For case II 
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Equation (1) is a second-order partial differential equation of parabolic nature, often referred to as a two-
dimensional Boussinesq equation.  Due to its nonlinearity, Boussinesq equation is analytically intractable. 
In order to find an approximate analytical solution of (1), we rewrite it in the form 

(5)
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Equation (7) is now linearized by the relation ħ = (h0 + ht)/2 where h0 is the initial water head and ht

 

 is 
the water head at the current moment (Marino 1973).  
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Now, define H(x, y, t) = h2 – h0
2

 

, we get 
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The initial and boundary conditions read as 

For case I 
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For Case II 
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Equation (8) along with the conditions (9) and (10) is solved using Fourier transform.
   

Thus, the solution of equation (8) is obtained  as 

For case I 
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For case II 
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DISCUSSION OF RESULTS 
 
The model domain is considered to have two rectangular basins, namely B1 and B2, each of dimension 10 
m х 10 m, and centered at (35m, 35m) and (115m, 35m) respectively. Moreover, two extraction wells, 
namely W1 and W2, located at (35m, 75m) and (115m, 75m) are considered. Recharge is applied through 
B1 and B2 at a time-varying rate 0.5 + 0.8 e–0.2t and 0.4 + 0.9 e–0.2t per day respectively. At the same time, 
water is extracted from W1 and W2 at a constant rate 40 and 30 m3/day respectively. Average saturated 
depth of the aquifer is determined using an iterative relation ħ = (h0 + ht)/2 where h0 is the initial water 
head and h t is the water head at the current moment (Marino 1973). Initial approximation of ħ is taken as 
h0
Distribution of water head along line y = 35 m (line passing through the centers of recharge basins B

. Transient profiles of the water table fluctuations are determined for various values of time t.  
1 and 

B2

It is observed that the groundwater mounds are symmetrical about the centers of the basins; however, the 
growth of mound beneath B

) for t = 1, 5 and 10 d is presented in Figure 1 and Figure 3. 

1 is marginally higher than that of beneath B2

 Hydraulic resistance of aquifer’s base (measured by the ratio b/k) has significant impact on the transient 
profiles of the phreatic surface. Numerical experiments reveal that the groundwater mound attains a 
higher level in those aquifers which have comparatively higher values of hydraulic resistance. This is 
primarily due to vertical seepage loss through the aquifer’s base, which decreases as the hydraulic 
resistance increases. 

, mainly due to varying recharge 
rate used in this example.                                    

 

 

 



Figure 1 Groundwater mound for k = 0.25 m/d          Figure.2  Cone of depression for k = 0.25 m/d 
 

                                
Figure 3:Ground water mound for t=1 and 5 day Figure 4:cone of depression for t=1 and 5 days 

 

                            
 

Lowering of water table due to continuous pumping from wells W1 and W2

The difference in depth of cone under W

 are shown in Figure2 
and Figure 4. These profiles characterize cones of depression at t = 1, 5 and 10 d in the presence of semi-
pervious base with k = 0.25 m/d.  

1 and W2 is primarily due to varying pumping rate (Q1 = 
40 m3/d, Q2 = 30 m3

 

/d). It can be observed from these figures that the depth of cone increases with time. 
Moreover, water table depletion induced by pumping from wells is also affected by the hydraulic 
resistance of the aquifer’s base. When the base is leaky, withdrawal from the wells is supplemented by the 
leakage induced vertical flow from hydraulically connected sources. Consequently, the depth of the cone 
of depression is mitigated. Three dimensional view of the groundwater mound and the cone of depression 
for t = 10 days is shown in Figure 5 (A and B) for k = 0.25 m/d and k = 0 in case I similarly in Figure 6(A 
and B) for case II. 

     Figure. 5 (A and B)  Water table profile for k = 0.25 m/d and k = 0  in case I 
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Fig. 6 (A and B) Water table profile for k = 0.25 m/d and k = 0  in case II 

                               
 
  
 
 
CONCLUSION:     

  In this paper, approximate analytical solution of 2-dimensional Boussinesq equation is 

developed to simulate water table fluctuations in a rectangular shaped unconfined aquifer due to 

multiple recharge and withdrawal is studied. The mathematical model consists of an anisotropic 

and homogeneous aquifer system overlying a leaky base, and hydraulically connected with two 

water bodies along its opposite faces. Two sides impervious and all four side impervious 

boundaries are considered. Analytical expressions for water head distribution are developed 

using finite Fourier transform. The conclusions obtained in this study are as follows: 

• The solution developed in this study has the ability to predict the fluctuations in water 

table in unconfined aquifer due to multiple recharge and withdrawal. 

•  The numerical examples demonstrated that the semi-pervious layer supplements the 

draw-down beneath the wells, and reduces the height of groundwater mound beneath 

recharge basins.  

• The cone of depression forms under the wells. Effect of water pumping from wells is 

clearly observed.  

• The water mound form under recharge basin is broader in the case II that of the case I. 

• Effect of semi-pervious base is clearly seen in the water mound and cone of depression. 
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