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Abstract.  

The recent developments of computer and electronic systems have made the use of intelligent systems for 

the automation of agricultural industries. In this study, the temperature variation of the mushroom growing 

room was modeled by multi-layered perceptron and radial basis function networks based on independent 

parameters including ambient temperature, water temperature, fresh air and circulation air dampers, and 

water tap. According to the obtained results from the networks, the best network for MLP was in the 

second repetition with 12 neurons in the hidden layer and in 20 neurons in the hidden layer for radial basis 

function network. The obtained results from comparative parameters for two networks showed the highest 

correlation coefficient (0.966), the lowest root mean square error (RMSE) (0.787) and the lowest mean 

absolute error (MAE) (0.02746) for radial basis function. Therefore, the neural network with radial basis 

function was selected as a predictor of the behavior of the system for the temperature of mushroom 

growing halls controlling system. 

Keywords: Agricultural production, Environmental parameters, Mushroom growth prediction, Machine 

learning, Artificial neural networks (ANN), Food production  Food security 

1 Introduction 

Nowadays, Due to issues such as population growth and limited agricultural resources including land and 

freshwater, the necessity of attention to new methods and efficiency in agricultural production, is quite evident 

[1]. A number of clinical studies in Japan and the United States of America have shown that a certain percentage 

of polysaccharides against breast cancer, lung, liver, prostate and brain tumors is effective [2, 3]. The benefits of 

this product is promising to use this product in the diet. The growth period of this product consists of several stages 

and each of these stages requires different controlling condition [1]. The use of intelligent systems for automation 

in agriculture industries has been due to the development of computer systems and electronics in recent decades. 

With these systems, we can control the environmental parameters involved in mushroom production halls. 

Temperature is one of the parameters that shows a high impact on mushroom growth, and chemical reactions are 

intensive at higher temperatures. In biological processes such as growth, the effect of temperature can be easily 

observed where vast quantities of chemical reactions occur. The optimum temperature for mushrooms, depending 

on the stage and type of race, is 17 to 30 °C. The metabolism of consumed food by microorganisms in the compost 

contributes to their growth and activity, and as a result, it produces the heat. For example, rising compost 

temperature decreases crop production. Figure 1 shows the lack of mushroom production in the middle of the bed 

when the compost temperature is higher than the standard value [1]. 

 



 

Fig. 1. The effect of temperature value on mushroom production 

The successful cultivation of mushroom is possible when parameters such as temperature, humidity, and 

carbon dioxide concentration, pests and diseases and also preparing compost have been controlled and inspected 

properly. Environmental factors have the most influence on the quality of the product on the growth stage [4]. 

Problems in the field of parameters controlling on mushroom cultivation halls forced us to do studies on controlling 

these parameters. Manually and traditional controlling methods are under the influence of factors such as human, 

measurement and environment errors [1]. To resolve this problem, several studies were carried out with different 

control methods. Ardabili et al. [4] presented controlling system using fuzzy and digital controllers to control the 

environmental parameters of the mushroom production hall. Previous studies with presented methods have the 

complexity of calculation in control strategies. Today, predictive control is used in industrial applications to 

develop control strategies [5]. Among the systems that have the capability to model and predict the behavior of 

systems, can point to artificial neural networks. A neural network consists of a number of processing elements or 

computing nodes that are very simple and interconnected. This network is an algorithm information processing 

that is processing by dynamic response related to processing elements and their connections to lateral inputs [6]. 

The most common neural networks are Multi-Layered Perceptron (MLP) and Radial Basis Function (RBF) 

networks. 

The main aim of this study is to present a predictive model of the temperature variation of the mushroom 

growing room by artificial neural networks based on the variables that are affecting on room temperature (ambient 

temperature, water temperature, fresh air dampers, circulation air dampers, and water tap). To reach this purpose, 

the study consists of three phases. The first stage is analyzing the required data. The second stage presents MLP 

and RBF models and the last stage presents the results and a comparison of networks and introduces the best 

model. 

2 Materials and Methods 

2.1 Data Collecting 

This research was studied in one of the mushroom production halls of Sabalan agroindustry company (Sabalan 

Mushroom) in Ardabil province of Iran. The target hall has dimensions of 22, 5/6, 5/4 m (length, width, height, 

respectively) and has 1850 compost with a weight of approximately 15 kg for each compost. In order to data 

collecting operation, three PT-100 sensors were used. The location of temperature sensors in terms of height and 

width was in the middle of the hall height and width and in term of length were located on three points including 

the beginning of hall, the middle of the hall and the end of the hall. This method of the arrangement of sensors 

was used because the longitudinal air circulators in two top corners of the hall make airflow in transverse and 

height directions of Hall and provide thermal equilibrium on transverse and height directions of the hall, and if 

there is a temperature difference, this difference will be in the longitudinal direction of hall. 

Compost generates heat. There is a need to maintain and stabilize the temperature of compost at every stage 

of the growth cycle and since the volume of compost is lower than the indoor air volume of the growing hall, the 

operation of stabilizing of compost temperature should be done by changing hall temperature. 



 

Data collecting operations were done in the winter season and due to variations of ambient temperature, an 

external temperature logger was used to record temperature changes. Data collecting operations were performed 

at different reps. In order to record the required data, Autonics temperature controller TKM-B4RC was used that 

was equipped with RS485 output and related DAQ-master software. Ambient temperature, variations of 

circulation air dampers, variations of fresh air dampers, hot water tap and hot water temperature were as 

independent variables and indoor temperature of hall was as the only dependent variable. To adjust the room 

temperature and variation of input variables, it was using air conditioning systems (Fig. 2). 

 

Fig. 2. Air conditioning system 

This system is capable of cooling and heating, generating indoor air circulation by air ducts, providing required 

relative humidity and reducing the carbon dioxide concentration using fresh air dampers. Operation of temperature 

control in this system is performing by variating hot and cold water Debbie as well as opening and closing the air 

dampers. This system has two air inputs (Circulation and fresh air dampers) and an air output that the circulation 

air damper is for circulating the hall atmosphere and the fresh air damper is controlling temperature, humidity or 

carbon dioxide concentration by entering fresh air to hall [1]. Measurement of independent variables such as the 

air dampers and hot water tap were performed at three levels including minimum, medium and maximum value 

of actuators openness. According to the coolness of the air in the operation season, the outdoor air was used for 

cooling operations instead of cold water. Because the cold water would freeze and damage the coils in this season. 

Data were collected in 3 treatments and different repetitions to achieve high accuracy. Table 1 shows the different 

treatments for independent variables. 

2.2 Artificial Neural Networks (ANNs) 

Literature includes a vast number of machine learning methods used for the purpose of the modeling and prediction 

[7–26]. Machine learning models generally out-perform most of the statistical and mathematical models in term 

of computation cost, efficiency and accuracy [27–40]. ANNs are considered as efficient methods for developing 

reliable models. This study employs two types of neural networks including multilinear perceptron (MLP) and 

radial basis function (RBF). 

 

Table 1. Treatments of independent variables for data collecting 

Parameter Treatment 

Maximum Medium Minimum 

Ambient temperature (°C) −10 0 +10 

Water temperature (°C) 30 40 50 

Fresh air damper (Openness) 1/3 2/3 3/3 

Circulation air damper 

(Openness) 
1/3 2/3 3/3 

Water tap (Openness) 1/3 2/3 3/3 

 



Before starting the training process, data have been divided into two categories of training data (with a share of 

70%) and testing data (with a share of 30%), randomly. The training process was started with the different number 

of neurons in the hidden layer and the function of each parameter was measured with respect to the base parameter. 

To determine the optimal number of neurons in the hidden layer and to obtain the best predictor network, in first 

stage the network was trained with one neuron on a hidden layer. Figure 3 presents the structure of the RBF 

network. 

 

Fig. 3. The structure of RBF network 

Evaluating the results have been conducted by employing Root Mean Square Error (RMSE), correlation 

coefficient (R) and mean absolute error (MAE) were used [41] to analyze the output of networks and target values. 

 

 

That A is the target value, P is the predicted values and N is the numbers of data. 

3 Results 

In this study, the temperature variation of the mushroom growing hall, as an critical factor of mushroom 

production, was modeled based on dependent variables including ambient temperature, fresh air damper, 

circulation air damper, water tap and water temperature using MLP and RBF networks. To perform modeling 

operations, there is a 
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Fig. 4. The results of experimental data and the relation of dependent and independent variables 

need to be aware of the general nature of the system that this is carried out by experimental data related to the 

system. For this purpose, the experimental data were obtained from the studied system using the introduced 

strategy in Table 1. Figure 4 indicates the results of data collecting and the relationship among the actuators and 

the related parameter. 

According to Fig. 4(a) by considering the fixed value of other parameters, opening hot water tap, increases the 

growing hall temperature. Figure 4(b) shows the variation of growing hall temperature by opening and closing air 

dampers when other parameters are fixed. Accordingly, if the rate of opening and closing of circulation and fresh 

air dampers be equal, respectively, the hall temperature almost will be fixed. In Fig. 4(c) by reducing the 

temperature of the water and by increasing the ambient temperature during the day, the growing hall temperature 

has undergone a constant trend. 

3.1 Training Process 

This section presents the results of choosing the best network for the training process based on the performance 

functions for RBF and MLP separately. Table 2 is related to MLP network, and Table 3 is related to RBF network. 

Table 2. The result of selecting the best network for MLP model 

Numbers of the 

neuron on hidden 
layer/repetition 

Value of 

performance 

function for 

validation data 

Value of 

performance 

function for 

training data 

Value of 

performance 

function for testing 

data 

12/1 0.55064 0.42202 0.84431 

12/2 0.53321 0.41001 0.82541 

12/3 0.52248 0.41056 0.84522 

Minimum value 0.52248 0.41001 0.82541 

Maximum value 0.55064 0.42202 0.84522 

Average 0.53544 0.41419 0.83831 

According to Table 2, the best result (lowest values of the performance function for testing data) is obtained 

in the second repetition of the training process. So the second network was selected as the best prediction network. 
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Table 3 was prepared to choose the best number of neurons in the hidden layer for RBF network. 

Table 3. The result of selecting the best number of neurons on hidden layer for RBF network 

Number of neurons on hidden 

layer 

RMSE R MAE 

4 0.2897 0.69 0.1016 

8 0.1925 0.79 0.0675 

12 0.1589 0.85 0.05575 

16 0.1205 0.91 0.0422 

20 0.0787 0.996 0.02746 

24 0.0787 0.996 0.02745 

As shown in Table 3, by increasing the number of neurons in the hidden layer, the correlation coefficient is 

increased and mean absolute error and root mean square error values are reduced. 

After 20 neurons, these parameters remained stable and have not changed, so the number of 20 neurons in the 

hidden layer were selected as the optimal number of neurons. The networks were trained after selecting the optimal 

number of neurons to neural network Multilayer Perceptron and Radial Basis Function networks were trained. 

After the training process, test data were imported to developed networks and output data were generated to 

compare with the target values. The results of the target and the predicted values are shown in Figs. 5 and 6. 

 

Fig. 5. Results of predicted and target values compared to target values. a) RBF network b) MLP network 

 

Fig. 6. Scatter plot of predicted and target values a) RBF network b) MLP network 

According to Fig. 5.a, the predicted values of RBF network are following target values well and have less 

deviation and error from the target value, but predicted values of MLP network (Fig. 5.b) have a large error and 

deviation from target values and has lower compliance with target values compared to RBF network. 

Based on the results of Fig. 6 and according to the description mentioned about correlation coefficient, it can 

be said that the output values of RBF network have 99.6% of linearship and the output values of MLP network 

have 96% linearship with target values. To display these results as a statistical factor, the output of models were 



 

compared with target values using the comparison parameters that were mentioned in Materials and methods. The 

obtained results were tabulated in Table 4. 

Table 4. The results of comparison parameter for two types of networks 

Network type MAE RMSE R 

MLP 0.137 0.9085 0.9612 

RBF 0.0274

6 
0.787 0.996 

 

According Table 4, the results of comparison parameters indicate that the results of RBF network have high 

correlation coefficient (0.996) and low RMSE and MAE values (0.787 and 0.02746, respectively) compared to 

MLP network. Due to the high correlation coefficient for RBF network (0.996), It can be said that process 

modeling, compliance and linear correlation predicted by the RBF network is higher than MLP network that is 

confirming the obtained results from Figs. 5 and 6. 

On the other hand, RBF network with the lowest root mean square error (0.787) and the lowest mean absolute 

error (0.02746) generated closest predicted values with minimal errors compared to the MLP neural network and 

it can be said that RBF has high ability to model the temperature variations compared to MLP network in this 

study. Therefore the designed model based on RBF is predicting the temperature value more accurate with low 

deviation to target values compared to the MLP network. 

Ardabili et al. [42] developed a fuzzy modeling system in order to predict the temperature of the mushroom 

growing hall that the correlation coefficient and mean absolute error between the predicted and target values were 

calculated 0.67 and 0.232, respectively. The present study indicates the improvements in the prediction of 

temperature variations using artificial neural networks. One of the reasons that led to this happening, is that the 

fuzzy systems unlike the artificial neural networks, is operating by the defined laws. These rules can be affected 

by the accuracy of laws defining and can have a negative effect on system precision. 

Figure 7 presents the error values for the predicted values of each network from the desired values. The zero 

value of deviation is related to the Target value. The blue line indicates the deviations related to RBF network and 

the red line indicates the deviations related to MLP network. Based on Fig. 7, MLP network has the maximum 

deviation from the target value. 

 

Fig. 7. Deviation Of predicted values of networks from the target value 

According to Fig. 7, if the output of networks is compared in the same input values, it can be said that the 

deviation of temperature from target values in RBF network is higher than MLP network. This means that the 

energy losses of MLP network are higher than RBF network. This energy losses on MLP network can be reduced 

by the changes that can be applied in network inputs. This losses of energy is equal to increasing the failure risk 

of the system on MLP model compared to RBF model. 



4 Conclusion 

This study is performed in a mushroom growing hall with the aim of modeling of temperature variations. 

Accordingly, modeling systems including MLP and RBF networks was used. The results of the data collecting 

process reflected the dependence of temperature value to independent variables. Therefore, results were prepared 

after the modelling process and extracting the output values of networks and comparing them with target values. 

This results showed that the RBF network has high accuracy and better performance compared to MLP network 

and also using RBS network will reduce energy consumption, system failure, and costs. Thus, the neural network 

with radial basis function was chosen as a predictive network of hall temperature in this study. For the future 

works, more sophisticated machine learning methods must come to consideration, e.g., [42–51]. 
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