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Abstract—Forecasting clinical time series data plays a vital role
in healthcare by facilitating early interventions and enhancing
patient outcomes. Traditional approaches such as linear and
logistic regression, and Recurrent Neural Networks (RNN) have
been extensively explored. In addition, generative models like
Variational Autoencoders (VAE) have been utilized to handle
uncertainty and variability in time series data. However, these
methods face challenges in capturing complex temporal depen-
dencies and disease-specific characteristics. We propose two novel
variational recurrent neural networks (VRNN) based methods,
incorporating patient similarity (VRNN-I+) and latent disease
classification (VRNN-II+), to enhance predictive performance
in clinical forecasting. The first approach (VRNN-I+) enhances
the VRNN model by incorporating temporal data from similar
patients as additional domain knowledge, aiming to improve the
model’s ability to predict patient outcomes. The second approach
(VRNN-II+) transitions from using a standard Recurrent Neural
Network (RNN) to a Long Short-Term Memory (LSTM) network,
while introducing the disease class as a hidden latent variable
within the model to capture complex dependencies in the data.
The dataset used in this study is derived from Medical Informa-
tion Mart for Intensive Care-IV (MIMIC-IV), which provided
more comprehensive and up-to-date patient records compared
to the widely used MIMIC-III dataset. The preprocessing steps
were also described accompanying the dataset. To evaluate the ef-
fectiveness of incorporating supplementary information for time
series prediction, we used the root mean square error (RMSE) as
a metric. We selected three subjects to assess the one-step-ahead
prediction accuracy, and our results clearly demonstrate that
incorporating additional domain knowledge about the patients
significantly improves the accuracy of the VRNN (by 15.4%) for
clinical time series forecasting.

Index Terms—VRNN, VRNN-I+; VRNN-II+

I. INTRODUCTION

It has been estimated that 20-40% of global health system
spending is wasted due to inefficiency [1]. Problems of con-
trolling quality, hospital management, and unnecessary care
increase the burden on patients and the government [2]. Thus,
the expenditure and quality of care have considerable space
to improve [3], while the blackness of advanced technology
have been considered as one of the fundamental issues.

By 2015, more than 80% of hospitals had implemented
at least a basic Electronic Health Record (EHR) system

[4]. The widespread adoption of EHR has led to significant
improvements [5][6]. Most EHRs collect both continuous and
categorical data from patients during their Intensive Care Unit
(ICU) stay, enabling comprehensive analysis and monitoring.
The multitude of data available in EHRs make them well-
suited for high-dimensional analyses [7], including phenotype
classification, risk-of-mortality prediction, length-of-stay pre-
diction, etc.

According to the review paper [8], early prediction models
primarily used generalized linear models, along with Bayesian
methods, random forests, and regularized regression, often
evaluated with the c-statistic for model discrimination. In re-
cent years, research on clinical time series diagnostic code pre-
diction has used phenotyping, feedforward networks, LSTM
networks and temporal convolutional networks. In addition to
multitask learning, phenotyping was formulated as multi-label
classification, using neural networks to capture comorbidities
in hidden layers implicitly. Others attempted to jointly solve
multiple related clinical tasks, including predicting mortality
and length of stay. However, none of this work addressed
problem settings where sequential or temporal structure varies
across tasks [9]. Previous works mainly involved LSTM for
clinical time series prediction, a model used to process se-
quential data, primarily used in language analysis [10]. Our
model is heavily based on SRNN, VRNN and its extension
which, to the best of our knowledge, has yet to be used with
additional domain specific knowledge in the clinical data.

In this paper, we propose two novel VRNN-based methods
and demonstrate their effectiveness in increasing forecasting
accuracy through experimental results. Although both meth-
ods build on VRNN, they incorporate disease diagnosis as
supplementary information in distinct ways. The first method
seeks to learn the time series patterns for a specific patient by
leveraging time series data from similar patients, effectively
learning a group-based time series model. The second method
introduces a latent categorical variable to identify the disease
class.

The structure of the paper is as follows: we (i) present the
basic concepts of SRNN and VRNN; (ii) introduce the VRNN-



I+ and VRNN-II+ models, each incorporating a class variable
as a latent factor within the model; (iii) describe the MIMIC-
IV dataset and outline the data preprocessing steps; (iv) explain
how the similarity variable is integrated into the VRNN-I+
model; and (v) compare VRNN-I with VRNN-I+ and VRNN-
II+. For evaluation, we selected three random study subjects
and plot the predicted versus ground truth values for one-step-
ahead predictions.

Building on the limitations of existing clinical time series
forecasting models, this paper aims to enhance predictive
forecasting by proposing two ways of implementing supple-
mentary information into VRNN-I models(VRNN-I+, VRNN-
II+). These models leverage the strengths of LSTM, VAE ar-
chitectures, and utilize ICD-9 disease codes for patient group-
ing, thereby enhancing the prediction results. This research
contributes to hospital management by supporting phenotype
classification, risk of mortality prediction and length of stay
forecasting, as well as reducing documentation error, and
providing valuable references for doctors. Additionally, it offer
a refined approach for analyzing clinical data for scientists and
medical researchers. For instance, computational phenotyping
research aids to discovering and categorizing new subtypes
and identifying specific phenotypes to improve classification
under existing disease boundaries and definitions.

II. METHODS

This section first introduces SRNN, which is designed
to handle sequential data by incorporating stochastic latent
variables into a recurrent structure, thereby modeling un-
certainty in time-series data. Then, we present an approach
called VRNN-I+, which extends the basic SRNN by utilizing
the VAE’s probabilistic latent space, enabling for a more
expressive representation of the hidden structure in sequential
data. Finally, we introduce another approach called VRNN-
II+, which integrates a LSTM networks into both the encoder
and decoder networks of a VAE model to enhace its sequen-
tial modeling capabilities[11][12][13]. This approach adds an
additional continuous latent variable w, into the model to
represent the probability of being in a class. Note that this
differs from the VRNN-I+ model, where the latter inserts
extra patients with similar temporal features (decided via KNN
approach) to enhance the prediction.

A. Stochastic Recurrent Neural Networks (SRNN)

In brief, SRNN combines RNN with a state space model
(SSM)both of which are commonly used in time series
modeling. Again, let us assume the time series x1:T =
(x1, x2, · · · , xT ) may depend on u1:T = (u1, u2, · · · , uT )
As shown in Fig.1, RNN and SSM have similarities, such
as incorporating information from the sequence x1:t−−−1

is integrated into the latent state dt or zt. In comparison:
RNN has strong nonlinear fitting capabilities, but its hidden
states are deterministic; meanwhile, SSM’s stochastic state
transitions are better suited for modeling uncertainty, though
its inference process is usually simpler. Can we combine
the strengths of both approaches? This is the motivation of
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Fig. 1. Recurrent Neural Network (RNN) architecture: Left hand side is the
structure for one time step and right hand side is the overview of RNN

SRNN, which turns the stochastic state transitions in SSM
into nonlinear ones, while preserving the gating activation
mechanism of RNN. For further details on SRNN, please refer
to [14].

B. Variational Recurrent Neural Network(VRNN-I)

1) Model Generation: The VRNN-I [15] architecture
merges elements of both VAE and RNN, with a VAE integrated
at each time step t. However, the VAE accounts the temporal
structure present in sequential data by conditioning on the
RNN’s state variable ht−1. Unlike a typical VAE, the prior
for the latent random variable is no longer modeled by a
standard Gaussian distribution, but instead follows a different
distribution:

zt ∼ N (µ0,t, diag(σ2
0,t)) (1)

And the parameters are determined using the following equa-
tions:

[µ0,t,σ0,t] = ψ
prior
τ (ht−1). (2)

Furthermore, the generating distribution will be conditioned
not only on zt but also on ht−1 such that:

xt|zt ∼ N (µx,t, diag(σ2
x,t)) (3)

where
[µx,t,σx,t] = ψ

dec
τ (ψz

τzt, ht−1). (4)

µx,t and σx,t represent the parameters of the generating
distribution. Functions ψprior

τ , ψdec
τ can be any highly flexible

function such as neural networks. Both ψx
τ and ψz

τ are
implemented as neural networks, designed to extract features
respectively from xt and zt. Our analysis shows that these fea-
ture extractors are vital for learning complex sequences. The
RNN updates its hidden state using the recurrence equation:

ht = fθ(ψ
x
τ (xt),ψ

z
τ (zt),ht−1) (5)

The parameterization of the generative model results in and
is motivated by the factorization:

p(x ≤ T, z ≤ T ) =

T∏
t=1

p(xt|z≤t,x≤t)p(zt|x<t, z<t) (6)



2) Model Inference: In a similar manner, the approximate
posterior is not only a function of xt, but also a function of
ht−1, as shown below:

zt|xt ∼ N (µz,t, diag(σ2
z,t)), (7)

where µz,t and σz,t represent the parameters of the approxi-
mate posterior. It is observed that the encoding and decoding
processes of the approximate posterior depend on the hidden
state ht−1 of the RNN. Additionally, conditioning on ht−1

leads to the following factorization:

q(z≤T |x≤T ) =

T∏
t=1

q(zt|x≤t, z<t). (8)

3) Learning: The objective function changes to the follow-
ing time-step lower bound using (6) and (8):

Eq(z≤T |x≤T )[

T∑
t=1

(−KL (q(zt|x≤t, z<t)||p(zt|x≤t, z<t))

+ log p(xt|z≤t, x≤t)]. (9)

As in a standard VAE, we jointly learn the generative model
and inference model by maximizing the variational lower
bound with respect to their parameters.

C. VRNN with latent class (VRNN-II)

First, we describe how class variables are embedded into
VRNN-II model. The ICD-9 code is designed to group similar
diseases into 1 single class. Unlike the VRNN-I framework,
this study groups patients with similar status together, sum-
marizes all ICD-9 disease types into five classes (more details
can be found in the Model implementation and evaluation
section). Next, we add an additional continuous latent variable
w which follows a multinomial distribution with parameter θ
representing the probability of data belonging to each category.
The joint distribution considered is as follows:

pθ(X, z, w) = pθ(X|z, w)pθ(z)pθ(w) (10)

where X is the observed data, z and w are latent variables.
We also assumed that z and w are independent variables.

During training, we assumed both X and w are given while
during inference, only X is given. This is due to the VAE’s
limitation in inferring discrete latent variables. Instead, our
approach model them as class probabilities rather than treating
them as discrete categorical variables.

We would like to learn the entire posterior of class proba-
bilities: pθ(w|X). Following the derivation from [16], which
builds on the modification of [17]: we constructed a variational
lower-bound on the log of the marginal likelihood

pθ(X) =

∫
pθ(X|z, w)pθ(z)pθ(w) ∂w∂z (11)

with

log pθ(X)−D[qϕ(z, w | X) ∥ pθ(z, w | X)]

=E(z,w)∼qϕ(z,w|X)[log pθ(X | z, w)]
−D[qϕ(z, w | X) ∥ pθ(z, w)] (12)

Then follow [14], let us rewrite the right-hand side as:

E(z,w)∼qϕ(z,w|X)[log pθ(X | z, w)]
−Ew∼qϕ(w|X)[D [qϕ(z | X,w) ∥ pθ(z)]]

−D[qϕ(w | X) ∥ pθ(w)] = −LV AE(X) (13)

where pθ(z) and pθ(w) are priors, while qϕ(w|X) and
qϕ(z|w,X) are variational approximations to the true posteri-
ors. Same as [17], we aim to optimize the marginal likelihood,
which can be achieved via maximizing (13).

Furthermore, we ensure that D[qϕ(z, w | X) ∥ pθ(z, w |
X)] is small as possible. We assume that the true class is
accessible to m, is denoted as w̃. This setup allows us to
minimize the categorical cross-entropy loss between qϕ(w|X)
and w̃ [16]. We end up with the final objective, denoted as
(L), is therefore as follows:

L(X) = LV AE(X) + αEw∼qϕ(w|X) [Lc(w; w̃)] (14)

Lc(w; w̃) represents the categorical cross-entropy loss between
a sampled w ∼ qϕ(w|X) and the true class w̃.

III. DATE AND MODEL

A. Data Description

The ”Medical Information Mart for Intensive Care (MIMIC-
IV)” [18] is a modern electronic health record dataset that
spans a decade of patient admissions from 2008 to 2019.
MIMIC-IV offers comprehensive data for retrospective clinical
studies and critical care operations, featuring high granularity
on aspects such as re-admissions, length of stay, prescriptions,
caregivers, and diagnoses and procedures (ICD-9). As shown
in Fig.3, MIMIC-IV separates patient information in the
Emergency Department (ED) and Intensive Care Unit (ICU).
We focus on exclusively on ICU data, supported by with
demographic data, as ICU data contains longer time-series
inputs and less missing data (further details are provided in
the following subsections).

Fig. 2. structure of MIMIC-IV constructed in this paper
MIMIC-IV

Note
radiology reports,

discharge summaries

Hospital
demographics, lab
tests, medications
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observations,

treatments
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Emergency
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vital signs,

triage, diagnosis
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DICOM images
and annotations

Fig. 3. MIMIC-IV follows a modular structure. Modules are linked by
identifiers including subject id, hadm id, and deidentified date and time.
Example content of each module is shown.

B. Data preprocessing

Gupta et al. [19] contains extensive data processing pipeline
for MIMIC-IVyielding optimal result with MIMIC-IV 2.2.
Consequently, this paper adhered to this version of MIMIC-IV.



1) Outlier removal: During the preprocessing, we cleaned
the original dataset by removing outliers, allowing us to impute
missing entries. Following the approach in [19], we identified
statistically extreme values, unlike the method in [20], where
only values labeled 999999 and the negative (infeasible)
values were removed as in [13]. We customized the two-tailed
threshold to 95th percentile, which means all extreme values
outside this percentile range should be removed.

2) Missing values: Missing data can lead to issues such as
distorted patterns, trends, and biases in parameter estimation
[21]. We adopt the approach of [22], excluding variables with
more than 20% missing data (table I. For variables with less
than 5% missing data, missing values in continuous variables
that exhibit a normal distribution were imputed using the mean
specific to the patient group. For continuous variables with
skewed distributions, the median was used as replace missing
values [23]. For variables with more than 5% missing data,
we implemented a method adapted from [9], a benchmark
from MIMIC-III. This approach imputted missing values using
the most recent measurement when available, or a predefined
’normal’ value otherwise (for further details, see [9]).

TABLE I
PERCENTAGE OF MISSING VALUES FOR VARIOUS VARIABLES

Variables Percentage of missing values
Heart rate 4.23%
Respiratory rate 4.89%
MBP 4.39%
SBP 7.81%
DBP 7.81%
AOS 10.93%
Glucose 12.68%
Temperature 19.54%

3) Time-series representation: The following continuous
data were extracted from MIMIC-IV ICU: heart rate (HR),
systolic blood pressure (SBP), diastolic blood pressure (DBP),
mean blood pressure (MBP), respiratory rate (RR), body tem-
perature, Arterial O2 Saturation (AOS) and Glucose. Next, we
applied the pipeline from [19], these variables were organized
into uniform 4-hour intervals for consistency. Since the time-
series data selected is typically recorded every 4 hours, we
opted for a 4-hour interval. If a patient has multiple entries
within a 4-hour period, the mean value was computed and
replaced by those entries with a single value for consistency.
Conversely, if there are no measurements within a 4-hour slot,
we addressed this as a missing value issue and resolved it using
the method outlined in [9]. Since the average stay in the ICU
is 11 days (with a standard deviation of 13), we limited the
selection to patients who stayed in the ICU for more than 10
days. For each binned time interval, the pipeline assigned a
feature value of 1 if it is recorded during that interval, and
0 otherwise. This paper ended up with a matrix of size 60 ×
8 for each stay and 51080 stay records. Additionally, since
the data were extracted from department where all subjects
have relatively severe health issues, facing a survivorship bias
problem [24]. This means the inference model may show
higher accuracy for severe patients.

C. Computation of similarity variable Xrel
t (VRNN-I+)

MIMIC-IV contains a lot of supplementary information
such as age, gender, diseases and medication etc. We ex-
tracted age, disease diagnosis (ICD-9), and medication as extra
domain information. With apporximately 13000 diagnoses in
ICD-9, which is sufficient to provide domain specific knowl-
edge to the model, we represented the patient’s disease as a
vector of size 13,000, where a ”1” indicates a confirmed diag-
nosis for the patient, and ”0” indicates otherwise. In addition,
we included their temporal data as previously described to
facilitate clustering patients who exhibit remarkably similar
behaviors. Using a K-nearest neighbor approach, we grouped
similar patients with similar diseases based cosine similarity.
This study tests the values of k for 3,4,5,6 and found that 4
is the best option. Thus, all the results mentioned in the next
section are computed with k = 4 and xrel

t ∈ R32.

D. Model Implementation and Evaluation

The models were implemented with T4 GRU, with all
temporal features re-scaled in value between -1 and 1. The
training took approximately 3 hours to complete with training
to test split of 80/20. Table II shows the implementation details
of VRNN-I and VRNN-II model, respectively, where X and
Z denoted the dimension of xt and zt respectively. This table
also includes details on the number of hidden layers, batch
size and epoch. The batch size selection was guided by prior
research [15]. For the choice of the number of hidden layers
and their size, we experimented with many combinations,
including setting from previous work[15]. The final choice of
the hidden size, number of layers and number of epochs were
based on test set performance. However, the optimal value
produced the best result in the test set was different from any
of the settings in [17][14][15].

TABLE II
IMPLEMENTATION DETAILS OF VRNN-I AND VRNN-II

Model X Z No. Layers Hidden Batch Epoch
VRNN-I 8 2 2 60 100 5
VRNN-II 8 4 2 80 150 5

We focus on assessing the performance of the models
for predictions that are less than 8 hours into the future.
Accordingly, we trained on the first 232 hours (58 steps) and
predicted the last 8 hours (2 steps). The metric used in this
paper is Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (15)

where n denoted the size of test dataset.
For VRNN-II+ model, we grouped different diseases into
5 classes (Heart, Blood Pressure, Kidney, Respiratory, and
Others). This provided the model with priori information on
potential patient pattern. In the following section, we review
the outcomes generated from the experimental setup described
earlier.



IV. RESULTS

As shown in Fig.4, we chosed 3 patients randomly and
analyzed the average cosine similarity in respect to differ-
ent k. It is clear that the choice of k = 4, as discussed
in previous section, appears plausible since all three cases
demonstrates high similarity values for the first few related
patients only. Furthermore, from table III, the Root Mean
Square Error (RMSE) with standard deviation on the test
dataset for 1- and 2- step ahead forecasting using VRNN-I
model. The result clearly shows that Xrel

t (additional domain

Fig. 4. This heat map visualises the average cosine similarity values between
our patients of interest (P1,P2, and P3) and its similar patients in k clusters.

knowledge) improves the forecasting accuracy of the VRNN-I
for clinical signals (we observed that VRNN-I+ achieves the
lower RMSE in comparison with VRNN-I). This improvement
is especially notable for temporal features associated with the
set of common diseases between the patients.

TABLE III
RMSE WITH ROUNDED STANDARD DEVIATIONS ON FIRST 2 STEPS AHEAD

FORECASTING TASKS ON TEST DATA

Step
Size

VRNN-I VRNN with
disease
diagnosis
(VRNN-I+)

VRNN-II
with disease
diagnosis
(VRNN-II+)

1 0.01220 ± 0.0039 0.01032 ± 0.0024 0.01030 ± 0.0029
2 0.01212 ± 0.0035 0.01034 ± 0.0021 0.01034 ± 0.0020

Fig. 5. one step predicted values for all 8 temporal variables

Furthermore, comparing with the result of VRNN-II+, their
RMSE values are very similar. Although VRNN-II [14] theo-
retically should outperform VRNN-I model. There is a minor
difference in the result. The conclusion is that the integration
method of domain knowledge differs across models, which
leads to limited further improvement (we categorized the
domain knowledge into 6 categories for VRNN-II+ model

which is less detailed compared to the clusters for VRNN-
I+ model).

Plotting of one-step-ahead predictions of all three models
for patients of interest is in Fig.5. The ground truth values for
all temporal features are shown in red. VRNN-I+ and VRNN-
II+ outperform VRNN-I on MBP, SBP, glucose, and AOS for
all subjects. It is evident that VRNN-II+ provides extremely
accurate predictions, which might seem contradictory to the
results in Table 5, where VRNN-II+ is not shown to be
better than VRNN-I+. However, this is because the randomly
selected three patients coincidentally showed more accurate
predictions under VRNN-II+. Therefore, the process of adding
extra disease diagnoses improve the forecasting accuracy of
the VRNN-I model. On average, VRNN-II+ is slightly better
than the VRNN-I+ model.

V. CONCLUSION

This study presents two innovative approaches using Vari-
ational Recurrent Neural Networks (VRNN-I+ and VRNN-
II+) to enhance the predictive accuracy of clinical time se-
ries data derived from the MIMIC-IV dataset. The proposed
methods, which incorporate domain-specific knowledge such
as patient similarity through the K-nearest neighbor approach
and disease classification using ICD-9 codes, successfully
address the limitations of existing models like RNNs and
stochastic recurrent neural networks in capturing complex
temporal dependencies and disease-specific patterns.

Our findings show that the inclusion of additional domain
knowledge, particularly in the VRNN-I+ model, significantly
improved predictive performance, as demonstrated by lower
RMSE values compared to standard VRNNs. Furthermore, the
comparison between VRNN-I+ and VRNN-II+ reveals that the
latter provides marginal improvements in prediction accuracy,
especially in capturing more granular disease-specific infor-
mation. However, the difference in performance between the
two models suggests that the manner of incorporating domain
knowledge plays a critical role in determining model effec-
tiveness. The implications of this research are far-reaching in
clinical settings. By improving forecasting models for patient
outcomes, these approaches offer practical benefits in hospital
management, such as better phenotype classification, risk-
of-mortality prediction, and length-of-stay predictions. The
models also provide a framework for more detailed analysis of
clinical data, which could enhance decision-making processes
for healthcare professionals and offer new avenues for medical
research.

Overall, the integration of temporal patterns with disease-
specific latent variables in VRNN models opens new possibil-
ities for improving predictive models in healthcare, ultimately
leading to more accurate and actionable insights for patient
care. Future work could explore further refinement in domain
knowledge integration and the exploration of additional latent
variables to enhance model accuracy across broader datasets
and clinical applications.
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