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Abstract. In this study, we investigate how to automatically and efficiently detect 
defects in ancient polyptychs by infrared thermography, combined with numeri-
cal simulation, deep learning networks and machine learning algorithms. 
Through an innovative improved Faster R-CNN model and LRTDTV denoising 
method, the recognition of surface and internal defects of ancient artworks is ef-
fectively improved. This enhanced Faster R-CNN model incorporates an effec-
tive channel attention mechanism in the feature extraction stage, significantly 
boosting the model's performance in recognizing small defects. Comparisons 
with the original Faster R-CNN model show that the average precision at an in-
tersection over union of 0.5 has increased to 87.3% for the improved model. No-
tably, the average precision for detecting small defects has risen to 54.8%. The 
experimental results verify the practicality and efficiency of the method in cul-
tural heritage conservation, which helps to maximize the conservation and trans-
mission of cultural heritage. In addition, the method in this study can achieve fast 
and accurate detection of defects in any type of cultural heritage objects while 
avoiding secondary damage to the samples, providing effective technical support 
for cultural heritage conservation.  
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network, Attention mechanism, Defect detection, Deep learning. 
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1 Introduction 

Cultural heritage, because of its unique historical and cultural value, has become an 
important force for social progress and civilization. The preservation of the cultures of 
diverse ethnic groups and regions is fundamental to the harmonious coexistence of hu-
manity, and safeguarding cultural heritage is vital for maintaining cultural diversity. As 
a form of cultural heritage, polyptychs hold significant historical and artistic value. 
However, over time, they inevitably develop defects such as cracks and holes. There-
fore, it is particularly important to detect and repair these defects in a timely manner. 

Non-destructive testing (NDT) [1] techniques have received widespread attention 
due to their non-destructive nature, safety and adaptability to structures. Currently, the 
main methods include infrared photography, digital photography, ultraviolet imaging, 
X-ray and acoustic emission. In recent years, infrared thermography (IRT) has emerged 
as a widely used tool for artifact detection due to its non-invasiveness, immediacy, and 
high imaging quality [2]. It effectively detects defects by visualizing the temperature 
distribution on the surface of materials through thermal imaging 

Although IRT performs well in detecting near-surface and sub-surface defects, in-
depth detection is still a challenge as strong thermal excitation may damage the in-
spected artefacts. In addition, traditional human inspection is gradually becoming in-
feasible due to time and cost constraints, making the shift to automated defect recogni-
tion particularly important. 

To address these issues, this study employs a numerical modelling approach to ob-
tain quantitative and reproducible results to guide the actual testing procedure, and in-
troduces deep learning networks and machine learning algorithms to build an automatic 
defect detection system. Numerical modelling not only simulates the experimental en-
vironment to avoid damage to the artwork, but also provides sufficient training and test 
data for the defect detection system, thus speeding up the detection speed and identify-
ing defects that are difficult to detect with the naked eye. 

The test object of interest in this work is the ancient polyptychs. The original polyp-
tych was painted in 1320 by Pietro Lorenzetti, as shown in Fig. 1 (a) The artwork is 
currently preserved in the Church of Santa Maria del Fiore in Arezzo, Italy. Fig 1 (b) 
shows a detail of most of the polyptych. It should be highlighted that this replica has 
been thoroughly described in [3]. 

  
(a) (b) 

Fig. 1. (a) A photograph of the polyptych, (b) a zoomed view on the reproduced part. 
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2 Description of the samples under test and numerical 
simulation setup 

2.1 Description of the tested sample 

In order to validate a numerical simulation-assisted approach to detecting defects in 
polyptychs via IRT, two simulated polyptychs were created on wood panels using a 
14th-century pen-and-pencil technique. These boards were simulated with rabbit skin 
glue and Teflon inserts to simulate defects, then coated with multiple layers of gesso di 
Bologna and rabbit skin glue, and finally layered with tempera paint to complete the 
final artwork, as shown in Fig. 2. For more details on the production of the replica, see 
the author's article [3]. This procedure was intended to approximate the replication of 
historical artistic methods to test the effectiveness of the defect detection system. 

 

   
(a) (b) (c) 

Fig.2. Brief description of painting samples: (a) the boards are used as support, (b) using a damp 
cotton ball to adhere the gold leaf, and (c) the fabrication of the samples is completed. 

2.2 Geometric modeling instructions 

This section describes the process of constructing a geometric model of the test sample 
to numerically simulate the temperature distribution on the sample surface. Firstly, the 
outline of the sample model was sketched using AutoCAD 2024 software and then im-
ported into COMSOL Multiphysics 6.0 software and simulated for IRT experiments 
using the Solid Heat Transfer module. For more details on the modelling, see the au-
thor's paper [3]. 

3 Methodology 

The aim of this research is to enable faster and more accurate automatic defect detection 
in IRT using numerical simulation, deep learning networks and machine learning algo-
rithms. And this section introduces the content of the method to achieve faster and more 
accurate automatic defect detection. 
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3.1 The total-variation regularized low-rank tensor decomposition denoising 
method (LRTDTV) 

Here, the thermographic image restoration method uses LRTDTV model to reduce 
noise. The approach leverages Tucker decomposition and total variation regularization, 
focusing on the spatial and spectral smoothness. Given the non-convex nature of the 
problem, the augmented Lagrange multiplier (ALM) method is used for optimization. 

Define a third-order tensor 𝑦𝑦 : = {𝑌𝑌1,𝑌𝑌2,𝑌𝑌3, … ,𝑌𝑌𝐵𝐵 }, where 𝑌𝑌𝑖𝑖 ∈ 𝑅𝑅𝐻𝐻×𝑊𝑊 (𝑖𝑖 =
1,2,3, … ,𝐵𝐵) represents the 𝑖𝑖 th frame of a thermographic sequence, with 𝐵𝐵  being the 
number of frames, and 𝐻𝐻 and 𝑊𝑊 being the height and width of the image, respectively. 
Our data can be considered a mixture of a noiseless image and two types of noise, 
represented as: 

 𝑦𝑦 = 𝑋𝑋 + 𝑁𝑁 + 𝑆𝑆  (1) 
where 𝑋𝑋 is the noiseless image of our data, 𝑁𝑁 is Gaussian noise, and 𝑆𝑆 is sparse noise. 
For more details, check out the authors’ article [3]. 

To eliminate noise in thermographic images, LRTDTV model is used; the visual-
ization of the decomposition can be found in Fig. 3. The objective function is: 

 min
𝑋𝑋,𝑁𝑁,𝑆𝑆

𝜏𝜏‖𝑋𝑋‖SSTV + 𝜆𝜆‖𝑆𝑆‖1 + 𝛽𝛽‖𝑁𝑁‖𝐹𝐹2  

 s. t.      𝑦𝑦 = 𝑋𝑋 + 𝑁𝑁 + 𝑆𝑆 
 𝑋𝑋 = 𝐶𝐶 ×1 𝑈𝑈1 ×2 𝑈𝑈2 ×3 𝑈𝑈3  (2) 
 𝑈𝑈𝑖𝑖𝑇𝑇𝑈𝑈𝑖𝑖 = 𝐼𝐼     (𝑖𝑖 = 1,2,3)  

where 𝜏𝜏, 𝜆𝜆and 𝛽𝛽 are regularization parameters. The 𝐶𝐶 ×1 𝑈𝑈1 ×2 𝑈𝑈2 ×3 𝑈𝑈3  represents 
Tucker decomposition, and ‖𝑋𝑋‖SSTV is the anisotropic Frobenius norm, exploiting the 
spatial-spectral continuity of thermographic images: 
‖𝑋𝑋‖SSTV = ∑ 𝜔𝜔1�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘−1� +𝑖𝑖,𝑗𝑗,𝑘𝑘 𝜔𝜔2�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘� + −𝑥𝑥𝑖𝑖,𝑗𝑗−1,𝑘𝑘𝜔𝜔3�𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 − 𝑥𝑥𝑖𝑖−1,𝑗𝑗,𝑘𝑘� (3) 
where 𝑥𝑥𝑖𝑖,𝑗𝑗,𝑘𝑘 is the (𝑖𝑖, 𝑗𝑗, 𝑘𝑘)th entry of 𝑋𝑋, 𝜔𝜔𝑗𝑗  (𝑗𝑗 = 1,2,3) are the weights controlling reg-
ularization strength, and k represents the dimension of the thermographic data. 

 
Fig. 3. Schematic diagram of the LRTDTV denoising method. 

To solve Problem (2), one can introduce auxiliary variables to reformulate it into 
a simpler minimization problem: 
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 min
𝐶𝐶,𝑈𝑈𝑖𝑖,𝑋𝑋,ℱ,𝑆𝑆,𝑁𝑁

𝜏𝜏‖ℱ‖1 + 𝜆𝜆‖S‖1 + 𝛽𝛽‖𝑁𝑁‖F2 

 s.t. 𝑦𝑦 = 𝑋𝑋 + 𝑆𝑆 + 𝑁𝑁, 𝑋𝑋 = 𝑍𝑍, 𝐷𝐷𝜔𝜔(𝑍𝑍) = ℱ, (4) 
 𝑋𝑋 = 𝐶𝐶 ×1 𝑈𝑈1 ×2 𝑈𝑈2 ×3 𝑈𝑈3,𝑈𝑈𝑖𝑖𝑇𝑇𝑈𝑈𝑖𝑖 = 𝐼𝐼 

where 𝐷𝐷𝜔𝜔(∙) = [𝜔𝜔1 × 𝐷𝐷ℎ(∙) ;𝜔𝜔2×𝐷𝐷𝑣𝑣(∙) ;𝜔𝜔3×𝐷𝐷𝑡𝑡(∙)] is the so-called weighted three-
dimensional difference operator, and 𝐷𝐷ℎ，𝐷𝐷𝑣𝑣，𝐷𝐷𝑡𝑡 are the first-order difference opera-
tors respect to three different directions. Since this is a non-convex optimization prob-
lem, the ALM method is used for optimization. Based on the ALM method, the problem 
can be transformed into minimizing the following augmented Lagrangian function:  

L(𝑋𝑋, 𝑆𝑆,𝑁𝑁,𝑍𝑍,ℱ,𝛤𝛤1,𝛤𝛤2,𝛤𝛤3) = 𝜏𝜏‖ℱ‖1 + 𝜆𝜆‖𝑆𝑆‖1 + 𝛽𝛽‖𝑁𝑁‖F2 
 〈𝛤𝛤1, y − 𝑋𝑋 − 𝑆𝑆 − 𝑁𝑁〉 + 〈𝛤𝛤2,𝑋𝑋 − 𝑍𝑍〉 + 〈𝛤𝛤3,𝐷𝐷𝜔𝜔(𝑍𝑍) − ℱ〉 + 𝜇𝜇

2
(‖𝑦𝑦 − 𝑋𝑋 − 𝑁𝑁‖F2 (5) 

 +‖𝑋𝑋 − 𝑍𝑍‖F2 + ‖𝐷𝐷𝜔𝜔(𝑍𝑍) − ℱ‖F2) 
where 𝜇𝜇 is the penalty parameter, and 𝛤𝛤𝑖𝑖  (𝑖𝑖 = 1,2,3) are the Lagrange multipliers. En-
hancing the Lagrangian function requires optimization iterations, which requires itera-
tive updating of each variable. For a detailed iterative procedure for the parameters 𝑈𝑈𝑖𝑖, 
𝑋𝑋, 𝑍𝑍, ℱ, 𝑆𝑆, 𝑁𝑁, and 𝛤𝛤𝑖𝑖 , see the authors' separate manuscript [3]. 

These steps are repeated iteratively until convergence, using an adaptive approach 
for the penalty parameter 𝜇𝜇. After completing this process, the noise-free image can be 
effectively separated from the noise components. 

3.2 Improved Faster R-CNN internet 

Ross B. Girshick introduced the Faster R-CNN in 2016 [4]. The model starts with nor-
malizing data to handle various inputs and uses networks like VGG and ResNet for 
feature extraction. It features a region proposal network (RPN) that identifies potential 
defects, which are refined through non-maximum suppression (NMS) to highlight cru-
cial areas. The selected regions undergo Region of Interest Pooling (RoI Pooling) and 
are processed by a fully-connected layer for accurate defect classification and localiza-
tion. The Faster R-CNN includes three main components: feature extraction, region 
proposal, and detection networks. 

This study enhances the Faster R-CNN by incorporating the efficient channel at-
tention (ECA) mechanism, which focuses on local interactions within each channel us-
ing a one-dimensional convolutional (C1D) layer instead of a fully connected one. This 
modification not only reduces the model’s parameters but also boosts its accuracy and 
efficiency in localizing defects in complex thermal images. 

ECA Mechanism Steps: 
1.Adaptive Kernel Size Selection: 

The kernel size 𝐾𝐾 is dynamically determined based on the number of channels 𝐶𝐶: 
 𝐶𝐶 = 𝜙𝜙(𝐾𝐾)= 𝛾𝛾 ∗ 𝐾𝐾 − 𝑏𝑏  (6) 

Typically, channels 𝐶𝐶 are powers of 2, so the kernel size 𝐾𝐾 is set as: 
 𝐾𝐾 = 𝜑𝜑(𝐶𝐶) = �log2 𝐶𝐶

𝛾𝛾
+ 𝑏𝑏�

𝑜𝑜𝑜𝑜𝑜𝑜
  (7) 

Here, |⋅|𝑜𝑜𝑜𝑜𝑜𝑜 rounds to the nearest odd number. 
2.Generating Channel Attention Weights: 
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Apply Global Average Pooling (GAP) to input feature maps to get a 1 × 1 × 𝐶𝐶 
vector. Use a C1D on this vector to compute 𝛼𝛼𝑖𝑖: 

 𝛼𝛼𝑖𝑖 = 𝜎𝜎�𝐶𝐶1𝐷𝐷𝑘𝑘(𝑦𝑦)� (8) 
The equation can be expressed as： 

 𝛼𝛼𝑖𝑖 = 𝜎𝜎�∑ 𝜔𝜔𝑖𝑖
𝑗𝑗𝑘𝑘

𝑗𝑗=1 𝑦𝑦𝑖𝑖
𝑗𝑗�,  𝑦𝑦𝑖𝑖

𝑗𝑗𝜖𝜖Ω𝑖𝑖𝑘𝑘    (9) 
Here, 𝜔𝜔𝑖𝑖

𝑗𝑗 are learning parameters and 𝜎𝜎(⋅) is the sigmoid activation function. 
3.Applying Channel Attention Weights: 

The weights 𝛼𝛼𝑖𝑖 are applied to the input feature map 𝑋𝑋: 
 𝑋𝑋′ = 𝑋𝑋 ⊗ 𝛼𝛼𝑖𝑖        (10) 

𝑋𝑋′ is the resulting feature map, and ⊗ denotes channel-wise multiplication. 
This approach efficiently recalibrates features for improved defect detection. For an 

improved computational visualization of ECA for the Faster R-CNN model see Fig. 4. 

 
Fig. 4. (a) ECA module structure diagram, (b) Structural diagram of the improved Faster R-CNN 
network model. 

4 Experimental results and analysis 

The study includes the production of IRT experimental datasets and numerical simula-
tion datasets, performing model training and analyzing the results. First, we collected 
28 thermal images of polyptychs using a 640x512 pixel IR camera. To increase the 
limited number of images, we extended the dataset to 812 images by numerical 
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simulation, including 28 camera-collected images and 784 COMSOL simulated im-
ages. 90% of the images were used for training and 10% for testing. Training was per-
formed using a Faster R-CNN network, optimized by stochastic gradient descent (SGD) 
and VGG backbone. 

After the completion of the network training experiment, this study also conducted 
the original Faster R-CNN network training experiment, and simultaneously made a 
clear comparison between the original Faster R-CNN model and the improved Faster 
R-CNN model. In order to visually evaluate the advantages and disadvantages of these 
two models, the evaluation results of the two models are detailed in Table 1. 

Table 1. Comparison of model testing performance metrics 

model 
𝐴𝐴𝐴𝐴50 
[%] 

𝐴𝐴𝐴𝐴75
[%] 

𝐴𝐴𝐴𝐴𝑆𝑆 
[%] 

𝐴𝐴𝐴𝐴𝐿𝐿 
[%] 

𝐴𝐴𝑅𝑅1 
[%] 

𝐴𝐴𝑅𝑅10 
[%] 

𝐴𝐴𝑅𝑅100
[%] 

Detection 
time [s] 

Faster R-
CNN 81.6 70.2 46.3 64.7 50.1 54.8 56.4 0.31 

Improved 
model 

87.3 72.2 54.8 66.5 52.2 57.7 57.8 0.33 

To get a more intuitive feel for the enhancement of machine learning algorithms and 
deep learning networks for IRT defect detection, we show the experimental results for 
sample A and sample B in Fig. 5. 

 
Fig. 5. IRT experimental results: (a) the raw image of sample A, (b) the image of sample A af-
ter Fourier transform, (c) the image of sample A after LRTDTV de-noise and Fourier trans-
form, (d) automatic detection results after applying the Faster R-CNN model of Sample A, (e) 
automatic detection results after applying the improved Faster R-CNN model for sample A, (f) 
the raw image of sample B, (g) the image of sample B after Fourier transform, (h) the image 
sample B after LRTDTV de-noise and Fourier transform,(i) automatic detection results after 
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applying the Faster R-CNN model of sample B, and (j) automatic detection results after apply-
ing the improved Faster R-CNN model for sample B. 

 
By observing the results of this experiment, we can find the following points: com-

paring Fig. 5(d) with Fig. 5(e), Fig. 5(i) with Fig. 5(j), the automatic defect detection 
network based on the improved Faster R-CNN reduces the error rate and improves the 
accuracy, and it can better detect tiny defects that are difficult to be detected by human. 
Comparison of Fig. 5(f), Fig. 5(g) and Fig. 5(h) shows that the LRTDTV denoising 
method can effectively remove the noise interference in the infrared thermal images. 

5 Conclusions 

In this study, IRT was used to perform NDT of ancient polyptychs, with care taken to 
avoid secondary damage. To protect the ancient polyptychs from secondary damage, 
we used numerical simulation to match the experimental surface temperature, and em-
ployed the LRTDTV decomposition model to effectively remove the noise from the 
thermal images, thus facilitating the detection of sample defects by IRT. In addition, an 
improved Faster R-CNN model is proposed, which utilizes VGG16 for feature extrac-
tion and introduces an ECA mechanism after feature gold extraction, which signifi-
cantly improves the defect detection of ancient artworks. After comparative experi-
ments, the results of the study demonstrate the efficiency and practicality of the model, 
which provides strong technical support and greatly improves the accuracy and speed 
of IRT in cultural heritage conservation. 
 
Acknowledgments  
This work was supported by the National Key R&D Program of China (Grant No. 
2023YFE0197800) and the Italian Ministry of University and Research (Grant No. 
PGR02016). 

References 

1. Hu, J., Zhang, H., Sfarra, S., Gargiulo, G., Avdelidis, N. P., Zhang, M., et al.: Non-destruc-
tive imaging of marqueteries based on a new infrared-terahertz fusion technique. Infrared 
Physics & Technology 125, 104277(2022).  

2. Mix, P. E.: Introduction to nondestructive testing: a training guide. 2nd ed. John Wiley, Sons 
(2005). 

3. Jiang, G., Wang, X., Hu, J., Wang, Y., Li, X., Yang, D., et al.: Simulation-aided infrared 
thermography with decomposition-based noise reduction for detecting defects in ancient 
polyptychs. Heritage Science 11, 223(2023). 

4. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with 
region proposal networks. In: IEEE transactions on pattern analysis and machine intelligence 
39(6), 1137-1149(2016). 


	1 Introduction
	2 Description of the samples under test and numerical simulation setup
	2.1 Description of the tested sample
	2.2 Geometric modeling instructions

	3 Methodology
	3.1 The total-variation regularized low-rank tensor decomposition denoising method (LRTDTV)
	3.2 Improved Faster R-CNN internet

	4 Experimental results and analysis
	5 Conclusions
	References

